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Abstract

We study the existence, uniqueness, global asymptotic stability and propagation failure of
traveling wave fronts in a lattice delayed differential equation with global interaction for a
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and globally asymptotic stable with phase shift. Of particular interest is the phenomenon of
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pinning in this paper.
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1. Introduction

In recent years, spatially non-local differential equations have attracted the interest of
more and more researchers. In the context of population biology, So[22hkecently
derived the following delayed reaction—equation model:

e¢]

W = Dy — dw + / bw(t —r, ) f(x — ) dy, (LD

which describes the evolution of the adult population of a single species population
with two age classes and moves around in a unbounded one-dimensional spatial domain.
Here D > 0 andd > 0 denote the diffusion rate and death rate of the adult population,
respectively,r >0 is the maturation time for the specids,is related to the birth
function, and the kernel functiof describes the diffusion pattern of the immature
population during the maturation process, and hence, depends also on the maturation
delay. We refer to So et dJ22] for more details and some specific formsfpbbtained
from integrating along characteristic of a structured population model, an idea from
the work of Smith and Thiem§0]. See alsd23] for a similar model and11] for a
survey on the history and the current status of the study of reaction—diffusion equations
with non-local delayed interactions. Also explored[22] is the existence of traveling
wave fronts of (1.1) when the reaction term is of monostable type. When the reaction
term is of bistable type, Ma and Wi16] investigated the existence, uniqueness and
stability of a traveling wave front of (1.1).

More recently, Weng et al[24] also derived a discrete analog of (1.1) for a sin-
gle species in one-dimensional patchy environment with infinite number of patches
connected locally by diffusion. This lattice equation has the form

o
= Dlutni1 +un-1— 2up) = duy + | J@)b(un—i(t —1)). (1.2)

i=—00

In this paper, we always assume that) = J(—i)>0,> ; J(i) =1 and)_, |i|J (i) <
+o00, here and in what follows}) ; denotes the sum ovére Z. We also assume that
the birth functionb € C1(R) and there exists a constakt > 0 such that

b(0) =dK — b(K) =0.

Therefore, (1.2) has at least two spatially homogeneous equilibria ®and

We point out that non-local discrete equations also arise from other fields. For ex-
ample, in studying the phase transition phenomena, discrete convolutions equations are
used in, e.g., Bates et dll] and Bates and Chm4®] and the references therein. We
point out that the non-local terms in the models[bR] are linear, while the non-local
term in (1.2) is nonlinear.
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Fig. 1. The relation ofb(u) and d u.

We notice that ifJ(0) = 1 and J(i) = 0 for i # 0, then Eq. (1.2) reduces to the
following local equation:

uy, = Dlupt1+ un—1— 2uy] — duy + bu,(t —r)). (1.3

Traveling wave fronts in such local lattice differential equations have been intensively
studied in recent years, see, e[$+10,12-15,17-19,25-30]

From an earlier work of Keendfl4], one knows that as far as traveling wave fronts
are concerned, a discrete model could behave totally different from its continuous
version. It is such an essential difference that drives us to investigate, in this paper, the
existence, uniqueness, asymptotic stability and propagation failure of traveling wave
fronts of (1.2). To this end, we make the following assumptions:

(H1) »'(n) > 0, for n € (0, K);

(H2) d > max{b’'(0), b'(K)};

(H3) u* :=supu € [0, K); du = b(u)} = inf{u € (0, K]; du = b(u)} and b’ (u*) > d.

A specific function which has been widely used in the mathematical biology literature
given by b(u) = pue=* with p > 0 anda > 0 does satisfy the above conditions for

a wide range of parameteys «. Fig. 1 illustrates the relation df(z) and du.

Under assumptions (H1)—(H3), by using the comparison and squeezing technique, Ma
and Wu[16] have proved that Eq. (1.1) has exactly one non-decreasing traveling wave
front (up to a translation) which is monotonically increasing and globally asymptotic
stable with phase shift. The technique usedlf] has also been used previously by
several author$6,21] for some continuum models. To our knowledge, this technique
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has not been used for discrete equations, and hence, it is not clear if this technique
can also be used to prove similar results for the lattice equation (1.2).

Motivated by Bates et al[1,2], our approach for the existence of traveling wave
fronts is to “approximate” the wave equation of (1.2) by a sequence of equations with
smooth kernel functions, and then obtain a solution of the wave equation of (1.2) by
taking the limit in a sequence of solutions with some desired properties of the latter
equations, which can be obtained by using the continuation technique and a result
established previously by Ma and Wu6]. The above setting enables us to obtain the
existence, uniqueness and asymptotic stability of traveling wave fronts for the lattice
equation (1.2) by using the comparison and squeezing technique. In contrast to the
results obtained i16], we succeed in determining the sign of the wave speed in this
paper.

An important qualitative difference between traveling wave solutions of the two
systems (1.1) and (1.2) is the occurrence of “propagation failure” or “pinning” (that is,
wave sped c = 0) in thediscrete system (1.2). Such a phenomenon has been observed
by several authors, see, e.g,10,14] and references therein, in different contexts,
where the authors proposed a crucial assumption on the reaction functions, that is,
the reaction functions are piecewise linear. Such an assumption allows the authors to
make straightforward use of the Fourier transform, which played a central role in the
above-mentioned papers.

In this paper, we employ a new method for studying the pinning phenomenon for
bistable lattice equations. That is, by proving asymptotic stability of traveling wave
fronts with non-zero speed, we can reduce the problem to an easier one. The significant
feature of this method is that it is applicable to lattice equations with general reaction
functions.

Our main results can be summarized by the following two theorems.

Theorem 1.1. Assume that(H1)—(H3) hold. Then (1.2) admits a strictly monotone
traveling wave frontU (n — ct) satisfyingU (—oo) = 0 and U (+0c0) = K. Moreover if

K K
Z J) < max 2]0 [l;((u) — du]du’ 2]0 [du }b(u)]du }
i#0 Jo b(u)du dK? — [y b(u)du

then there existdg > 0 such thatc = |c|sgnf0K[du — b(u)]du # 0 for all D> Dg.
If ¢ # 0, then the traveling wave fron/ (n — ct) is unique(up to a translatiop and
globally asymptotically stable with phase shift in the sense that there exist8 such
that for any o(s) = {¢,,(s)},cz With ¢, € C([—r, 0], [0, K]) and

lim inf m|n q)n(s) >u*, limsup max gon(s) <u*

n—+00 se[—r, n——oo S€[—r,0
the solutionu, (¢, ¢) of (1.2), with u, (s, ) = ¢, (s) for s € [—r, 0] andn € Z, satisfies
lun(t, @) —U(n —ct + &) <Me™", 120, nel,

for someM = M(¢p) > 0 and &y = &o(@) € R.
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Theorem 1.2. Assume tha{H1)-(H3) hold. Then (1.2) admits pinning if and only if
it has a stationary solutiont = {u,},cz with u,, € [0, K] for all n € Z satisfying
limsup,_, _u, < u* and liminf,_, - u, > w*. In particular, pinning occurs if
Y J(i)=0and [ [du — b(u)ldu =0, or

i£0
1 . du — b(u) | dK — b(u)
D<K > min {max,e[o,u*] { |:dK——b(u) — i#zo J(z):| K——u] ,
b(u) —d | b(w)
MaX,e[u* K] { {% — Z J(l):| uu } }
i#0

and

d > by :=supb' (w); uel0,u)U@", KI},
where

u" :=inf{u € (0,K]; 2D(K —u) + [dK — b(u)] Z JO)<du — b(u)}
i£0

and

wh = suplu € [0, K); 2Du+b(w) Y J (i) <bu) — du).
i#£0

We remark that these two theorems are direct implications of the main results ob-
tained in the later sections. More precisely, Theorem 1.1 is a direct consequence of
Theorems 2.1, 3.1 and 4.1, and Theorem 1.2 is a direct consequence of Theorems 2.1,
5.1, Remark 5.1 and Corollary 5.1. Throughout this paper, by “pinning” we mean that
all the waves connecting 0 aritl have speed = 0.

Under assumptions (H1) and (H2), we can choose a positive congantO such
that

du < b(u) <0, for u € [—dg,0) (1.4)
and
du > b(u) >0, forue(K,K+ ol (1.5
We also assume thdt is strictly increasing in[—dg, K + dp]. By (H1), this can be

achieved by modifying (if necessary) the definition lofoutside the closed interval
[0, K] to a newC-smooth function and apply our results to the new function
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The rest of this paper is organized as follows. In Section 2, we establish the existence
of traveling wave fronts of (1.2). Section 3 is devoted to the uniqueness of the obtained
traveling waves with non-zero speed and the technique is similar to that used in [1,2].
A comparison result and the asymptotic stability of the unique traveling wave front are
obtained in Section 4. The arguments in the proof of the stability is very much similar
to those in [4, 12, 15], and for the reader’s convenience, the details will be given in

this section. In the last section, a necessary and sufficient condition and some sufficient
conditions for propagation failure are given.

2. Existence of traveling waves
In this section, we study the existence of monotone traveling wave solutions of (1.2).
Define Js(x) = Y, J(i)o(x — i), where 6(-) is the Dirac delta function/(i) =

J(=i)y=0foralliez Y ,J@)=1and);|i|J(i) < +oo. Clearly, for any bounded
continuous functiorv, we have

Jsxv(x) = fR Jste = yw(»dy =y J(i)fRé(x —y =) dy = Y J ol —i).

We consider the equation
cU'(x)+DU(x+1)+Ux—1) —2U(x)] —dU(x)
~|—/ b(U(x +cr —y))Js(y)dy =0, (2.1)
R
and the boundary conditions
U(—00) =0, U(+00)=K. (2.2)
Clearly, solutions(U, ¢) of (2.1) and (2.2) give traveling wave fronts for (1.2), by
settingu,, (t) = U(n — ct).
Our approach for the existence of traveling wave fronts is to combine continuation

technique used i1f1,2] and a result obtained previously [@6] (see Lemma 2.1) to
establish firstly the existence of a strictly monotone solutions to the equation

cUX)+DUx+1D)+U(x—-1) —2Ux)] —dU(x)
+f b(U(x +cr —y)J(y)dy =0, (2.3)
R
and then, “approximate” the wave equation (2.1) by a sequence of equations

cU'(x) + DU+ 1) +U(x — 1) — 2U(x)] — dU (x)
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+/ b(Ux+cr—y)Ju(y)dy =0, (2.4)
R

where J and J,, are smooth kernel functions to be specified later.
Firstly, we establish the existence of monotone solutions to Eq. (2.3) subject to the
boundary conditions (2.2). We assume that

J(x) e C®(R), J(x)=J(—x)=0, [pJ(x)dx=1,

JrlxlJ(x)dx <400, [T (x)|dx < +oo, [g|J"(x)|dx < +o0. 25
Let 0 € [0, 1], we consider first the following equation:
cU'(x)+0DUGx+1) +U(x —1) —2Ux)]1+ (1 — 0)DU" (x)
—dU(x) —1—/Rb(U(x +er—y)J(y)dy =0, (2.6)

In a recent papefl6], the following result has been obtained.

Lemma 2.1. Assume thai{H1)—(H3) hold. Then for0 = 0, (2.6) and (2.2) admit a
unique solutioU, ¢) satisfying0 < U’giﬁ—% on R.

Lemma 2.2. Let 0 € [0,1) and let U satisfy(2.6) and (2.2). ThenU (x) € (0, K) for
al x e R.

Proof. If 0 = 0, then the conclusion follows from Lemma 2.1. In what follows, we
assumef) € (0, 1).

First, it is clear that anyL> solution of (2.6) is of classC3. If U has a global
maximum atxg with U(xg) > K, then U’ (xp) = 0, U"(x0) <0 and U (x) < U (xg) for
all x € R. So it follows from (2.6) that

OD[U(xog+1) +U(xg—1) — 2U (x0)] — dU (xp) + /Rb(U(XO +cr — y))f(y) dy>0.
Since
fR b(U (xo + cr — y)J (y)dy < fR b(U (x0))J () dy = b(U (x0)) <dU (x0),

it follows that

Uxo+1) +U(xo—1) —2U(xg) =0,
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which together with the fact that/ (xo + 1) <U(xp) Yields
Uxo+1) =U(xo—1) = U(xop).

