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Abstract

This paper deals with a two-species Lotka—Volterra competition model with
discrete delays but without instantaneous negative feedbacks. Motivated by Wright’s
% global attractivity result for the delayed scalar logistic equation, we establish some
new %—type criteria for global attractivity of the positive equilibrium of the system.
These criteria provide convenient and better (than some existing) estimates for the
diagonal delays.
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1. Introduction

Global attractivity of the positive equilibrium of the delayed Lotka—
Volterra system has been one of the main concerns of many authors [3—
8,10,11,13-26,28,29]. Most of the existing work consider the model
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assuming undelayed intraspecific competitions are present. In such cases,
one can take advantage of the instantaneous negative feedbacks and some
“diagonally dominant” conditions for the community matrix to construct
appropriate Liapunov functionals or to apply comparison theorems, and the
resulting criteria are usually independent of the delays in the delayed
intraspecific and interspecific competitions. See, e.g., [4-8,10,11,13—
20,26,28]. Typically, the positive equilibrium (if any) is a global attractor
if the undelayed intraspecific competition dominate the total competition
due to delayed intraspecific and interspecific competitions. For example, So
and Hofbauer [11] considered the n-species Lotka—Volterra systems with
discrete delays

x,»(t) = Xi([) (V,‘ + a,-ix[(t) + Zn: a@,»x_,»(t - ‘C@,’)) . i= 1, ... N, (11)

J#i

and established the following nice result.

Theorem 1.1. Let A be the n x n community matrix of (1.1), i.e., A = (ay),
and suppose that there exists a positive equilibrium x* for (1.1). Then x* is
globally asymptotically stable for (1.1) (for positive initial conditions) for all
delays ©;=0 if and only if a; <0 for i=1,...,n, det A#0 and A is weakly
diagonally dominant, meaning that all the principal minors of —A are non-
negative, where A = (dy) with dy; = a;; and dy = |ay| for i#j.

But, as pointed out by Kuang [15], in view of the fact that in real
situations, instantaneous responses are rare, and thus, more realistic models
should consist of delay differential equations without instantaneous
negative feedbacks. For such models, detecting the global attractivity of
the positive equilibrium becomes a much harder job, if not impossible.
Naturally, one would expect and it is a common sense that if the delays in
the intraspecific interactions are sufficiently small, then the positive
equilibrium should remain globally attractive under the existing ‘““diagonally
dominant” condition. Some recent work (e.g. [6,10,15,17,18]) initiated
valuable attempts in this direction, which confirm to some extent the above
expectation or common sense. From the aforementioned work, it becomes
interesting and important to establish better or even the best measurements
or estimates for the “sufficient smallness” of the delays in the intraspecific
reactions, and this constitutes the aim of this paper.

To be specific and to make statements easy, we consider the following
two-species Lotka—Volterra competition system (normalized) with discrete
delays:

x1(8) =rx1(O[1 — x1(2 — t11) — pyx2(t — 12,

X2(1) = rax2(D[1 — ppx1(t — 121) — X2(¢ — 20)], (1.2)



422 X.H. Tang, X. Zou | J. Differential Equations 186 (2002) 420—439

and the initial conditions
xi(t) = ¢p(0)=0, te[1;,0], $,0)>0, i=1,2, (1.3)

where r; > 0, u; >0, 7; = maxrty;, Tp; fori = 1,2 and t;; >0 for i, j =1,2. Itcan
be easily seen that the non-boundary equilibrium x* = (x¥, x%) is given by
XT: 1 — ’ x>2x<: 1 —u .

1 — 1 —
Both the positivity of x* and the “diagonal dominant” condition for (1.2) in
the sense of Theorem 1.1 can all be implied by the assumption

(DD) 1251 <1 and Ho < 1,

which will be assumed throughout this paper. If t3, + 13, = 0, Theorem 1.1
tells that (DD) also implies the global attractivity of x*. When 13, + 13, #0,
Lu and Takeuchi [23] proved that the global attractivity of x* remains if rt
(r = max{ry,r;} and t = max{t;, 72, }) is sufficiently small, but they did not
give any estimates for the delays. Gopalsamy [6] (also see [7]) and He [10]
obtained some criteria for more general systems, and applying these criteria
to (1.2) gives some implicit forms for estimates of delays, but it is not trivial
to verify these estimates. Kuang [15] also studied the global attractivity of
the positive equilibrium of more general n-species Lotka—Volterra system
without dominating instantaneous negative feedbacks. Applying one of the
main results in [15] (Corollary 3.1) to system (1.2) results in the following
convenient criterion.