Therefore,U (xo + n) = U(xg) > K for all n € Z, contradicting toU (—o0) = 0.
A similar argument shows thdf (x) > O for all x € R. The proof is complete. U

Now suppose thatUp, co) is a solution to (2.6) and (2.2) for sontg € [0, 1) and
suppose that/j > 0 on R. We will use the Implicit Function Theorem to obtain a

solution for 0 > 0p.
We take perturbations in the space

Xo = {uniformly continuous functions ofR which vanish at+ oco}.
Let L = L(Uy, co; o) be the linear operator defined KXig by

domL = X, ={u € Xo; u” € Xo},

Lu = cou' + 0oD[u(- + 1) +u(- — 1) — 2u] + (1 — Og) Du”

—du + /Rb’(Uo(- + cor — y)u(- + cor — y)J (y) dy. (2.7)

Lemma 2.3. L hasO0 as a simple eigenvalue.
Proof. Clearly, p = Uy is an eigenfunction of. with corresponding eigenvalue 0. So
the only question is simplicity. Suppose thatis another eigenfunction with eigenvalue

0 and assume takes on positive values at some points. We shall showpghetd ¢
are linearly dependent by considering the family of eigenfunctions

Let

B = supp < 0: ¢(x) < O for somex}.
Then 8 is well defined sincep is positive at some points. Recall that> 0 on R.
For f < f, let x; be a point wherep; achieves its minimum. S@/(xg) >0 = $j(xp)
and it follows that

0oDl¢g(xp + 1) + dpxp — 1) — 2¢50xp)] + (1 — Oo) DPg(xp)

—dplxp) + fR b (Uo(xp + cor — ) + cor — y)J (»)dy = 0.
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Hence

0>ddgxp) = be/(Uo(Xﬂ + cor — Y))p(xp + cor — ) J (y) dy
> ¢/f(xﬂ)/Rb/(Uo(Xﬁ + cor — ) J (») dy.

Therefore, we have
/Rb'(Uo(xﬁ + cor — ) J (y)dy >d.

Suppose that there exists a sequefigg} with f, < B such that|xg | — +oo as
n — oo. Without loss of generality, we assumg — —oco asn — oo, then it follows
from the Dominated Convergence Theorem thaD)>d, a contradiction. Therefore,
{xﬁ}ﬂ<ﬂ is bounded.

Now take the limitp 7 B along a sequence such that converges to some, and
observe thatﬁﬁ(i) =0« ¢B(x) for all x ¢ R and d)’B()E) =0, it follows that

OoDIpj(E + 1) + 5+ — 1) = 24 5(N)] + (L~ Oo) DY()
+ /Rb/(Uo(i +cor — M)Pp(x + cor — WJ(y)dy =0
Therefore, we have
0> [ B Wo(s +cor = yii +cor =13 dy
> 955 [ VU0l +cor =0T )dy =

that is,
/R b'(Uo(x + cor — ) (& +cor — y)J (v)dy = 0.

By Lemma 2.2,Up(x) € (0, K), and henceb’(Up(x)) > 0. Therefore, if[a, b] C
sup[:(f), then(/ﬁ/-),(x) =0forx €[x+cor—b,x+cor —alU[x+cor+a, x+cor+b],
and then an induction argument shows tipaix) = O for all x € R. Hence,p and ¢
are linearly dependent. This completes the proof.
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The formal adjoint ofL is given by
L*u = —cou’ + 0oD[u(- +1) +u(- — 1) — 2u] + (1 — Og) Du”

—du + /Rb’(UO(- + cor — y)u(- + cor — y)J () dy.

It is easy to show that O is also a simple eigenvalud. tf Moreover, it can be shown
that O is an isolated eigenvalue. Lét be the corresponding eigenfunction, then by
the Fredholm Alternative, fog € Xo, Lu = g has a solution inXy if and only if
Jrgd* =0.

We now give the continuation result.

Lemma 2.4. With 0p, Up and ¢o as above there existsy > 0 such that forf
[0o, 0o + 1), problem (2.6), (2.2)has a solution(U, c).

Proof. Without loss of generality, we may assurbg(0) = u*. For (u,c) € X2 x R
and 6 € R, define

G(u,c,0)
= ((co +0)(Uo+u) + 0D[(Uo + u)(- + 1) + (Uo + u) (- — 1) — 2(Ug + u)]
+1 - 0)DUo+u)" —d(Up + u)
+ /R b((Uo + u)(- + (co + ) — )T (y)dy, u(0)> :

so thatG : X» x R? - Xg x R is of classC. We haveG(0, 0, 0g) = (0, 0) and

0G
DG = ——(0,0, 60
a(M’C)( o)

_ <L Up+ 7 [ b'(Uo(- + cor = y)Ug( + cor = y)J (7) dy)
50 ’

where éu = u(0).
If we can show thatDG : X2 x R — Xg x R is invertible, then the lemma would
follow from the Implicit Function Theorem. To this end, lkte Xg andb € R, and

DG(u,c) = (h,b),

that is,

Lu + cUé + Cr/ b (Uo(- + cor — y))U6(~ + cor — y)f(y) dy =h, (2.8)
R
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u(0) = b. (2.9)

As we observed above, (2.8) is solvable if and only if

c /R (Ué+r fR b/(Uo(-+Cor—y))Ué(-+Cor—y)f(y)dY) ¢* = /R he*. (2.10)

We claim that the integral on the left of (2.10) is not zero. Suppose for the contrary
that this is not true, then there exisig € X, such that

Lug = Ué + r/[Rb’(Uo(- + cor — y))U6(~ ~+ cor — y)j(y) dy. (2.11)
Multiplying (2.11) by U, and integrating ovefR to get

0= f UéLuo = / Ué{Ué + r/ b (Uo(- + cor — y))U(/J(- + cor — y)f(y) dy} > 0,
R R R

which leads to a contradiction and establish the assertion.

So (2.10) determines. With this value ofc, the solution to (2.8) is determined up
to an additive termyUj, wherey € R. Now (2.9) is satisfied by a unique choice pf
since U4(0) > 0. Thus,DG is invertible and the lemma is proved.

Lemma 2.5. Let 6 € [0g, 00 + ) and (Uy, cy) be the solution given abovdhen
Uj(x) > 0 for all x € R.

Proof. Let
0 = supfo<0 < 0o+ n; Uy > 0 on R}.
If @ = 0p+ 5, then we are done. So we assume that< 6 < 0o + . Then there
exists x such thatUé()E) = 0< Ué(x) for all x € R. HenceUé/(i) =0, Ué”(;?))O.
Differentiating (2.6) withd = 0, U = U and evaluated at, we obtain
ODIUY(E + 1) + Uj(x — 1) — 2U5(D)] + (L — 0)DUS' (%)

+ /Rb’(U@()E +cgr — UL + cjr — y)J(y)dy = 0.

Hence, we have

/Rb/(U(;()E +cgr — YVUHE + cpr — y)J(y)dy = 0.
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Notice thatU;(x) € (0, K) and henceb’(U(x)) > 0, we conclude thaU(Z)(x) =0,
that is, Up(x) = const, a contradiction. This completes the proof.l]

Lemma 2.6. Suppose that fop) € [0, 0), there exists a solutioriUy, cy) to (2.6) and
(2.2). Then{cy; 0 € [0, 6)} is bounded.

Proof. Suppose, on the contrary, that this set is unbounded. Then there would exist a
sequencel,} with ¢, = ¢y, — Foo asn — oo. Writing U, = Uy,. SinceU, (x) — 0

as |x| — o0, |U,(x)| has a maximum value at some point. Clearly, U,/ (x,) =0

and hence

lenUplloo = lenUy ()]

HnD[Un(xn + 1D+ Up(xy — 1) — 2U,(xp)]

AU, (x) + / b(Up Gin + enr — )T (3) dy
R

< 2DK +dK +b(K) =2(D +d)K.
Therefore, we have
||U,;||Oo — 0 asn — oo. (2.12

We now assert that for any > 0 and any closed interva§ c (0, K) of positive
length there exists,, such thatU,(x,) € S and |U)/(x,)| < e. If this were not the
case, there would exist such an inter@&hand a numbee > 0 such that|U,/|>¢ on
the interval(a,, b,], whereU, ([a,, b,]) = S. Then

21U lloo = U,y (by) — Uy (an)| = &by — an),
and by the Mean Value Theorem, the lengthSfis
|S| = Un(l;n) - Un(&n) § ||Uy/,||oo|5n - ‘_ln|< ”U;;”oo(bn - an),

whereay,, b, € [ay,, b,] with U, (a,) = minxe[an,bn] Up(x), Up(by) = MaXe(a, b, Un (x).
It follows that Z|U,;||228|S|, contradicting to the fact thafU, |l.c — 0 asn — oo,
thus establishing the assertion.

Now taken > 0 small and letS be such that

du—bu)y< —n, forallues (2.13)
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in the case that,, — 400, and such that
du—bw)>zn, foralues (2.1%

in the case that,, — —oco. Takee = % and take{x,} to be the sequence given by

the assertion above. Without loss of generality, we assumecthat +oo, then (2.6)
with 0 = 0,,,c = ¢, andU = U,, evaluated at, gives

n < CnUy/,(xn) —dUy(x,) + b(Uy(x))
< CnU,/l(xn) —dU,(x,) + b(U, (x4 + cyr))
= _GnD[Un(xn +D 4+ Uy =1 = 2U,(x)] — (1= Gn)DUy/,/(xn)

- /R [b(Un (o + cur — ¥)) — b(Un (ki + car)1F(y) dy

/N

DU, (xp +1) + Up(xy — 1) — 20U, (xp)| + D|Uy/,/(xn)|
+baqax||U,’,||oo/R|y|i<y)dy
< 2D|U}llo + Dt +b§nax||U,;||oofR|y|f(y> dy,

Sendingn — oo, by (2.11), we then get < De = 1/2, a contradiction. This completes
the proof.

Lemma 2.7. Suppose that fop € [0, 0), there exists a solutioriUy, cy) to (2.6) and
(2.2). Then{Uy; 0 € [0, 0)} is bounded inC3.

Proof. Notice that
/R b'(Ug(x + cor — y)Up(x + cor — y)J (y) dy
= —b(Up(x + cor — yNIWMIFX + /R b(Ug(x + cor — y))J'(y) dy
= [ bW+ cor =07 ) dy,
it follows from (2.6) thatpy = U, satisfies the variational equation

copy+ 0D[po(- + 1) + po(- — 1) — 2pgl + (1 — 0) Dp)

—dpg + ,/[Rb(UH(. + cor — y))f/(y) dy = 0. (2.15)
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Therefore, at the pointy where py achieves its positive maximum, we have
0 < dpg(xp) < /Rb(Ue(xe + cor — yNJ'(v) dy <b(K) /R |7/ ()| dy,
and hence
1 3!
Pollee = pe(xe)égb(lf) . I (»)Idy.
Notice that

/R b Ug(x + cor — YU + cor — 1T/ () dy

—b(Ug(x + cor — T TS + be(Ug(x +cor —yNJ"(y)dy

— [ bW+ cor = 7" ay.
by differentiating (2.15), we obtain
copy + ODIpp(- +1) + py(- — 1) — 2pyl + (L — 0) Dpy/

—dpy + /R b(Up(- + cor — y)J"(y)dy =0. (2.16)

Assume thaf pj,(x)| achieves its maximum at the poimj. Without loss of generality,
we also assumey(xg) >0, then py(xg) = 0, pj'(xp) <O, and hence

dpysn) < [ bWt +eor =T 0ray <) [ 1701
Therefore, we obtain
IPgllee = pé;(Xo)éc—tb(K) /R 17" () dy.
Differentiating (2.16), we get

copy +0DIpy(-+ 1) + pj(- — 1) — 2pj1 + (1 — O)Dpy”

—dpy + be/(Ue(' + cor — Y po(- + cor — ) J"(y)dy = 0.
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A similar argument shows that

1
IIPolloo\dbﬁqaxllpelloo/ 17" () dy.

The proof is complete. [J

Lemma 2.8. There exists a solutiogU, ¢) to (2.3) satisfying(2.2).

Proof. Lemma 2.4 gives a solutiori/y, to (2.6) and (2.2) for each € [0, 0) for some
0 <€ (0, 1]. Furthermore,U(; >0 onR by Lemma 2.5.

Along a sequencd), 0, by Lemma 2.6 and 2.6, we may pass to the limit in
(2.6), thereby obtaining a smooth squtij ¢) to (2.6) for 6 = 0. Clearly, this
solution satisfied/’ >0. Therefore, if) < 1 andU satisfies (2.2), then by Lemma 2.2,
y(x) € (0, K), and hence the proof of Lemma 2.5 again shows fiiat- 0. So if
0 <1 andU satisfies (2.2), Lemma 2.4 again may be applied, showing that solutions
exist for 0 € [0, 1). Thus, by passing to the limit in (2.6) along a sequefige” 1,
we obtain a solutionU, c¢) to (2.3).

_ We now show that satisfies (2.2). The same argument holds for either of the case
0 <1 or 0 =1. Because/ is bounded and monotone, it has limits as> 400, and

using the Dominated Convergence Theorem, we see from (2.6) that these limits are
zeros of the functioniu — b(u), u € [0, K.

Suppose thaf >0. Recall the intermediate zeid" of du — b(u). Takeu € (u*, K)
and translatd/y so thatUy(0) = u for eachf. We still may take a sequence 6f " 0,
a subsequence of the original one, so thigtconverges pointwise to somé. Since
c is independent of translations, we still hayg— ¢. Then lim,_, o U(x) = K and
liM s —oo U(x) € {u*, 0}. If lim__oo U(x) =0, then we are done. So from now on,
assume lim_, _ U(x) = u*. Therefore, we havedU (x) — b(U(x)) < 0 on R.

By the above discussion, we see tliatis of classC? and satisfies (2.6). So

R
0> / {dU (x) — b(U(x))}dx
“R
R —_ —
> / 1dT () — b(T (x + &)} dx
—R
R — —_— — — — —_ —
- / (G0 (x) + 0D[U(x + 1) + U (x — 1) — 20 ()] + (L — O)DT" (x)
“R
+ /R (0 (x + ér — ) — (0 (x + aNT () dy} dx

R 1 R
> BD/ / [U'(x+1)—U'(x —t)]dtdx + (1 — é)D/ U (x)dx
—R JO
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R 1 _ _ B
—/ f / b'(U(x +cr —ty)U'(x +cr —ty)dtyJ (y) dydx
-RJRJO

—_ 1 —_ —_ —_
= BDf [UR+1t)—U(—R+1t)—UR—-1)4+U(—R —1)]dt
0
+1—0)DU'(R) — U'(—R))
1
—/ / [b(U(R +¢r — ty)) — b(U(-R+¢r — ty))]dtyf(y) dy.
R JO

Sending R — +oo in the above inequality, it follows from Fubini's Theorem,
Lebesgue’s Theorem and the evenness ttat

0> /R[dU(x) —b(U@)]dx = — (b(K) — b(u*))[;%yj(y) dy =0,

which is a contradiction.
If ¢ < 0, a similar argument is used taking € (0,u*). This completes the
proof. [

In our analysis, we need the following lemma.

Lemma 2.9 (Dominated Convergence Theorenhet {f; ;},i € Z, j>1, be a double
sequence of summable functidns., ) ; fi,j < +00), such thatf; ; — fi asj — +oo
for all i € Z. If there exists a summable sequerigg such that| f; ;| <g; for all i, j’s,
then

wa’—)sz’ as j — +oo.
i i
The proof is similar to that of Lebesgue’s dominated convergence theorem and is
omitted.
Theorem 2.1. Assume that(H1)—(H3) hold. Then (1.2) admits a strictly monotone

traveling wave frontu, (t) = U(n — ct) satisfyingU (—o0) = 0 and U(+o0) = K.
Moreover if

K K
ZJ(")  max 2/, [l;{(u) —du]du, 2 [y ldu ;b(u)]du ’ (217
i#0 Jo b)du dK? — [3" b(u)du

then there existdg > 0 such that for eachD > Dg, ¢ = |c|sgnf0K [du — b(u)]du # 0.
In particular, if }°, .o J (i) =0, then

() ¢=0,if [X[du —b@)]du = 0;
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(i) sgn{c} = sgnfoK [du — b(u)]du, if ¢ # 0.

Remark 2.1. It follows from (2.17) that the following statements hold true:
@) if fo [du — b(u)ldu < 0, then

K K
%Z](i)/o b(u) du <f0 [b(u) — du]du; (2.18)
i#£0

(b) if [ [du — b(u)]du > O, then

K K
% > TG)dK? — / b(u)du] < / [du — b(u)]du. (2.19)
i£0 0 0

Proof of Theorem 2.1.Lety € Cg°(R) be such thaty(x) = y/(—x) >0 ande Y(x)dx
= 1. Clearly, since) has compact support, we also have

/ X (x)dx < +o0, f W/ (x)|dx < 400, / W' (x)|dx < +o0. (2.20)
R R R

Setd,, (x) = my(mx),m>1, thend,,(x) = 0,,(—x) >0, fR Om(x)dx = 1. Moreover,
we have

meagx; 0,,(x) # 0} = %mea@c; W (x) # 0O},

where mea&) denotes the Lebesgue’s measurekof
For anym >1, define

In(x) = Wi > TS (x — i), (2.21)

"i<m

where W,, = > J(i). Then J,(x) = Ju(—x)>0 and [ Ju(x)dx = 1, and it
i<

li|<m
follows from (2.18) that
/ |x] S (x) dx < 400, / [, (x)|dx < 400, / |J)(x)|dx < +o00.  (2.22)
R R R
SetE,, = {x € R; J,,(x) # 0}, then it is easily seen that

measE,,) < Z meagx; 6, (x — i) # 0} <3meagx; Y(x) # 0} < +oo.  (2.23)

lif<m
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Furthermore, we assert that for afye C5°(R) and {y,,} satisfyingy, — O,

I GG+ ym) > Y TPy —i), as m — oo, (2.24)

uniformly ony € R. In fact, let M > 0 be such thaty = 0 for |x| > M. Then by the
Mean Value Theorem, we have

[ * G+ ym) — D TPy — i)

<Wi 3 J(i)/Rém<x>|¢(y+ym—i—x>—¢<y—i)|dx

i <m

1
o 2 JOL=Walldy = DI+ - Ty =)l

i <m li|>m

M
gWi > J(i)[Mw(x>|¢<y+ym—i—x/M>—¢<y—">"’x

i <m

1
t 2 JOIL=Wallpy =D+ 3 TGy — i)l

i <m li|>m

: 1 .
<N lloollym| + M/ml+ 2= 3 TOIL= Wanlll§lloe

i <m

+ Y TDllo

|i|>m

— 0,
asm — oo and the assertion follows. [J
By virtue of Lemma 2.8, for eacly,,, there exists a monotone soluti@®,,,, ¢,,)

with U,,(—o0) = 0 andU,,,(+o0) = K to (2.4). The solutiongU,,, ¢,,) are of course
also weak solutions of (2.4), i.e., for any e C3°(R), they satisfy

—C/ U¢/+D/[U(-+1)+U(-—1)—2U]¢—df Ug
R R R
~|—A;{/Rb(U(-+cr—y))Jm(y)dy(f):O. (2.25)

Consider first the case, >0. Takeu € (u*, K) and translate eacti,, so thatU,,(0) =
u. By Helly’s Theorem, there exists a subsequencd/gf which we still denote by
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U,,, converging pointwise to a monotone functithas m — oco. Moreover, thec,,’
are uniformly bounded, as can be seen from the following argument.

Assume on the contrary, that there is a sequence> co asm — oo. From (2.4)
we see that|c, U}, loo <2(D + d)K, from which we get||U,,|lcc — 0 asm — oo.
This implies thatU = u. It is easy to see that

dUp(x) = b(Un(x))
2dUp(x) = b(Un (x + cmr))
= cnUp, (x) + DlUn(x + 1) + Up(x = 1) = 20U (x)]

+ f [b(Un (x + cnr — 3)) = b(Un (x + cnr) () dy
R

— en U (%) + D[Un(x + 1)+ Un(x — 1) — 20 (x)]
1
_ / / B (Un (x + cmr — tY)UL, (x 4+ cnr — 1y)dt - yd(y) dy
RJO

> DUt + 1) + Up(x — 1) — 20 (0] — Bl Ul 10 /R () dy

>D[U,(x+1D +Up(x—1) —2U,(x)]
b/ U/ 1 d 1 . J .
~ o Up oo { = [ 1313) r g D@

Sendingm — oo, from the above inequality, we get0 du —b(u) >0, a contradiction.
Thus by passing to another subsequence, we also have> ¢, for somec, as
m — OQ.
We now show thatJ solves (2.1) and (2.2). Firstly, by Fubini’s Theorem, we find

/R /R b(Un (X + e — ¥) I () dyp(x) dx
- /R fR b(Un (x + cr = 1) () dyd(x + (¢ = e)r) dx
_ /R/Rb(um(y +er) I — ¥) dy(x + (¢ — cn)r) dx
_ A;/RW 4 (C = en)P)Im(x — y) dxb(Un(y + cr)) dy
= /R/R Gy + (¢ — cm)r — x) I (X) dxb(Uy (y + cr)) dy

_ /R (U % $)3 + (€ = eI (Un (v + cr)) dy. (2.26)
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Since ¢ has compact support, it is easily seen from (2.23) that
measy € R; J,, * ¢(y + (¢ — cm)r) # 0} < +o00. (2.27)

So it follows that
M s+ 00 /R U % D + (€ = en)PWb(Un (v +cr)) dy

- /R S IOy — DU +er) dy
k
— iy [ YO0 = DU s+ ey dy
k

=M o0 Y J(i)/k ¢y —DHbU(y +cr))dy
=300 [ b= bW+ e dy

- ZJ(i)be(U(y ter—ip(y)dy

= [ S s@pwes+er=gody

:/R/;Qb(U(y—}—cr—x)J(;(x)dxr,b(y)dy, (2.28)

where the first equality follows from (2.24) and (2.27) and the Lebesgue’s Dominated
Convergence Theorem, the third equality follows becafiseas compact support and
thus the sum is finite, and the fourth equality follows from Lemma 2.9 and the fact
that

k
‘/kqﬁ(y —i)b(U(y-i-cr))dY‘ <b(1<)/R lp(y —i)|dy = const

By passing to the limitn — oo in (2.25), it follows from (2.26), (2.28) and the
Lebesgue’s Dominated Convergence Theorem thas a weak solution of (2.1), i.e.,
it satisfies

—c/ U¢’+D/[U(~+1)+U(-—1)—2U]¢—df Ug
R R R

+/R/[;Qb(U(o +cr —y)Js(y)dyp = 0. (2.29)

for ¢ € C5°(R).
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If ¢ # 0, then it follows thatU € W1>°(R). A bootstrap argument then shows that
U is of classC! (and actuallyC?) and thus a solution of (2.1).

If ¢ =0, thenU need not be continuous, sk x b(U)(n) need not equad _, J(i)b
(U(n —1i)). However,U is monotone, and so the set of jump discontinuities is at most
countable. Thus we can find a sequenrgg such thats; \, 0 ask — oo and U is
continuous at: + s for all n € Z andk > 0. The equation (2.1) implies that

DIUn+1+s)+Um—1+sk) —2U(m +sp)] —dU (n + s¢)
+Y JObUn+s—i) =0,

for all n € Z andk > 0. It is then easily seen that the sequeiitedefined by

U,=Ilim Un+sy), ne”,
k—o00

satisfies

D[Ups1+ Un-1— 2Un] = dUy + ) J ()b (Un—i) = O, (2.30)

1

So is a stationary wave solution of (1.2).
We now show that/(—oco) = 0 and U(+o0) = K. From the monotonicity ol,
we easily see thatlU(+o0) = b(U(£00)). SinceU(0) = u, we haveU (+o0) = K
and U(—o0) € {u*,0}. If U(—o0) = 0, we are done. So assume otherwise, that
U(—00) = u*. ThendU (x) < b(U(x)) on R.
Consider first the case > 0. Integrate the equation (2.1) over N, N) to get

N N
c/ U’(x)dx+D/ [WEx+1D)+Ux—1) —2Ux)]dx
—-N —-N

N N
:d[ U(x)dx —ZJ(i)f b(U(x + cr —i)) dx
—N i —N

N N
</ [dU(x)—b(U(x))]dx—ZJ(i)/ [b(U(x +cr —i))
—N ; —N
—b(U((x +cr))]dx

N
_ / [dU (x) — b(U (x))] dx

—-N

N 1
+ Zi](i)/ / V(U +cr —it)U'(x +cr —it) dtdx
i —N JO

—N

N 1
=f [dU (x) —b(U(x))]dx—{—ZiJ(i)/ [b(U(N + cr —it))
i 0

—b(U(=N + cr —it))]dt.
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SendingN — +o0, we obtain

c(K —u*) < f [dU(x) —b(U(x))]dx + ZiJ(i)[b(K) —b")]
" i

= /[dU(x) —b(Ux))]dx <0,
R

which is a contradiction. In the above calculation, we have used the Lebesgue’ Domi-
nated Convergence Theorem, Fubini’ Theorem, the evennedsafd observe that

N
/[U(x—l—l)-i—U(x—l)—ZU(x)]dx
-N
N 1
=/ /[U’(x—l—t)—U’(x—t)]dtdx
—N JO

1

=/ [UN+1t)—U(-N+1t)—U(N —t)+U(—N —1)]dt
0

— 0,

as N — +oo0.

Next, assume that = 0. Then, using an argument similar to the above, the sequence
{U,} defined above is a stationary solution of (1.2), i.e., it satisfies (2.30). Without loss
of generality, we assume limn, ;. U, = K and lim,_, o, U, = u*. Then we have

D Y Wi+ U1 =200+ Y Y J@OIbUsi) — b(Uy)]

<N In|<N i

= Y [dU, —bU] <0,

[n| <N

and hence
DIUy+1+U-_N-1— Uy —U_n]

+Y IO Y. bW = Y bU)]

i>0 —N—-i<n<—-N-1 N—i+1<n<N
+Y IO Y bUn) - > b
i<0 N+1<n<N—i —N<n<—-N—-i—-1
= Y [dU, —b(Uy] <O.
[n|<N

SendingN — +o0, by the evenness af, we get

0= iJMIbw") = b(K)I< Y [dUs — b(Un] <0,

neZ

which is a contradiction.
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Finally, in the case,, <0, a similar argument is used takinge (0, u™*).
To show strict monotonicity, we consider first the case 0. We argue by contra-
diction. Suppose thal,,+1 = U,, for someng € Z. We then have

D[Upg—1 — Unol — dUpq + Z J(@)b(Uno—i) =0 (2.31)

1

and

D[Uno+2 - Uno+l] - dUno+l + Z J(i)b(Uno+l—i) =0. (232)

1

Hence,

D[Ungt2 = Ung-1]+ Y J Db Ung1-i) = b(Ung—i)] =0,

1

which together with the monotonicity df, yields
Uno+2 = Uno—l = Un0+1 = Uno-

By induction, it follows thatU, = const, a contradiction.
Let ¢ # 0. Suppose that/’(xp) = 0 for somexg. Since U’(x) >0 for all x € R,
U"(xg) = 0. Therefore,

0= —cU"(x0) = DIU'(xo+ 1) + U'(x0 — 1) — 2U’(x0)] — dU'(x0)

+ Y TP (Uxo+cr —i)U' (xo+ cr — i)

1

DU'(xo+ 1) + U'(x0 — D]

+ Z J()B' (U (xg + cr —i)U'(xo + cr — i).