Theorem 1.2. Assume that (DD) holds. If

N
r,»rﬁe'ffﬂ<r“’, i=1,2, (1.4)

Hi

then, x* is globally attractive for (1.2).

Note that system (1.2) is a result of the coupling of two basic delayed
logistic equations for single species growth of the form
X(1) = rx([1 — x(r = 7)], (1.5)
x(s)=0 for se[—1,0], x(0)>0. ’
For (1.5), Wright [32] proved that the positive equilibrium x* =1 is
globally attractive when rrg%, which is the best result so far obtained for
global attractivity of the positive equilibrium of (1.5). Since then, 3-type
stability results have been obtained for various scalar equations with delays,
see e.g. [1,12,22,27,30,31,33-35]. But, to the best of the authors’ knowledge,
there is no similar result for system’s cases. In this paper, we will employ
some new approach (other than Liapunov functionals) to extend Wright’s
result to system (1.2). More precisely, we will prove the following three
theorems.
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Theorem 1.3. Assume that (DD) holds. If
31—
2(1+ py

where p = max{y,, i, }, then the positive equilibrium x* of (1.2) is a global
attractor.

rl‘Ell X5/1 @\

=12, (1.6)

Theorem 1.4. Assume that (DD) holds. If

3—u 1
Ny HiS3

riTie < i=1,2, (1.7)

20 —p) 1
1"!’,“,'1 s My > kR

then the positive equilibrium x* of (1.2) is a global attractor.

Theorem 1.5. Assume that (DD) holds. If there exists a positive constant §

such that
duy <1 and 6 'py<1, (1.8)
3—du 1
It 2(1-0-5!411)’ (3,[11 <§’
rite' < (19)
2(1=0uy) Sus > 1
1+du; 2 Hi =3
and
375’1#2 1
21+ 'y RS
rz‘czze”m < ) (1.10)
2(1=6""w) 5—1 >1
1_’_6—11uz > 125)

then the positive equilibrium x* of (1.2) is a global attractor.

It is worth noting that Theorem 1.3 reproduces Wright’s result when
w; =0, i=1,2, we also note that (1.6) gives explicit estimates for t;, i =
1,2, and (1.7) improves (1.4) since when p; > 1

1_.ul z(l_lul
T+p +M, gy

and when ,uigg,
3 :1 1*Hi>1*.“i
204+w) 20 T4+ 14w
The positive number ¢ in Theorem 1.5 is motivated by the work of Kuang
[15], and it plays a role of balancing the estimates for 7;; and 7.

The remainder of the paper is organized as follows. In Section 2, we
establish a preliminary lemma and state an a priori estimate result obtained
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[23], which will be used in the proof of the main theorems. Section 3 is
dedicated to the proofs of Theorems 1.3—1.5. Section 4 is for a discussion of
some related topics.

2. Preliminary lemmas

Lemma 2.1. Let 0<a,b<1,0<u<1. The system of inequalities

y<(a+ ux)exp [(1 — U)X — Hi)xz} —a, o

x<b — (b — py)exp [—(1 — Wy - E,hfby }

has a wunique solution: (x,y)=1(0,0) in the region D= {(x,y):
0<x<l, 0<y<b/u}.

Proof. Let

@(x) = (1 — pwx —

(11—, (1— u)%
st YO =0ty

Then (2.1) can be written as
{ y<(a+ ux)e’™ — a,

2.2
x<b — (b — uy)e V. (22)

Assume that (2.2) has another solution in the region D besides (0,0), say
(x0,70). Then 0<xp<1 and 0<yo<b/u. Define two curves I'y and I'; as
follows:

Ii:y=(a+px)e’™ —a, Iy x=b—(b— py)e V. (2.3)
By direct calculation, we have for curve I';:
% =a+ (1 —-au<l
0,0)
and for curve I'y:
dy 1
dx 0.0) b+ (1- b),u

Hence I'; lies above I'} near (0,0). The existence of (xo, yo) implies that the
curves I'; and I', must intersect at a point in the region D besides (0, 0). Let
(x1,y1) be the first such point, i.e. x| is smallest. Then the slope of I'; at
(x1,y1) is not less than the slope of I'; at (xy, ), i.e.

L on
A+ (b — ()

[+ (a + pxy)g'(x1)]e?™) >
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or
[+ (@ + px)@' (x)li + (b — )y ()] = V0ot (24)

From (2.3), we have

(1) = (1) 1 G

2 3 3 1 (1 ﬂ)z
(by1+2b2y1 3b3y1+>+( —H)y1+6(1+ ) 1

P L
SH Tt Ty

= — ln(l — %)
This implies that
X1 <)y1. 2.5)
Using (2.5), we derive that

[+ (a4 px)e' (x)1p + (b — py )y ()]

<[4 (1 + px)' (el + (1 — wy)y' ()]

2

2 2
=1 [ - =] on 0 = [ - o]
ou—pp? o = 1—p
30T )( D)+ 301 0 [3(1+M)—u}xm(yl — X1)
wa -,
o +
1—u p(d =’ 5
<1+(1—u)<3(l+ D u)(yl—x) 30+ )(1 )]
u( = p* 21 =t
S O i

<1+(1—,u)<3(11+l;) )(yl—m)

and
(1 — p?
6(1 + p)

(1—w’
6(1 + )

(1 y%)

OD—olx1) =exp |:(1 - ,M)(J’l —Xx1)+

ST+ (1= w0 —x1) + (1 + ).
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It follows that

/OO [y 4 (a + pox)! eIl + (b — )Y (1)

> [1—'_(1_'”)0/]_)“)—'—2114-))( x|+ 2)}

- [1+(1—u)<3(11 A )(yl—xl)}
o -1 >
= =1+ gt o - w0+ et )
>0,

which contradicts (2.4). The proof is complete. [J
The next lemma is from [23].

Lemma 2.2. Assume that (DD) holds, let (x(t), x2(t)) be the solution of (1.2)
and (1.3). Then we have eventually

O<M<X,'(l‘)<€rﬂ’7, i=1,2, (26)

for some M > 0.

3. Proofs of the theorems

Proof of Theorem 1.3. By the transformation

Xi=x—xf, X=x—x3,
Eq. (1.2) becomes
x1(0) = — ri(x7 + x1(O)xi (= t) + pyxa(t — )],

Xo(1) = — ra(x5 + x2(0))pax1 (1 — 121) + x2(1 — )], (3.1

here we used x;(¢) instead of X;(¢) for i = 1,2. Clearly, the global attractivity
of x* of system (1.2) is equivalent to that for (3.1),

lim (x1(0), %2(0)) = (0,0) (3.2)

for all x(¢) = (x1(¢), x2()) > —x* for 1=0. We will prove (3.2) in the
following two cases:

Case 1: Both x{(t — t11) + w; x2(¢ — t12) and pyx1(f — 121) + x2(t — 120) are
non-oscillatory. In this case, x;(f) and x,(¢) are sign-definite eventually
which implies that x;(r) and x,(f) are eventually monotone. By the
boundedness of (x;(¢), x(¢)) (Lemma 2.2), we have x;(f)—c¢; as t— oo with
¢; > —x7¥, for i = 1,2. On the other hand, using the boundedness of x;(#) and
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x3(t), we can conclude from (3.1) that both x;(¢) and x,(¢) are bounded on
[0, c0), which implies that x;(¢f) and x,(f) are uniformly continuous on
[0, 0). It follows immediately that x;(f) and x,(¢) are also uniformly
continuous on [0, c0). Therefore, by Gopalsamy [7, Lemma 1.2.3], x;(f)—>0
as t— oo for i = 1,2. Hence, we obtain

g+ =0, per+e=0,

which imply that ¢; = ¢; = 0, i.e. (3.2) holds.