1

Hence, we obtain
U'lxo+1) =U'(xo— 1) = U'(x0) =0,
and
B (Uxo+cr —i)U' (xo+cr—i)=0, forieZ with J(i) > 0.

By induction, we conclude that/’(xg+n +mcr) = 0 for all n € Z andm >0. Define
Wy.m(t) =Uxo+n+mer —ct), n € Z, m>=0, thenw, , (1) satisfies the initial value
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problem
w;l,m(t) = D[wn+l,m(t) + wn—l,m(t) - an,m(t)] - dwn,m(t)
+ ) JObWa—imr1(0),
i
Wypm(0)=Uxo+n+mer), neZ, m=0.

SinceU’(xo+n+mcr) =0 for alln € Z, m >0, the constaniv,, ,, (t) = U (xo+n+mcr)
also solves the initial value problem, contradicting the uniqueness of solutions of the
initial value problem.

Now, we suppose that= 0 for all D > 0 whenever (2.18) or (2.19) holds. Vielw

as a parameter and le” = U be the monotone stationary solution of (1.2) satisfying
uP(—o00) = 0 andu?(+o0) = K, i.e.,

Dlul g +ul g —2ul1=dul =" J)bw )., nel. (2.33

Clearly, we have}_, ., (u?, , —uP) = K. Multiply (2.33) byu? ; —uP andul —ul ,,

respectively, and then sum over| <N the obtained equalities, we get
Dlugyq —ugl? — Dy —uly ;1

= Z [(dul — JOb@PN @l —up)
In| <N
+(dul — JObP) P —ul )]
— Z J(@) Z [b(uy?fi)(unD-i-l - "‘nD)

i#0 In| <N

+bP Wl —ub ),

by sendingN — 400, which together with the monotonicity of” implies that

> ldul — T b))y —ul) + du) — TObw) @) —u )]
neZ

=D T6) Y byl —ul) + bl @l —ul )

i#0 neZ
> IO Y b))y —u)) + b)) @) —uyp)] (2.34)
i<0 neZ

and

D l@ufl = TOb@)@r g — upl) + (duf) — J Qb)) —u? 1))
neZ
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=Y T Y bl Y@l —u) + by —ul p)]
i#0 neZ

<Y IO Y Py @Pyy —ud) + byl —up ]
i>0 neZ

+2dK?Y (). (2.35)
i<0

We assert that

Teziz)(uf+1 —uPy -0, asD— +oo. (2.36)

Suppose that there exist> 0 and a sequencfD;} converging to+oo so that

Dy

D Dy D
n+1_unk)=u fze

max(u el ~ Uny

neZ

9

for k large enough. Through translation, we can assumpne= 0. Since every solu-
tion «P* is monotone, by Helly’s Theorem, there exists a subsequeneé’ofwhich
converges to some monotome It is easily seen from (2.33) thai satisfies

Upt1+ Up—1— 2, =0, (2.37)

for all n € Z. That is, ;41 — u, = u, — uy—1. Since Ku, <K for all n € Z, the
number of integers for which i,+1 — i1, > ¢ is finite, which is a contradiction and
establish the assertion above.

Statements (2.36) implies that the two sides of (2.34) are Riemann suyf(g@[dh—
b(u)]du < 0, then by sending® — +o0, (2.34) and the evenness dfgives

K 1 K
/ [du — JO)bw)]du>3>" J(i)f b(u) du,
0 213 0
which contradicts to (2.18). This contradiction shows that there exists a sufficiently large

numberDg > 0 such that for eactb > Dg, ¢ # 0 holds. In a same way, we can show,
by using (2.19) and (2.35c), that such a conclusion also valféi[fdu—b(u)] du > 0.

In what follows, we show that s¢a} = |c|sgnf0K[du — b(u)]du if ¢ # 0. Without

loss of generality, we assume th)%lf[du—b(u)]du < 0. It suffices to show that < 0.
Suppose for the contrary that> 0, then we have

cU'(x)+DUx+1)+U(x—1) —2U(x)] —dU(x)

+[J(0) + 3 > J(D)]bU (x))
i#£0
<cU'(xX)+DUx+1D)+Ux —1) —2U(x)] —dU(x)
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+I@bU(x +cr) + Y JObUx +cr — i)
i£0
=0.

Multiply the above inequality by’ and integrate oveR, we get
cf [U'(x)]?dx + Df [Ux+1D)+Ux—-1) —2Ux)]U (x)dx
R R

< /R{dU(x) - [J(0) + % Z J(D1bU x)}IU' (x) dx
i#0

K K
= / [du — b)) du+ 3 J(i)/ b(u) du.
0 170 0

However, since

/U(x—i—l)U/(x)dx —fU(y)U’(y—l)dy
R R

UWU(y —DITE - /R Uy — HU'(y)dy

KZ—/RU@ ~ U () dy.

we have
/ [Ux+D)+Ux—21) —2Ux)]U (x)dx = 0.
R

Hence, we obtain

K K
c/ [U'())%dx < / [du — b(u)] du + 1 Z J(i)/ b(u) du, (2.38)
R 0 2 pord 0

which together with (2.18) yields < 0, a contradiction.
We have proved that if > 0, then (2.38) holds. It < 0, a similar argument shows
that

K K
c/ [U'(x))Pdx> / [du — b(u)] du — %ZJ(i)[dKz —f b(w)du].  (2.39)
R 0 i#£0 0
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Finally, we assume thaEi#OJ(i) = 0. ThenJ(O) =1 andJ(@i) =0 fori # 0.
Then by (2.38) and (2.39), we obtain

K
c/[U/(x)]zdx</ [du — b(u)du, if ¢>0
R 0

and
K
c/[U’(x)]de>/ [du — bw)]du, if ¢ <O.
R 0

If fOK[du — b(u)]du = 0, then the inequalities given above gives a contradiction.
This contradiction shows that (i) holds.
If ¢ # 0, then the inequalities given above imply

K
sgnc} = sgn/ [du — b(u)] du.
0

This prove that (ii) also holds.

3. Uniqueness of traveling waves

In this section, we study the uniqueness of the traveling waves and establish the
following main result.

Theorem 3.1. Assume thatH1)—(H3) hold. Let (U, ¢) be a solution to(2.1) and (2.2)
as given in Theoren2.1, such thatc # 0. Let (U, ¢) be another solution t¢2.1) and
(2.2). Then¢ = ¢ and up to a translation U = U.

Proof. Firstly, we observe that ifU, &) with ¢ # 0 is a solution to (2.1) and (2.2),
then

0<U<K. (3.1)

Suppose otherwise, i.e., le§ be such thal (xo) > K and U (x) <U (xo) for all x € R.
Then we havel//(xp) = 0 and so

0 > é0'(x0) + DU (xo+ 1) + U(xo — 1) — 2U (x0)]

= dU(xo) = ) J()b(U(xo +ér — 1)

1

WV

> dU (x0) — b(U(x0)) > 0,

which is a contradiction. Similarly, we can show that=0.
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If {U,}nez is a stationary solution of (1.2) with lign, _oo U, = 0 and lim,_, 400 Uy =
K, then

0<U, <K. (3.2)
Suppose that there existﬁ) eZ satisfying U,,O>K and U,lo/ , forall n € Z. We
can chooseno so that Un0+1 + Uno 1 < 2UnO Otherwise, if Un0+1 + Un0 1>Uno,

then Uno+1 = Upy—1 = Uy, and then by an induction argument it can be shown that
U, UnO/K which contradicts to lim., _ U, = 0. Therefore, we have

0 < D[Ungs1 + Ung-1 = 2Uno)l = =dUpg + Y J()b(Ung—i) < — dUpg + b(U) <O,

i

which leads to a contradiction and prove thiat < K for all n € Z. In a similar way,
we can show that/, > 0 for all n € Z.
Since maxb’(0), b’ (K)} < d, we can chooser > 0, o > 0 and N > 0 such that

a+ Y J(Dbfpax+ @ < d —max(p' (0), b'(K)). (3.3)
li|>N

Take k > 0 sufficiently small, so that
b' () < max{p’'(0),b'(K)} +w/2, forne[—k k]U[K —x, K + K] (3.9

Take M > |¢|r + N sufficiently large so that

U@ =K —k/2, for ¢=M —|élr — N (3.5)
and

U <k/2, for < —M +|¢r + N. (3.6)
Denote

0 :==min{U’(&); |¢| <M} > 0.

Let 1 € (0, x/2) and define

B

—bax: 3.7
g 37
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First consider the case where=¢. If ¢ # 0, (so thatU is of classC?), we define
wx,)=Ux+z+@E—o)t+BA—e ™))+ ue ™ — U(x), (3.8)
where by (3.1),z can be chosen so that
wx, 0 =Ux+z2)+u—Ux) > 0.

We claim thatw(x,r) > 0 for all x € R and¢>0. To see this, suppose that there
exists (xg, 1g) such that

w(xo, o) = U(Po) + pe™ ™ — U (xo)
= 0<w(x,r), forall x € R and O€ [0, r0], 3.9

where
Po=x0+z+ (6 —0o)o+ B(1—e ).
Clearly, we have
wy (x0, 10) = U'(Po) — U'(x0) = 0. (3.10)

By using (2.1), (3.9) and (3.10), it is easily seen that

0 > ws(xo, 10) — D{w(xg+ 1, 10) + w(xo — 1, 19) — 2w(xo, t0)]

= —ope ™ + oBU'(Pg) + (¢ — ¢)U'(Pp)
—~D[U(Po+ 1) + U(Pg — 1) — 2U (Po)] + D[U (x0 + 1)
+U(xo— 1) — 20 (x0)]

= (—ap+ aBU'(Pg))e ™ — d(U(Po) — U(xo))
+ Y J@bWU (P +cr —i)) — Y J@bU (xo+ ér — i)

= (du—op+oBU'(Po)e ™ + Y " J()[b(U(Po+ cr — i)
—b(U(xo + ér —i))]

> (du—oap+ aBU'(Po)e™ ™ + Y " J(@i)[bU(Po+ ér — i)
—b(U(Py+ér —i) —w(xo+ ér — i, to) + pe~*0)]

> (dp— op+ aBU'(Pg))e™ ™0
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+ Y JOBW (Po+ér — i) — bU(Po + ér — i) + pe™*0)]

1

B
> [d—o+ —U'(P) = Y J(Dbjpay
K li|>N

— Y TGO (g)lue™, (3.11)

lil<N

wheren; € (U(Po+ ¢r —i), U(Po+ ¢ér — i) + ue ).
If |Po|< M, then (3.7) implies that

B
OC71]/(1%)— > T~ Y T (1) >0,

li|>N li|<N
and hence, the right-hand side of (3.11) is strictly greater than 0, which leads to a
contradiction.

If |Po|>=M, then|Py+c¢r —i|>M — |¢|r — N for |i|<N. Therefore, by (3.5) and
(3.6), we have

UPo+cr—i)=2K —x/2, orU(Py+cr—i)<K/2,
which together with (3.4) implies
b'(n;) < max(p'(0),b'(K)} +w/2, for |i|<N.

Thus, by (3.3), the right-hand side of (3.11) is positive, also giving a contradiction and
establishing the claim tbab(x, t) >0 forall x e R andr>0.

If ¢ =0, assume that/,, n € Z, is the corresponding stationary wave solution. Let

wa(t) =U(m+2z—ct + BA—e ™)+ pue™* — U, (3.12)

wherez is chosen so that

w,(0)=U(m+2)+pu—U, >0.

In this case, we also have that, () > 0 for all n € Z and¢ >0. In fact, suppose that
there exists(ng, fg) such that

Wno(t0) = U(Qo) + e — U,y = 0<w, (), forallneZ andr € [0, 1], (3.13)
where

Qo = ng + z — ctg + B(1 — e~ *0),
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Then w;lo(to)go and so

0 > wy, (10) — D[Wwng+1(10) + Wng—1(f0) — 2Wp, (10)]

= aBU'(Qo)e™ ™ — apie™™ — cU'(Qo) — DIU(Qo + 1)
+U(Qo — 1) — 2U(Q0)] — D[Ungi1 + Ung—1 — 20,1

= aBU'(Qo)e™ ™ — apie™™0 + d(Uny — U(Qo0))

+ Y TOBW(Qo+ cr — ) — b(Uny-1)]

WV

WV

[dp — ap+ 2BU'(Qo)le ™0 + Y J()IbU(Qo — i)

1

—b(U(Qo — i) + pe™ )]
= [du—op+aBU'(Qo)le ™ — > T ()b (n;) pe ™™

1

WV

B
[d—o+ %U/(Qo) — D T Dbax— Y SOV (1)lue™,

li|>N li|<N

wheren; € (U(Qo — i), U(Qo — i) + pe~*0). Therefore, a similar argument as above
shows thatw, (r) > 0 for all n € Z and¢>0.