Case 2: At least one of xi(f — t11) + w1 x2( — 712) and wyxi(f — 721) +
x5(t — 1) 1s oscillatory, say, the former. Then there exist an infinity
sequence {#,} such that

Xty — ) Fyxa(ty —t2) =0, n=12,.... (3.3)
Set
= hmmf x;(¢) and U; =limsup x;(¢), i=1,2.

(-
In view of Lemma 2.2,

—xf<Vi<U<o, i=12. (3.4)
Let

—V =min{Vy,V,} and U = max{U;, U,}.
Then from (3.3) and (3.4), we have

0<V<max{x],x3} <1, 0<U<0. (3.5)

In what follows, we show that V' and U satisfy the inequalities

X 2
a+U<(a+pVyexp|(1 —p)V — étl_Jert)Vz} o
and
2
b—V=(b—plU)exp _(1 ~wU— éil +H))U2:| o7

where a,b = x¥ or x¥. Without loss of generality, we may assume that U =
U, and V = — V5. Then V<x’2“. Let ¢ >0 be sufficiently small such that
v; = V + e<max{x},x5}. Choose T >0 such that

—n<xi()<U+e=u, t=2T-—max{t;: i,j=12}, i=12 (3.8)

First, we prove that (3.6) holds. If U<uV, then (3.6) obviously holds.
Therefore, we will prove (3.6) only in the case when U > uV'. For the sake of
simplicity, it is harmless assuming U > uv;. Set vy; = (1 + vy and up =
(1 4+ wu,. Then from the first equation in (3.1), we have

x1(2)

————<r[—x1(t — 1) + w]<rv, =T 3.9
pa—T 1[=x1( 1) + uvr]<rvs (3.9)



428 X.H. Tang, X. Zou | J. Differential Equations 186 (2002) 420—439

and
Xa(1)
b+ x5(2)

where @ = x¥,b = x%. Since U > pv;, we cannot have x;(f) <uv; eventually.
On the other hand, if x;(#)=uv, eventually, then it follows from the first
inequality in (3.9) that x;(¢) is non-increasing and U = lim,_, o, x(¢) = uv;.
This is also impossible. Therefore, it follows that x;(¢) oscillates about uv;.

Let {p,} be an increasing sequence such that p,=T + 1|1, X1(p,) =
0, x1(py) = pvy, lim, _, o, p, = o0 and lim,_, » x1(p,) = U. By (3.9), x1(p, —
T11)<uv;. Thus, there exists &, €[p, — t11,pn] such that x;(&,) = uv,. For
te[&,, pa], integrating (3.9) from ¢ — 7 to &, we get

a+ xi(t—1y1)
—In——W——°K " — 1),
n at @) (&, 4+t )

[y — xo(t — )= — raun, 12T, (3.10)

or
xi(t —11)= —a+(a+ pv) exp[—riva(&, + 111 — 0], & <I<pa.
Substituting this into the first inequality in (3.9), we obtain

#)(fl)(t)<rl(a + uo) {1l — exp[—riva(&, + T — DI}, & <E<pa.
Combining this with (3.9), we have
X (¢ .
1(9) -< min{riva, 11 (1 + po){l — exp[—riv2(&, + 11 — D]},
a+ xi(t)

Ea S P (3.11)

To prove (3.6), we consider the following two possible subcases.

Case 2.1: ri(py, — &)< — D‘—zln [1 = (I — wv1]. Then by (1.6) and (3.11)
a—+ x(p,)
a + uvy

<r(1+ @00 (pn — &) — (1 + ) / exp[—r10a(&y + 71 — D)ldi

In

= (1 + /'“)1) Vl([’n - én) - vizexp[frllh(én + 11 7pn)]

x [1 —exp(—riv2(pn — &p))]

<0+ i, - g - 1SR =0

2

<exp| o2 (Y~ nin - 80)] |
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If ri(pn — &)< — 5 Inf1 — (1 — wo1]<3(1 = p)/2(1 + p), then

1ncH—x(pn)
a—+ uvy

1 1 —u

<+ por) —5111[1 — (=il =+ T

31— [ In[l — (1 — wo]
(i)}

<1+ ,uvl){—vl2 In[1 — (1 — ]

I—u 3= o[l — (1= o]
‘m{l_”(zaﬂo* 5 )]}
1 1

- %“;I{Emn = o] = (1 - p)

x [1 _3d > By Il — (1 — ,u)vl]]}

R
= 11++M;l{,vll[l — (1 = @y ]In[1 — (1 — wyvy] — (1 — p) + 3(1 . ) 01}

1+uvl a-w,

(1—p)?

<1 = pwu _6(1 T ) 1

In the above third inequality, we have used the following inequality:

[ — (1 = ol [l — (1 — woi]

A-w, -—p

> — (1 —po + S v;. (3.12)

If ri(pn — &) <3(1 = w)/2(1 + )< — ;- In[1 = (1 = woy], then

%(1 NS —lln[l — (1 = o]
U1

1— 1— 1—u)?
< L P uvli( u)v%’
1—(1— 2 6
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which implies that (1 — p)v; > 1/2. Hence,

1+ x(pn)
1 4 uv;

3(1 — 1 3
<(1+uvl){28+Z;—5[l—eXp<—§(1—u)vl>H
_1+MU1|: (1- )_7< e3(lu)vl/2):|

1
1+ 4 9 9
1+ { (1—p)— {E(l—u)—g(l—u)zv1+l—6(l—u)3v?

2w H

_(0-wd +lwl)|: (1
N 8

In

~X

o1 ——(1 - W 2+—(1 — W'

T+ p 128
1— 1

<#[a e (= e}

<1 —wu —ﬁ 1

Case 2.2: —éln[l — (I = o ]<ri(p, — &)<3(1 — w)/2(1 + p). Choose
l,e(&,,pn) such that ri(p, — 1,) = —éln[l — (1 — wv1]. Then by (1.6) and
(3.11),

1+ x(pn)
1 4 uv;

Dn
<rva(ly = &) + (1 + le){rl(pn —l)—n //

In

xexp[—riva(&, + 11 — 1)]dt}
= rlUZ(ln - én) + (1 + ,uvl)
X {Vl(Pn - ln) - Ul_zexp[_rll&(én + 711 _pn)][l - eXp(—"IUZ(Pn - ln))]}
= rivaly — &) + (1 + por)
1 _
X {Vl(l?n =) — 1—M6XP[—7102(5n + —Pn)]}
e
<r102(ln - én) + (1 + :uvl)
1 1 -
X {rl(pn_ln)_l+ﬂ+ 1 _|_'u"'ll)2(f + 111 _pn)}

l—p

<ritnvy + (10— o)ri(pn — 1) — T4
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= ey = (= ) nll = (1= ou] -
3 ! -
<§(1 — W —m{—(l ) +(ﬂ)2ﬂvl
I(l—.u)z(l-&-2,u)v2 1y
1 — (1 +2
(l_ﬂ)zz
<= —mvl.

In the above fourth inequality, we have used the following inequality:

(1 —=wv)In[1 = (1 — woi]
A-p+m, (1= (1+2

> —(1—po + > ] 5 1
On combining Cases 2.1 and 2.2, we have
a+ x(pn) (-,
In————=<(1 - — , =1,2,....
ar Uoy (1= o 6(1 + ,u)vl
Letting n— oo and ¢—0, we have
U 1—pw?
LA B Gt DI )
a+uVv o(1 + w)

This shows that (3.6) holds. Next, we will prove that (3.7) holds as well. If
V' = 0, then it follows from (3.6) that U = 0. Hence, the proof is complete.
In what follows, we assume that > 0. Then from (3.6), we have

U<(a+pe' " —a<2, pU<p[(1+pu)e'P — 1<V <b. (3.13)

Thus we may assume, without loss of generality, that V' > uu;. In view of
this and (3.10), we can show that neither x,(f)> — uu; eventually nor
X2(t) < — puy eventually. Therefore, x,(¢) oscillates about —puu;.