Suppose that > ¢é. Fix ¥ such thatU(x) > 0 and then it is easily seen that
w(x, 1) — —U(x) ast — +oo, which contradicts the positivity ofy.

In the case where < ¢, a similar analysis as before leads to a contradiction too.
Thus we have: = c.

Next, we show that, up to a translatioi,= U. Taking the limit — +oo in (3.8),
we get

Ux+z+B)>U(x), foralxeR
Thus there exists a minimdl such that
Ux)>U(x —z), forallxeRandz> 2.
We assert that it/ (x) # U(x — ) for somex, thenU (x) > Ux —2) for all x e R.
Suppose otherwise that for somg U(xg) = U(xg—2). Letw(x) = U(x) — U (x —2).

Then we havew’(xg) = 0 andw(x) >w(xg) = 0 for all x € R, and hence

0 < Dlw(xo+ 1) + w(xg — 1) — 2w(xg)]
= ¢cw'(x0) + D[w(xo + 1) + w(xo — 1) — 2w(x0)]
= ¢U'(xg) + D[U(xo+ 1) + U(xg — 1) — 2U (x0)]
x¢U' (x0 — 2) + D[U (xo + 1 —2) + U(xo — 1 — 2) — 20 (xo — )]
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dU'(x0) = J()b(U (xo + ér — i)
—dU'(x0— ) + 3 T (x0 — 2+ ér — i)
=Y JOY ) (xo+ér —i) —Ulxo— 2+ ér — )]

1

<0,
where ; € (0, K). Hence, we havew(xo + 1) = w(xo — 1) = w(xp) = 0 and
w(xg +ér —i) = Uxo+¢ér —i) — U(xg— 2+ ¢ér —i) = 0 for all i € Z with
J (i) # 0. From which, by an induction argument, we can show that

w(xg+mcr +n) =0, for all n,m € Z with m>0. (3.14)

Let v, (t) = w(xg +mér +n —¢t),n € Z,m >0, then by the Mean Value Theorem,
it is easily seen that, , satisfies the initial value problem

U;l,m(t) = D[Un+l,m + Vp—1m — 2vn,m] - dvn,m + Z J(i)Pnfi,m+lvnfl,m+l,

l
Un,m(o) =0,
wheren € Z,m>0 and
1 A
Pym(t) = / b'[U(xqg+ mér +n — ét) + a(U(xg +mér +n — 3 — ¢t)
0
—U(xg+mcr +n—ct))]do.
By the unigueness of solutions to the initial value problem, we concludevihatr) =
0, and henceav(x) = 0, which leads to a contradiction and establish the assertion.
For n > 0, define
20 =inf{z; Ux)>U(x —z) —n for all x € R).
Notice thatz(y) < z since U’ is bounded and ligoz(n) = Z by the minimality

of Z.
Fix N > 0. We claim that there existgy > 0 such that for ally € (0, i1,

Ux)> U@ —z(m) —n, for |x|<N. (3.15)
If not, there existy, \( 0, x, = xo € [-N, N] with

Uxn) = Uy — 2(1,)) — 1,
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Taking the limit asn — oo then givesU (xg) = U(xo — 2), a contradiction to our
previously established assertion.
Let

D, 1) =U@) —Ux — ¢ —¢)) + pe™,

where u < 17,,, M is from (3.5) and (3.6)¢ is as in (3.3), and > 0 is taken so that
2¢ < 2—z(u). Thenw(x, 0) > 0 for all x € R. In fact, sincel (x)—U (x —z(w))+u =0,
we haveU(x)—ﬁ(x—(é—s))Jru)O. Suppose that there exists such thatw(xg, 0) =
U (x0)—U (xo—(2—¢))+u = 0. Then it follows that (1) = 2—¢ > z(u), a contradiction.

If for some g > 0 andxg € R such thatw(xg, 7o) = 0 < w(x, ) for all ¢ € [0, 1)
and x € R. Then v (xo, f0) = U’ (x0) — U'(xog — ¢ — ¢)) = 0, and hence

0 > —D[w(xo+ 1, 10) + w(xg — 1, 1g) — 2w(x0, t0)]
= —D[U(xo+ 1) + U(xo — 1) — 2U (x0)]
+D[U(xo+1—(E—e)+Uxo—1— (¢ —e) —2U(xo— (¢ —e))]
= —d[U(x0) — U(xo — (¢ — )] + ¢[U' (x0) — U’ (xg — (¢ — )]
+3 JDOIbW (xo + & — ) = b(U (xo = (¢ — ) +ér — )]

1

= due™™ 4+ (D)W (xo +ér — ) = b(U (xo — (¢ — &) +&r — )]

1

dpe ™+ " J(@D)[b(U (xo+ ér — i) — b(U (xo+ ér — i) + pe™"")]

1

WV

WV

[d — binax D TG = Y T (1)]pe™", (3.16)

li|>N [i|<N

wheren; € (U(xo+ ¢r —i), U(xo+ ¢r — i) + pe~*0) and N is given by (3.3). Since
Uxo) = Uxo — (2 — &) — pe~*0, it follows that z(ue~*0) = 2 — ¢, and because
pe ™ <y < ny,, (3.15) implies thafxg| > M. By (3.5) and (3.6);, > K — /2 or
n; <x/2 for all |i| <N, and hence, by (3.4%'(;) < max{d’'(0), b'(K)} + w/2 for all
li| < N. Therefore, it follows from (3.3) that

0=[d — bjpax 3 J() = Y T (1)]ue™™ >0,

li|>N lil<N

which is a contradiction. Thusp(x,7) > 0 for all x € R and>0. Taking the limit
ast — 4oo gives

Ux)>Ux — (G —eg), forallxeR,

contradicting the minimality of? and proving thatU = U. The proof is
complete. O
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4. Asymptotic stability of traveling waves

In this section, we shall establish the asymptotic stability of traveling waves with
non-zero speed. To do this, we shall construct various pairs of super and subsolutions
and utilize the comparison and squeezing technique, which has been used previously
in continuum cases by several authors (e[§,7,16,17,21,25,30]for various local
equations.

Definition 4.1. A sequence of continuous functiods,(¢)},cz,t € [—r,b),b > 0, is
called a supersolution (subsolution) of (1.2) @hb) if

0, (1) 2 (L) D0 41(1) + vp—1(t) — 20, ()] — dvy, (1) + Z J(Dbp—i(t —r)) (41

L

for all 7 € [0, b).
At first, we establish the following existence and comparison result.

Lemma 4.1. For any d € [0, do] and any¢ = {¢,},cz With ¢, € C([—r, 0], [-0, K +
o)), (1.2) admits a unique solutiom(r) = {u,(r)},cz on [0, +o0) satisfyingu,(s) =
©,(s) and —o<u, (1) <K+d fors € [-r, 0], 1 € [—r, +00) andn € Z. For any pair of
supersolutiorw, (1) and subsolutiorw, (¢) of (1.2) on [0, +00) with —do<w;, (1) <K,
0<w (1) <K+dpfors e [—r,+00),n € Z, andw, (s) >w, (s) fors € [-r,0],n € Z,
there holdsw; (1) >w, (¢) for t >0,n € Z, and

wyl (1) — w, (1) > e~ PN "k (10) — w (10))
keZ

4‘2:00 Cj [D(t — to)]2j+|n—k\
x 2j+In—k| : —
v 2j + |n—k])!

, (4.2)

foranyn € Z andt > 19 >0.

Proof. Clearly, (1.2) is equivalent to

t
U (1) = ¢, (0)e~ @+ 4. / PP+ gy, (1) dr,
0
where H{u,1(t) = Dlup+1(0) + tn—1(D)] + 3 J (Ob(up—i (t = ).

For u = {u,luez With u, € C([—r, +ocl>),[—5,K + 0] and u,(t) = @, () for
t € [—r, 0], define

@, (0)e=@PFDT 4 (1 CDIDC=D [y, (1) de for n € Z andt > O,

Fulul(t) = { . (1) for neZ andte[—r,Q].
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Then forr > 0, we have
Folul(t) <(K + 8)e~ ®P+" L (K 4+ 5)(2D + d) /O t BP0 gr — K 4§
and
Folu)(t) > — de~@P+D! _ 52D + d) /O t eCPHDE=D g — 5,

and henceF = {F,},c7 : S — S is well defined, where

S = {u = {”n}ne% Up S C([_ra +OO)7 [_57 K + 5])1
u,(t) = ¢, @) forte[—r0]}.

For 2 > 0, let

X, o= {u = {uphnez; un € C([—r, +00), R),  SUP |un(1)]e™ < +oo},
t>—rnel
lull; == SUp |un(1)]e™™ < +oo.
t>—rneZ

Then (X, || - |I;) is a Banach space anfiC X, is a closed subset of ;.
For anyu, i € S, let w = {w,},e7, w,(t) = u, (t) —u,(t) for n € Z, then fort > 0,
we have
| Fal)(t) — Fyld](r)]e ™

A t
Le~ @D+ fo e@PFDY Hlu, (1) — Hliy)(t)| dt

t
< / @PHIFDED Dl 1 (0] + w1 (D)o
0
+ bpae ™ wa—i(t — 1)le "} dr
t "
guw”)(ZD +b|/'na)g_lr)\/o\ e(2D+d+/L)(‘L’—[) dt

2D + gy

2D +d +4 1wl

Therefore, we can choose> 0 large enough so that : S — S is a contracting map.
Clearly, the unique fixed poini € S is a solution of (2.1) orf0, +00).
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In what follows, we show the comparison result. Ruyt(r) := w, (t) — w;}(1),n €
Z,t € [—r, +00), then w,(z) is continuous and bounded from above Ky w(t) :=
sup,cz wy (1) is continuous ori—r, +00). Suppose the assertion is not true. Mg > 0
be such thatMgy + d — b{naxe‘MO’ > 0, then there existgy > 0 such thatw(zg) > 0
and

— Mot

w(fg)e M0 = sup{w(r)e —Mot - for all 1 € [—r, 1g). (4.3)

t>—r

} > w(1)e

Let {n,-}?‘;l be a sequence so thax,,j (to) > O for all j>1 and limj_ 4 wy; (to) =
w(tp). Let {tj};?ozl be a sequence ifD, rp] so that

e Moliy, (¢;) = max {e”M"w, (1)) (4.4)
S t€[0,10] /

It follows from (4.3) that liny_, 4o t; = fo. Since
e~ Mo0w,, (10) <™ Mol wy (1)) e M (1)) <e M (1),
we have
efMo(toftj)wnj (10) Swn, (1) < e~ Mo(o—1)) 4 z0)

which yields lim;_, 1 wy, (1;) = w(to).
In view of (4.4), for eachj >1, we obtain

d )
0< e 0w, (O} i=r; — = ™0y, (1)) = Mown, (1),

and hence,
w;,j (tj) = Mown, (t}).
Therefore, it follows from (4.1) that
0 > wy (1)) — Dlwp;41(1)) + wa;—1(t)) — 2wy, ()] + dwy, (1)
= > J@DIbw, _(t; =) = bk ;=)

> (Mo + 2D + dywn, (tj) — Dlwn;+1(1}) + wn;-1(tj)] = binayMax0, o(t; — )}
> (Mo + 2D + dywy, (1)) — 2D(t}) — bpaxmMax{0, (zj — r)}.
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Sendingj — +oo to get

0 > (Mo + 2D + d)o(tg) — 2Dw(tg) — bjpaxe™ ™" max{0, w(tg — r)e Moo=}

WV

(Mo + d)(t0) — blpgaue™7" iy(1g)e =Moo

= [Mo +d — bjaee M 0 (10).
Recall thatMg + d — bjp.e Mo > 0, we conclude that (o) <0, which contradicts to
w(fo) > 0. This contradiction shows that, (1) = w, (t) — w," (t)<0 for all n € Z and

t € (0, +00).
Sincew, () >w, (¢t) for all n € Z andt> — r, it follows from (4.1) that

wi () —w, (1) = e @D (4 F(19) — w (10))

t
+ / e@P+DG=D (DLt (5) — w4 (5) + w4 (5) — w_()]
o

+ Y JDbw, (s =) —bw, (s —r)]}ds
> "GP0 (¥ (10) — w, (10))

t
+D_/, eCPFOG=D () — w4 () + w4 (5)
0

—w,_q1(s)]ds.

Then (4.2) follows from a straightforward and tedious calculation. The proof is com-
plete. [

Remark 4.1. In particular, (4.2) yields

[D(t — tg)]I" ]

wi () —wy () > e~ @D+d)(1—10) Z(w;r(to) — wy (t0)) n— k|l )

keZ

(4.5

for anyn € Z andr > 1o >0.

Let { € C*°(R) be a fixed function with the following properties:

{(s)=0, if s< -2 (s)y=1, if s>2
0<{(s) <1, |if se(=22).

Then we have the following result.
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Lemma 4.2. Assume tha{H1)—(H3) hold. Then for anyd € (0, dp), there exist two
positive numbers = &(d) and C = C(d) such that for everyii € R, the functions
v(t) defined by

of (1) = (K 4 0) — [K — (u* — 20)e” "1l (—&(n — & + C1)),

v, () = —0+[K — (K — u* —280)e 1 (e(n — ET — Ct))

are a supersolution and a subsolution @f.2) on [0, +o0), respectively.

Proof. Sincedu — b(u) > 0,u € (0, u™) U (K, K + dg), we have
M1 = M1(6) = min{du — b(u); u € [, u* — 5/2]} > 0,
M> = M»(0) = min{du — b(u); u € [K + /2, K + 0]} > 0.
Take ¢ = ¢(9) > 0 small enough such that'¢” < K and

eu* + 26DK + eru*bpae™ + K bjngy > [i]J(0) < min{My, Ma}. (4.6)

1

Let ¢* = ¢*(0) > 0 be such thaKe* < §, and letk = k(J) € (0, 1) be such that
0<l(s) <¢&*/2, if s < —2+k, (4.7
1>0()>1—-¢"/2, if s >2—k. (4.8)
Define
o :=min{{'(s); =2+ 1/2<s <2 — k/2} > 0.
Then takeC = C(d) > 0 sufficiently large so that
6Ca(K —u*) > eu* + 26DK + eru*brae™ + eKbjpay > il ()

1

+max{|du — b(u)|; u € [—0, K + 01}. (4.9)

Seté =n— & 4 Ct. Then fors >0, we have

SH) : = %u,f(z) — D[ (D) + 01 (1) — 20} (1)]
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; +
Hdvf () =Y JObW Lt — 1)
i

= —e(u* — 20)e " (=) + eC[K — (u* — 20)e™ ] (—&&)
+ DIK — (u* = 20)e "N (—e(£ + D) + {(—&(¢ — 1)) — 2{(—&d)}
+dvf () =Y JOb_ (1)

WV

—eu* +eC(K — u™){ (—&é)

+ D[K — (u* — 20)e ") {(—e(E+ D) + {(—&(& — 1) — 2{(—&)}
+dv} (1) — bt —1)) — Z JDIb,_,(t —1))

— b}t —r)l. (4.10)

By the Mean Value Theorem, it is easily seen that

[E(=e(€+ 1) + {(—&(€ — 1) — 20(—ed)| < 2,

(v, (t = 1)) = b(oy (t = )| < biadvy_;(t = 1) = v (1 = 1)

< Kbpall(—e(&—i — Cr)) — {(—e(& — Cr))|
< &li|Kbpax

and

d ., _
b(vy (1)) = by (t — 1)) rb/(n)avj(t)

b (i) {—e(u* — 28)e ¥ {(—e(E + CT — C1))

+6C[K — (u* — 28)e 1 (—&(E + CT — C1)))

> —erubpae”
wheren € [vf (1), v (t —r)] and7 € [t — r, t]. Hence, (4.10) implies that

S > —eu* — 26DK — eru*bpae” — eKbjay ¥ 1ilJ (i)
i

+eC(K — u*){'(—&&) + dvf (t) — b(v/} (1)). (4.11)

We distinguish among three cases:
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Case(i): —e£< — 2+ k/2. In this case—ef< — 2+ k, 0<{(—&&) <e*/2. Recall
that K&* < o0, we then find

K+d=vl () > (K+0) —[K — (u* —25)e *1e*/2
> K+6—Ke*)/2
> K +0/2,
for all >0. It then follows from (4.6) and (4.11) that

S(6)> — eu* — 26DK — eru*bjae™ — eKbpa > 1i1J (i) + M2 > 0.

1

Case(ii): —e£>2—x/2. In this case—&e£>2 — i, 1 — &*/2<{(—e&)<1. It then
follows that

d<oi(t) < (K+0)—[K — u* —28)e (1 —¢"/2)

< (K+0) —[K — (" —20)(1—¢&"/2)
— W — O+ [K — (u* — 20)]e%/2

< ut — 5+ Ke*)2

< ut—96/2,

for all r >0. Therefore, by (4.6) and (4.11), we also have

SWH(1) > — eu* — 2eDK — eru*bl e’ — gKb;naXZ lilJ (i) + M1 > 0.

Casdiii): —2+1/2< —e£<2—k/2. In this case, by (4.9) and (4.11), we also have

SN0 > —eu* — 2eDK — eru*biyge™ — eKbpax Y 1ilJ (i)
i

+eC(K —u™)yo —maX{|du — bw)|;u € [0, K + J]}
> 0.

Combining cases (i)—(iii), we obtain

j—tvn*(r) = Dluy 1 () + 03y (1) = 207 (O] +dv (1) = Y T@Db(v;_; (¢ =) >0,

1

for all t>0 andn € Z. Thus v, (z) is a supersolution of (1.2) of0, +00). In a
similar way, we can prove that; (¢) is a subsolution of (1.2) of0, +o0). The proof
is complete. [
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Remark 4.2. Clearly, the functions)” and v, have the following properties:

vis) = K496, if sel[-r0], andn>¢&" — Cs + 2671,

vf(s) > u*—0, forallse[-r0], andn € Z,

Vi) = 6+ wF —28)e ¥, forallt> —r andn<ET — Cr — 271,

v, (s) = =0, if se[-r0], andn<E + Cs — 2e1,

v, (s) < u*+9, foralsel[-r0], andn e Z,

v (t) = K—30— (K —u*—28)e ®, foralt>—randn>¢ 4 Ct+ 271

Lemma 4.3. Assume thatH1)—-(H3) hold. Let (U, c¢) be the solution tq2.1) and (2.2)
as given in Theoren2.1, such thatc # 0. Then there exist three positive numbéis

(which is independent of }Jao and 6 such that for anyd € (0, 6] and every% e R,
the functionsw(¢) defined by

wEt) == Un — ct + & £ a0d(ePor — ePoty) £ e Fot
are a supersolution and a subsolution @f.2) on [0, +0c0), respectively.
Proof. Sinced > max{b'(0), b'(K)}, we can chooséy > 0 and¢* > 0 such that
d > By + efor (max(p'(0), b’ (K)} + ). (4.12)
By (1.4) and (1.5), there exists & > 0 such that
0<b' (i) < (0) + ¢, for all y e [—5*, 5%, (4.13)
o</ (i <Kb' (K) +¢*, forall ye[K -5 K+5. (4.14)

Let cog = [c|r + (ePor — 1). Then there exists a constaty = No(U, Bo, €5, 0%) > 0
such that

U <o*, forall £< — No/2+ co, (4.15)
U@ =K —08* forall £=No/2—co (4.16)
and
d > o+ P (max(p'(0), b’ (K)} + &) + P bl > J(0). (4.17)
li|>No/2
Denote

mo = mo(U, By, &, 6*) = min{U’(&); |£] < No} > 0,
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and define

_ 1
B ﬂomo

6o : [P bl oy — d) + Bl > O (4.18)

and

- 1
o= min{—, 5*eﬁor}.

00

For any givend € (0, ), leté =n—ct —|—%+ 000(ePor — e=Po'y. Then for allz >0, we
have

SwhH) : = %w;:'(t) — Dlw, 1 (1) + w_y — 2w, ()] + dw, (1)

=Y J@b(w, = 1)

= (—c 4 600foe PU' (&) — 6pge P!
—DIUE+1D) 4+ UE—1) —2U )] + dU (&) + dde P!
=Y T E+cr —i + 0081 — eforyeholy 4 geFoli=)

1

= 000Be ' U (&) — 8foe P! +ade P! + 3" T (bW (& + er — i)

1

=Y T E+cr —i + 600(1 — eforyeholy + 5¢~Fol=0)

1

= [o0BoU’ (&) — Po + d1oe P!
- Z J(i)b/(ni)[U/(é,')O'o(S(l - eﬁor)e_ﬁot + 5e—ﬁo(t—r)]
= {00BoU’ (&) — Po+d + Y _ TP (n)[U'(E)ao(elor — 1)
— ePorpyse=For
whereé; = &+ cr —i + (1 — eﬁO")g_ﬁOt and

n = OU(E+cr —i + 00d(1 — ePorye=Pory
+05e Pl =) 1 (1 — OU(E + cr — i). (4.19)
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Clearly, 0<#n; <K + delo <K + 5*. Therefore, b () >0, and hence

S(w,)(0) = {00BoU" (&) — Po +d — eFo" " ()b (;)}0e ot (4.20
We distinguish among three cases:
Case(i): |¢|< Nop. In this case, we have
S(w;H () = {o0Pomo — Po + d — PV b yoe P = 0.

Case(ii): £=Ng. Fori € [—¢&/2, /2], we have

NIlw

¢<E—i<3e

Nl
NIl

No<
By the choice ofd, for any é € (0, 4], we havespd<1, and hence
Etcer —i+000(1— ePorye P > INg + cr + 600 (1 — efory = INg — co
and
E4cr —i}%No—i—cr}%No—co.
Therefore, it follows from (4.14) and (4.16) that
K+0"2K + 0P >n, >k — 5%,
and hence
b'(n;) <b'(K) +¢*.

Therefore, by (4.17) and (4.20), we have

SwH(6) = {—Po+d—elorbla S T@y —efor ST T)b (n)oe P!

lil>¢/2 li<é2
> (—Po+d— by D T@) —elor @/ (K) + £%)}oe 0!
li1>No/2

= 0.

Case(iii): £< — Np. In this case, the proof is similar to the case (ii) and thus is
omitted. This completes the proof.
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Let (U, ¢) be the solution given by Theorem 3.1, and tet£ 0. We define the
following functions:

wEn, 0, 8)(t) = Un — ct + £ 60d(ePo — e Fotyy + se—Por (4.22)

wheresg and f; are as in Lemma 4.3. By the proof of Lemma 4.3, we can choose
fo > 0 as small as we wish.

Lemma 4.4. Assume thafH1)—(H3) hold. Let (U, ¢) be the solution given by Theorem
2.1,and letc # 0. Let ¢ = {¢, },ez With ¢, € C([—r, 0], [0, K]) be such that

lim inf m|n (pn(s) > u* limsup max (p”(s) <u*

n—+00 se[—r,0 n——oo SE[—r,0]

Then for anyd > 0, there existl’ = T (¢, ) > 0,¢& = &(p, ) € Randh = h(p, ) >0
such that

wo (n, —cT + &, 6)(s) < (up)7(s) < wa'(n, —cT+E¢+h,0)(s), sel[-r0], nel.

Proof. By Lemma 4.1,u,(t, ¢) exists globally for allz € [0, c0) and 0<u, (¢, ) <K
for all t>0 andn € Z. For anyd > 0, we can choose a positive constant =
01(0, @) < min{d, 4} such that

liminf m|n (pn(s)>u + 01

n——+o00 se[—r,0
and

lim sup max (pn(s) <u* —01.

n——oo SE[—

Hence, there exists a constally = M3(d1, ¢) > 0 such that

@,(s) <u* =91, forallse[-r0], n<— Ms, (4.22
@,(s) >u"+01, forallse[-r0], n=Ms. (4.23)

Let ¢ = ¢(d1) and C = C(01) be defined in Lemma 4.2 with replaced byd;. Define
= —Mz—Cr—2c"tandé™ = M3+ Cr+2¢71, and letvf (1) be defined in Lemma
4.2. By (4.22), (4.23) and Remark 4.2, it follows that for al€ [—r, 0],
Pp(s) <u* —01<0,f(s), for n< — Ms,
0,()<K < K+01<v}(s), forn=¢t+Cr+27t=—m3

and
0, () >u"+01>v,(s), for n>Ms,
@,(5)=20> —061>2v,(s), for n<E™ —Cr— 2671 = Ms.
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Therefore, we have
v, (5) < @,(s) < U;:'(s), s €[-r0], ne”. (4.24)
By Lemma 4.2 and the comparison, it follows that
v, () <upt, @) <vi@), t=0, nel (4.25)

Since 01 < 0, we can choose a sufficiently large constdht> r such that, for all
t>T —r,

o1+ W* —201)e @ <5, and K —01— (K —u* —261)e ™ > K — 6,
and hence, again by Remark 4.2, we find that#forT,
Un(t, @) < vi(t) <8, for n<ét —Cr—2:71 (4.26)
and
un(t, @) > v, (t) > K =8, for n>¢& +Cr+2e% 4.27)

Letx™ =¢"—CT —2c7Y andx™ = ¢ +CT +2¢71. By (4.26) and (4.27), it follows
that, for allr € [T —r, T],

un(t, @) <90, for n<x™, u,(t,p)>K—05, forn>xt. (4.28)
Take a large constan¥/, > 0 so that
Umn) <o, forn< —My, Um)>K—0, forn>Ma,. (4.29)
Let £ = —My — xT —|c[(T +r), then forn>x* ands e [—r, 0], by (4.28), we get
Un—cs —cT +¢) —0<K =0 < (un)r(s, @),
and forn<x™ ands e [-r, 0], by (5.25), we get

Un—cs—cT+E -6 SUXT+|c|(T+r)+E -6
= U(=Myg) — 06 <0< (upn)7 (s, ).