Let {g,} be an increasing sequence such that ¢,=>T + 12, X2(q,) =
0, x2(¢n) < — puy, lim,, ., o, ¢, = oo and lim,_ o x2(q,) = —V. By (3.10),
X2(gn — T22) = — puy. Thus, there exists u, €[q, — 722, ¢,] such that x»(y,) =
—uuy. For te[n,, q,), integrating (3.10) from ¢ — 12, to #,, we have

X2t — 12) <(b — puy) explraun(n, + 12 — D] — b, 1, <<y
Substituting this into the first inequality in (3.10), we obtain

D Sl ) lexplrany, + s - 0] - 1,0, <r<,
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Combining this with (3.10), we have

b jf(z)(t)\ min{ryuz, ro(1 — pur){explroua(n, + 122 — 0] — 135,

N, <t<gy. (3.14)

There are also two possibilities:

Case 2.3: ry(qy — 1,) <37 — = In[l + (1 — ). Integrating (3.14) from

n, to g, and using the 1nequahty

(1-p’
6(1 4 ) 0

1
25(1 — wuy —

In[1 + (1 — W]
we have

b+ X2(£1n)

—In
b — puy

< roua(qn — 1,)

31-p 1
”ta 0o

:5(1 — wuy — In[1 + (1 — puy]

(1—py?
6(1 + p) .

ln[l + (1 — wuy]. Choose h, (1, q,) such

ln[1 +0 - M)m]}

<(1—pu +

S 30—
2(1 +.u)

Case 2.4: ry(gn — 1n,,) >
that
31 —w 1
— —In[1 1— .
AT gl (1= ]
Then by (1.6) and (3.14) we have
b + x(qn)
b— Huq
<raux(hy — ) + (1 — pay)
n
X {72/ explraua(n, + 122 — Oldt — ra(gn — hn)}

n

ra(hy —m,) =

—In

= raux(hy —m,) + (1 — puy)

1
x { u—z[exp(" 2 (1, + T2 — hy))

—exp(raua(n, + 122 — qu))] — r2(qn — hy) }

= raua(hy — n,) — ra(1 — pur)(gn — hy)
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L —puy s 3(1 —p) -
FaTooll 1 1— o _ ,—rua(ga—n,)
+7u2 e [1+ (1 — wu]exp A+ w) ¢

<r2u2(hn - VIn) - l’2(1 - .Wl)(% - hn)

1 — 3(1 —
+ uf“'{l + (1 — pwu; — exp [uz <2E1 +Z;_ 2(qn —nn))]}

<rux(hy, — ’In) —ro(1 =y )(qn — hn)

# AL = g 5 ) |
= (1 sty = 1) = (1 = )
B e (T el
SEMRT
<1 — puy + 211“ l)j)u%.

In the above fourth inequality, we have used the following inequality:
(I +u) In[1 + (1 — pui]
A=+, (= +2p

>(1 - ,u')ul + B vll 6 1
On combining Cases 2.3 and 2.4, we have
b+ x(qn) (a-p
—1 <(1 - , =12,....
Ny SR e
Letting n— oo and ¢—0, we have
4 (-
—In <(1—wU+ U,
p— oS0 WY

which implies that (3.7) holds. In view of Lemma 2.1, it follows from (3.6)
and (3.7) that U = V = 0. Thus, lim,_, o, (x1(?), x2(2)) = (0,0). The proof is
complete. [

Proof of Theorem 1.4. Let (x;(¢), x2(7)) be any solution of (3.1) with x¥ +
x;(#) >0 for t=0 and i = 1,2. By Lemma 2.2, there exists 7> 0 such that

XE+x(n<e™, =T, i=1,2. (3.15)

In view of the proof of Theorem 1.3, we only need to prove that the solution
(x1(2), x2(7)) satisfies (3.2). To this end, we consider the following two
possible cases.