Therefore, we have

Un—cs—cT+E —9< (uy)r(s, @), forsel[-r0,nel. (4.30)
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Let h = Mg —x~ + [c|(T +r) — & =2(M3+ Mg) +2(C + |c)(T +r)+8 1> 0.
Then forn<x~ ands € [—r, 0], by (4.28), we get

Un—cs—cT+E+h)+0=20 > (un)r(s, @),
and forn>x— ands € [—r, 0], by (4.29), we get

Un—cs—cT+¢4+h)+06 2 Ux™ —|c(T+r)+E+h)+0
= UMs)+ 02K > (uy)r (s, @).

Therefore, we have
Un—cs—cT+E+h)+0> (uy)r(s, @), forse[—r0,nel. (4.31)
Thus, it follows from (4.30) and (4.31) that

Un—cs—cT+E&— 605(eﬁor - eiﬂos)) — Se Pos

< (un)7 (5, @)
< U —cs —cT + &+ h+ 000 (P — e7Posy) 4 e Pos,

for all s € [-r,0] andn € Z.

This completes the proof. [J

Lemma 4.5. Assume thatH1)—(H3) hold. Let U(n — ct) be the traveling wave front
of (1.2) and ¢ # 0. Then there exists a positive numbet such that ifu,(t) is a
solution of (1.2) on [0, +o00) with 0<u,(r) <K for r € [0, +00) andn € Z, and for
someé e R, h > 0,0 >0 and T >0, there holds

wo (1, —cT + &, 0)(s) < (un)7(s) < wg (n, —cT +E+h,d)(s), se[-r0 neZ
then for any: >T + r + 1, there exist%(t), 3(t) and fz(t) such that

wg (n, —ct + (), (1)) (s)
< (up):(s)
< wg (n, —ct + &0 +h(), 5 (s), sel-r0L neZ,

with £(t), 5(t) and A (r) satisfying

E(t) € [E — 00(20 + e* min{L, h})ePo, &+ h — 6(26 + £* min{1, h})elo'];
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5(t) = (8 + e* min{1, h})e Polt=T—r-1.

h(t) = h — 260e* Min{1, 1} + 60(35 + &* min{1, h})elor
= h — agle* min{1, h}(2 — ePory — 38¢Po ] > 0.

Proof. By virtue of Lemma 4.3w™ (n, —cT+E+h, 6)(t) andw ™ (n, —cT+E, 6)(¢) are a
supersolution and a subsolution of (1.2), respectively. Cleafly) = u, (T +1), t >0,

is also a solution of (1.2) withv,)o(s) = (u,)r(s), s € [-r,0],n € Z. Then the
comparison implies that

w(n, —cT + & 0)(1t) < un(T+1) <wr(n, —cT +E+h,0)@), t=0, nel.
That is,

Uln — (T + 1) + & — agd(ePo — e~Po'y] — ge=Po!
<up(T +1)
< Uln — (T 4+ 1) + &+ h + aod(ePor — e=Pory) 4 5Pt
t>0, nel. (4.32)

Let m € Z be such thain — 1 < ¢T — E<m. Then it follows from Lemma 4.1 that
for all r > 0,

un(T +1) —w™ (n, —cT + &, ) (¢)

[n—m|
> e*(zmd)t(sti—mp[um(ﬂ —w™ (m, —cT + ¢, 6)(0)]
[n—ml|
= e_(2D+d)t(|€ti—m||[um(T) —U(m —cT + & — agd(ePo — 1)) + 0]

In—m|
> ~@p+ar (D1 — [ (T) = U(m — cT + ). (4.33)

In —m|!
Since 1limy- 100 U'(n) = 0, we can fix a positive numbe¥/s > 0 such that

1
U’(n)ggo, for all || > Ms. (4.3%)

Let J = Ms + |c|(14r) + 3, h = min{1, h}, and

e1 = 3 min{U’(n); 0<n<2} > 0.
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Since 0<m — ¢T + E<m — cT + ¢ + h <2, by the Mean Value Theorem, it follows
that

Um—cT +E+h) —U@m — cT + &) >2¢e1h,

and hence, one of the following must holds:
() um(T) —U(m —cT + &)z eah, B
(i) Um —cT +E&+h) —u,,(T)>e1h.

In what follows, we consider only case (i). Case (ii) is similar and thus the proof is
omitted. [

For anys € [—r, 0], |n —m|< J, lettingt =14+ r +s>1 in (5.29), we get

uy (T +1+r+s)
> Uln—c(T +1+71+5) + & — agd(efor — e Poltr+y) _ 5e=holr+s)

[n—m|

—@D+d) A4+ [PA 47+ 5)]
ln — m!
SUn—o(T + 147 +5) + & — apd(elPor — e Poltr+)yy _ 5o~ Folltr+s)

@D+t D"

+e [um(T) — U(m —cT + )]

—I—Sll’_le
[n —m|!
>Umn—c(T+14+r+s)+&— aoé(eﬁf’r - e_ﬁo(l"’rﬂ))] — Se~Po@trts)
+ Fo(J)e1h, (4.35)

where Fo(J) = ming< j < s e~ @PFOAI pi/j1 Let J3 = J +]c|(1+7)+3, and choose
a positive constant* > 0 such that

. . Fo(J 1
g*< min { min M, —} , (4.36)
Inl< 200U’ (1)~ 300
then
Uln — (T + 14 r + 5) + & + 2006 h — agd(eP" — e~ Po47+9)y)
—Uln — (T +1+r+s5) + & — a0d(ePor — g7 Poltr+s)y)
= U'(ny)200e*h < Fo(J)e1h, (4.37)

wheren, =n —c(T + 147 +5) + & — aod(ePor — e~ Po47+9)) L 0. 260¢*h, 0 € (0, 1),
and in the last inequality, we have used (4.36) and the estimate

Il <ln—m| + m — T + & + ||+ r) + aodePo + 2606* < 1.
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Hence, (4.35) and (4.37) imply that

un(T +1+r+s) > Uln—c(T+1+r+s)+ &+ 200e*h
_ 605(€ﬁ0r _ e—ﬁ0(1+r+s))] — SePollr+s) (4.38)

Fors € [—r,0] and [n — m| > J, it follows that

Uln — (T + 1471 +5) + & — aod(ePo" — ¢7Po4r+9))
—Uln — (T + 147 +5) + &+ 2008*h — apd(ePo — e PolH7+9))]
= —U'(ny)200e*h > — &*h, (4.39)

wheren, =n—c(T +14+r+s)+¢&— 000 (ePor — e~ o479y 4 0. 260e*h, 0 € (0, 1),
and in the last inequality, we have used (4.34) and the estimate

2l =1n —m| = {Im — T + &| + |e|(1+ 1) + 605’ + 2606™} > M.
Therefore, it follows from (4.39) and (4.32) that for allke [—r, 0] and |n — m|>J,

up(T+14+r+s)>Un—c(T+14+r+s)+E+ 200 h — aoé(eﬁor
— e Potrt)y) _ se=Poltrts) _ oxj, (4.40)

Combining (4.38) and (4.40), we find that for alle [-r, 0] andn € Z,

U[I’l - C(T + 1 +r+ S) + é =+ 20’08*]/_1 — O’Oé(é‘ﬁor _ e*ﬂo(l+r+s))]

e Potr ) _ o5

\Y

(Un)T+14r(5)

Ulx 4+ c¢s 4+ (T + 1+ r) + &+ 200e*h — agdelo
—00(8 + *h) (el — e Pos)] — (6 + e*h)e o
= wg (x,7,0+&*h)(s), se[-r0l,xeR, (4.41)

WV

wheren = —c(T +1+r) + & + 200s*h — aodelor.
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Therefore, by the comparison, it follows that fop 7 + 1+ r,

Un)i(s) > w=(n, 0,0+ &)t — (T +1+r)+5)
Un—cs—ct+c(T+14+r)+n— 00( + e*h)elor]

WV

_(5 + g*ﬁ)efﬁollf(T*'l‘Fr)] . e*ﬂos

U[n—cs—ct+c(T—|—1+r)+n—ao(5+s*ﬁ)eﬁ0r

WV

—600(t) (P — e7Posy] — §(r)ePos
= wy (n, —ct + E(), 6(1))(s), s €[-r,0l,neZ, (4.42)

where
5(t) = (8 + e*h)e Polt=(T+14n)] (4.43)
and

&) = —c(T +147) + 71— 60(0 + e*h)ePor
= &+ 200e%h — 60(20 + e* el (4.44)

Clearly, by (4.36), it is easily seen that
Et) € [E — a0(28 + e*h)ePo &+ h — 60(25 + e*h)ePor. (4.45)
On the other hand, for>T, by (4.32), we have
Un(t) < Uln — ct + &+ h + aod(ePor — e=Pot=T)y) 4 5e=Pot=T)
which implies, for allt>T + 1+ r, that

(n)i(s) < Uln —c(t 4+ 5) 4 &+ h + ad(ePor — e Pot+s=Tyy 4 5= Folt+s=T)

N

Uln — cs — ct + &+ h + 608eP7 + 60d(t) (P — e7Po5)] + §(r)ePos
— Uln —cs —ct + &(t) + (h — 2606 h + 60(35 + e*h)efor)
+000(t) (P — e P05y + 5(t)e Pos, s e[~r,0l,n e Z.

Therefore, fort>T + 14 r, we have

()i (s) < wg (n, —ct + &) + h(t), 6())(s), s € [-r,0l,n € Z, (4.46)
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where
h(t) = h — 260e*h + a0(35 + e*h)elor
= h — aole*h(2 — ePory — 35ePo] > 0, (4.47)

and in (4.47), we have used (4.36) and the estimate

h —200e*h > h — 360e*h>h — h>0.

Now the conclusions of the lemma follow from (4.42), (4.43), and (4.45), (4.46)
and (4.47).

Theorem 4.1. Assume thatH1)—(H3) hold. Let U (n — ct) with ¢ # O be the traveling
wave front of(1.2) as given in Theorer2.1. ThenU (n — ct) is globally asymptotically
stable with phase shift in the sense that there exjsts 0 such that for anyp =
{@ntnez With @, € C([-r, 0], [0, K]) satisfying

liminf min_¢,(s) > u*, limsup max (pn(s x) <u*
n—+00 se[—r,0] n——oo S€[—r,0]

the solutionu, (z, ¢) of (1.2) satisfies
lun(t, @) = Un —ct + &) <Me™, 120, neZ,

for someM = M(¢) > 0 and &y = &u(o) € R.

Proof. Let fiy, oo, 0 be as in Lemma 4.3 witlfiy > 0 chosen so that’o" < 2, and let
¢* be as in Lemma 4. 5 Wlthr* > 0 chosen so thatgs*(2 — efo") < 1. We further
choose a k §* < mln{ L} such that

0, a0
1> k* == gole*(2 — Py — 35%ePor] > 0

and then fix ar* >r + 1 such that

e o r=D(1 4 g*/5%) < 1— k*.

We first prove the following two claims.
Claim 1. There existT* = T*(¢p) > 0, & = &*(¢) € R such that

wo (n, —cT* + &, 8")(s) < (Un)7+(s, @) < wg (n, —cT* + & + 1, 5%)(s),
s €[-r0], ne”. (4.48)
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Indeed by Lemmad4.4, there existT = T(¢p) > 0, = E&(p) e R andh = h(p) > 0
such that

wg (n, —cT + &, 6)(s) < (un)7(s, @) < w (n, —cT + &+ h, 5*)(s),
s €[-r0], nel. (4.49)

If h<1, then the Claim 1 follows from the monotonicity &f(-). In what follows,
we assume that > 1, and let

N = max{m; m is a nonnegative integer andk™ < h}.

Since 0< k* < 1 andh > 1, we haveN >1, Nk* < h<(N + D1)k*, and hence,
0 < h— Nk*<k* < 1. Clearly,h = min{1, h} = 1. By (4.49), the choice of* andr*,
and Lemma 4.5, we have

wg (1, —(T + %) + E(T + %), 3(T + 1))(s)
< (Un)T41+(5. @)
< wd(n, —c(T + 1) 4 &T + 1%) + h(T + 1%), 5(T +1%))(s),
s €[-r0], ne”, (4.50)

where
ET +17) € [E = 60(25" + M)elo, &+ h — 60(20" + e¥)elo],
(T +t*) = (6" + e¥)e Polt™r=1 _ 551 — ),
O<A(T +1*)<h — aole*(2 — ePor)y — 35%ePor ] = h — k.
Repeating the same procelstimes, we then have that (4.50), with + * replaced

by T + Nt*, holds for somef € R, 0 < d<5*(1—k*)V, and 0<Ah<h — Nk* < 1. Let
T* =T + Nt*, & = £. Again by the monotonicity of/(-), (4.48) then follows.

Claim 2. Let p = 14 609(26* + e9ePo", T, = T* + mt*, 6% = (1 — k*)"5* and

hy = (1 — k" < 1,m>0. Then there exists a sequem@,g};fzo with %o = &* such
that

it — G| <phm, m=0 (4.51)
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and

w (1, =Ty + Ep On)(5) < ()7, (5. @) < W (1. —CTou + Ep s 53)(9). (4.5
se€[-r,0], neZ, m=0.

In fact, Claim 1 implies that (4.52) holds forn = 0. Now suppose that (4.52)
holds for somem = ¢>0. By Lemma 4.5, withT = Ty, ¢ = &;,h = hy, 6 = d; and
t=Ty+t*=Te1>T¢ +r + 1, we then have

wy (1, =Ty + & 0)(s) < (n)7,1 (5, @)

< wd(n, —cTos1+E+h,0)(s), sel[—r0l, nez

where

Ee (& — 0025 + e*hp)el &y + hy — 60(25% + e hp)ePo],

S = (&% + e*hy)e Poller1=Te—r=1]
= (1— kNS + e*)e Pol"—r=1
< A=k 5 A -k

= (1—k9* 6% =074,

h

he — oole*he(2 — ePoy — 35%ePor]
= (1— k51 — gole*(2 — ePory — 35%ePory

= 1 — Kk = hpyq.
We choose%ul = % Then
|%£+1 — &l < ho+ 00(20; + e*hy)elor

= [1+4 60(25* + &%)l 1n,

= phg.

It follows that (4.51) holds form = ¢, and (4.52) holds for = ¢ + 1. By induction,
(4.51) and (4.52) holds for alh >0.
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For everym >0, by (4.52) and the comparison, it follows that for al¢ 7;,,, n € 7,
Un —ct + &,y — 0007 (el — e=Pot=Tn)yy _ 5% o=Polt=Tm)

< un(t, @)

<U@m—ct+ Em + hy, + 0-05;“" (eﬂor — o Polt = Tm))) + 5:‘ne—ﬂo(l =Tn) (4.53)

For anyt>T*, let m = [I‘T*] >0 be the largest integer not greater tl“fa_;l:f—*, and

t*
define 6(1) = &%, &(t) = &,y — 605%,ePo, and h(t) = hy, + 26055 ePor, then we have
T =T"4+mt*<t < T*+ (m+ 1t* = T,,,11. By (4.53), it follows that for allr > T*
andn € Z,

Un — ct + E(t)) — 8(t) < un(t, ) < Un — ct + E(t) + h(t)) + 5(2). (4.54)

Sety = —ti*ln(l—k*) > 0 andg = exp{—(Q+ T*/t*)In(1 — k*)}. Since O

=T" _ 4+ 1, we have

m< —

A—kH" <(1- k*)FrTT*‘1 = exp{(t - 1) In(1— k*)} =qge .

1+
Therefore, for any >T7%*, we have
3(1) = 0% = (1 — kH)"5*<S*qe ", (4.55)
h(t) = hy + 20005 €M = (1+ 2000 P ) (1 — k*)" < (1 4 2606* el )ge ™", (4.56)
and for anyt’ >t >T*, by (4.51), we have

E@") — Ew)] = 1&, — a00t,eP — (&, — aods,efor)

< 1Ey = &l + 00107 — 0% P

n—1
< Z phe + aoéfneﬂor
L=m
n—m—1
= [% S oa-wt+ aoeﬁor:| 5
=0

N

5*
L 005*eﬁor) ge ", (4.57)

Pl
*

( P +aoeﬁor) 5(t)
(
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where n = |= | >m = |=I°|. Therefore, it follows from (4.57) thaty :=

lim;_ 1~ &(2) exists, and for >T*, we have

(o= EWI< (L +o00"elr) ge. (4.58)
Set

M= maX{Ur/nax[kﬁ* + 3ggd%efor + 1] q+d*q, 2K67'T*} )

it then follows from (4.54)—(4.56) and (4.58) that for a7,

lun(t, ) — Un — ct + &) < Upadl€(t) — Col + h()] + (1)

S {Uf,“ax[:;* + 305" el + 1] q+ 5*4} e,

which together with the fact that, (¢, ¢) — U(n — ct + &p)| < 2K, t € [0, T*] yields
lun(t, @) — U(n — ct + Eg)| < Me 7" for all t>0. The proof is complete. [

5. Propagation failure of traveling waves

An important qualitative difference between traveling wave solutions of the two
systems (1.1) and (1.2) is the occurrence of “propagation failure” or “pinning” in the
discrete system (1.2). In this section, we shall find some criteria for pinning of traveling
waves for the equation (1.2).

The following theorem is an easy consequence of Theorem 2.1 and Theorem 4.1.

Theorem 5.1. Assume tha{H1)-(H3) hold. Then (1.2) admits pinning if and only if
one of the following statements holds true
(i) the equation

Dluni1+ tn-1— 2uy] — duy + Y J(D)b(uy—i) =0 (5.1)

has a solutioru = {u, },cz with u, € [0, K] for all n € Z satisfyinglim sup,_, _, un <

u* and liminf, . oo u, > u™;

(i) Eg.(5.1) has a strictly monotone solutian = {u,},c7 satisfyinglim,_, - u, =0
andlim,_, oo u, = K.
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Consider the one-parameter family of equations

2Dl + tun—1 — 2uy] = duty + (L= 2y J(@D)bun)
i#0
+2) J@)bu,—) =0, 2€[0,1]. (5.2)
i£0

Lemma 5.1. Any bounded non-constant solutian= {u,},c7 of (5.2) satisfiesO<u,
<K. If A€ (0, 1], then the strict inequality

O<u, <K, forallneZ (5.3

holds true.

Proof. Set M~ = inf,czu,, M*™ = sup,c 7 un. Let {n*} be a sequence i@ such
that u " — M~ asj — oo, and {n+} a sequence such tha];l+ — Mt asj — oo.

If M~ and M are achieved at some points or n* € Z, then the corresponding
sequencqn] } or {n] } is defined a91] =n" or nj_ =nt. We have

(2AD +dyu,- = ADlu,- g+, gl + (1= Ay UQILICHD
i#£0
—i—AZ](l)b(un )
i#0

> 2ADM ™ +b(M").
Passing to the limit ag — oo in the last inequality, we get
dM~™>b(M™), (5.9

from which it follows that M~ >0. A similar argument can be used to show that
Mt <K.

Next, we show that (5.3) holds if € (0, 1]. Without loss of generality, we suppose
thatu,, = K andu,,—1 < K for someng € Z, then

1

57D g Plinor1 + ttng-1] + (1 = 2 > T @)b(tng)

i#0

K=uy =

+ Z J(@)b(ung—i)}
i£0
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a contradiction. This contradiction shows thgt < K for all n € Z. Similarly, we can
show thatu,, > 0 for all n € Z and thus completes the proof. [J

Lemma 5.2. For 4 € (0, 1], any bounded non-constant solutian= {u,},c7 of (5.2)
satisfies

2D(K —un) + (dK = b(up)) Y J () > duy — b(un)
i#0

and

2Duy, + b(uy) Z J (i) > b(uy) — duy.
i#0

Proof. By virtue of Lemma 5.1, we have Q@ u, < K, and hence

0 < (2D +d)uy, — (1— 4 Z J(i)b(uy)
i#0

= ADlups1 +un-1]+ 4y J(@)b(un—i)
i#0

< 2ADK +2dK Y J (D),
i#0
from which the conclusion follows. The proof is complete[]

In what follows, we shall give some sufficient conditions for the existence of non-
constant solutions to (5.1).

Theorem 5.2. Assume thatH1)—(H3) hold. Assume that

ZJ(i)<min{ max {M} max {MH (5.5
= uel0u*] | dK — b(u) |’ uelu* K] b(u)
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and

Let

and
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D<3min { MaX,e[0,u*] H%_I% -2 J(i)] dKK_—bLf")} ;
i£0

(5.6)
bw)—du . b(u)
ue@*a,)é] ! |: b i;) J(l)i| m } } .

u = inf{u € (0, K| 2D(K —u) + [dK — b)) Y _ J (i) <du — b(u)}

i#0

u" = suplu € [0, K)| 2Du +b(u) » | J (i) <b(u) — du).
i£0

Suppose thatl > b, := supgb’(u)| u € [0,u~) U (u™*, K1}. Then for any two disjoint
subsetsS~™ and ST of Z with STUS* = Z, (5.1) admits a unique solution = {u,},c7
satisfyingu, € [0,u™) for n € S~ andu, € (u*, K] for n € S™*.

Remark 5.1. In fact, sinceD > 0, it is easily seen that (5.5) holds if (5.6) holds.

Proof of Theorem 5.2.By (5.5) and (5.6), it is easily seen that there existe (0, u*)
andus € (u*, K) such that

and

2D(K —u1) + (dK — b(u1)) Z J(@)<dui — b(u1) (5.7)
i#0
2Duz + buz) Y J (i) <b(uz) — dua. (5.8)
i#0

Therefore, by the definition, we have e [0, u1] andu™ € [us, K.
ConsiderG(u, A) = {G, (u, D)}, ez, u = {u,},ez, defined by

G, 2) 7= ZDltns1 + tn—1 — 2un] = dity + (L= 2 T (D)b(un)

i#0

+2T@)bua). (5.9)
i#£0



S. Ma, X. Zou / J. Differential Equations 212 (2005) 129-190 187

Thenu® = (u%),cz with u® =0 for n € S~ andK for n € S* satisfiesGu?, 0) = 0.
It is easily seen that the Frechet derivatide G (4°, 0) of G at (4°, 0) is given by

[D,G P, 0], = —[d — b’ @®)]v,, for v ={v,} ™.

Since D, G, 0) is invertible in />, by the Implicit Function Theorem, there exist
some/o > 0 and a unique continuous maj/) from [0, Ag] to /°° such that«(0) = u°
andG(u(4), ) = 0 for 4 € [0, 4gp]. Moreover, by (5.7), (5.8) and Lemma 5.2, it is easy
to see thatu, (1) € [0,u~) for n € S~ andu, (1) € (u™, K] for n € ST. We continue
this solution to the intervak € [0, 1] in the following way.

Suppose that for somg; € [1g, 1), such a solution: = u(41) exists to the equation
G(u, 1) = 0. First, we show that there exists> 0 such that ford € [11, 41 + &),
G(u, ) = 0 has a solution with the above described property.

By the Implicit Function Theorem, it suffices to show tha§ G (u(11), A1) is invert-
ible. It is easy to see that for anye [*°,

[DuG (u(21), A1)vln

= j-ll)[vn+l +vpm1 — vl —dv, + (1~ 1 Z J(l))b/(un le))vn
i£0

21 T (i (A1) vn—i

i#£0
= (221D ——[A1D(v, n— 1-4 iND (1, (A))vy
(21 +d){2w+dul (V1 + va—1) + ( 1§J<z>>b<u (M)
31 T (n—i (72))Vn—i] = Vng - (5.10)
i#0
Since u,(41) € [0,u™) U (u*, K], we haved >b'(u,(21)) if > J(@) > 0 andd >
i#0
b'(un(41) if Y J(@@) = 0. Therefore, it follows from the fact that; < 1 that for

i#0
v € [ with |v];c > 0,

11D W1 H0n- D)L= 21> TO)D (M) va+21Y T 0D (i (1)) v
i£0 i£0

< (241D + b)) [l
< (201D + d)|vi=,

which together with (5.10) implies thad, G(u (A1), A1) is invertible.
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To show that we can continue the solution/te [4o, 1], we argue by contradiction.
Suppose that there is some e [/, 1] such that a solutiont(4) = {u,(4)}, with
un(A) € [0,u”) for n € S~ andu, (1) € (ut, K] for n € ST, exists fori € [log, 4),
but not for 4 = 4. Choose a sequencg — 4 as j — oo. By a diagonal argument,
there exists a subsequence, which we also denotg; pguch thatu,(1;) — un () for
all n € Z, as j — oo. Continuity and the Dommated Convergence Theorem implies
that u = u(A) is a solution of G(u, )) = 0. By (5.7), (5.8) and Lemma 5.2, we find
that u, (1) € [0,u™) for n € S~ andu, (1) € (ut, K] for n € S*. This completes the
existence proof.

Finally, suppose that there are two distinct solutiadsand u? of (5.1), such that
ut,u? e [0,u”) for n € S~ andul,u? e (u*, K] for n € S*. Then

n’

1
|Mn _un| X

5D d [21) + Z J Oul  + @1 - 0,-)u5_l»):| lut — 4?0
2D+bD| 1
2D +d

2
X —u |l°°

< |ut — u?|o,

where 0; € (0, 1) for i € Z, which is a contradiction. This contradiction establish the
statement for uniqueness and completes the proof]

In particular, takingS~™ = Z\ N and ST = N in Theorem 5.2, we then get the
following

Corollary 5.1. Under the conditions given in Theoref?2, (1.2) admits pinning In
particular, pinning occurs provided thab > 0 and Zi#OJ(i)>O are small enough.
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