Case 1: At least one of x(f — 1) + pyx2(f — 112) and pyx (¢t — 121) +
x2(t — 122) is non-oscillatory, say, the former. Then x;(¢f — 71;) + p;x2(¢ —
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712) > 0 (or <0) for sufficiently ¢, which implies that x;(¢) is monotonous
eventually. By the boundedness of x;(z) (Lemma 2.2), we have x(z)—>¢; as
t— 00. On the other hand, using the boundedness of x;(¢) and x,(¢), we can
conclude from (3.1) that both x(¢) and x,(¢) are bounded on [0, co0), which
implies that x;(¢) and x,(¢) are uniformly continuous on [0, c0). It follows
immediately that x;(¢) and x,(¢) are also uniformly continuous on [0, c0).
Therefore, x;(£)—>0 as t— oo. By the first equation in (3.1), we have
x2(t) > ¢, and so x,(r)—0 as t— co. Hence, we obtain

1+ =0 and pep+c=0.
It follows from (DD) that ¢; = ¢; = 0.
Case 2: Both x1(t — 111) + pyx2(t — 712) and p,x1(t — 121) + x2(¢ — 122) are
oscillatory. Set v; = lim sup,_, ., |x:(¢)|,i = 1,2. It suffices to prove that v; =
v, = 0. Without loss of generality, assume that v; = max{v;,v;} > 0. Then

for any e€(0, (1 — p)v1 /(1 + w;)), there exist 77 > T + 111 + 112 + 21 + 22
and a sequence {#,} with ¢, > T} such that

th—= o0, |xi(t)l = v as n— oo, |X[(1,)] =0, |[x1(t,)] > v — &,
n=12,...
and
xi(Ol<vy +& |x)|<vy+e for t=T) — (ty) + T2 + 721 + T22)-

We only consider the case when |x{(z,)| = x;(¢,) (the case when |x;(z,)| =
—x1(t,) 1s similar). Then from the first equation in (3.1), we have

0=—x1(t, — 1) — wx2(ty — 112) < — x1(ty — 11) + (V1 + ¢)
or
xi(ty — i) <y (v1 + ¢,

which, together with the fact x(z,) > p;(v1 + ¢) implies that there exists a
&€ty — t11, ty) such that x1(&,) = p;(v1 + ¢). Hence from the first equation
in (3.1) and (3.15), we have

1< (X 4+ xi(O)=x1(t — t11) + gy (v1 + &)
<re"™MA 4+ p)(v) +e), T1<t<t,. (3.16)
For te[&,, t,), integrating (3.16) from ¢ — 71; to &,, we have
(o1 + &) = xi (1 = Ty) <r "1+ (v + )& + T — 1),
En<St<ty.
Substituting this into the first inequality in (3.16), we obtain
O+ w1 + )+ — 0, &SIty
Combining this and (3.16), we have
1)< ™M (1 + py)(or + &) min{ L, r e (E, + T — 1),
&<ty (3.17)
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Set

max{rlrllemﬂl —%s%}(l +H1), ,u1<%9
U+ ) (rrenen ™), =5

Then by (1.7)

0<1—p,. (3.18)

We will show that

x1(tn) — x1(E) < O(v1 + &) (3.19)

To this end, we consider the following three subcases:
Case 2.1: uy<1/3 and rie"™ (¢, — &,)<1. In this case, by (3.17) we have

x1(tn) — x1(&)

ln
<Y A+ p)r +e) [ (& + T — 0t
&

= (r]e"lfn)2(1 + pp)(v1 +e) |:Tll(tn = &) — %(ln - én)2:|
<0+ 41001~ E) = 50 - &7

1
<(vr + o)1+ py) [maX{Vﬂllem”, 1y — 5}

11
= (v; + &) (1 + py) maxq ritye'™ — -, =

2’2
= 0(v1 +¢).

Case 2.2: py<1/3 and rie"™ (s, — &,) > 1. In this case, let rie"™ (¢, —
n,) = 1. Then by (3.17) we have

xl(tn) — X (én)

I
<™ (1 + p)r + ) | (n, — &) + ™ / (Cn+n— t)dl]

M

= (v +e)(1+ ) [(i’le"”“)z‘fll(tn —1,) — %(i’ler”“(tn — nn))z]

. 1
= (v1 +&)(1 +M1)("1T11€"T” - 5)
= 0(v; + ¢).
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Case 2.3: py = 1/3. In this case, , — &, <71 hence, by (3.17) we have
x1(ty) — x1(&,)
1y
<™+ p)or + ) | (& A+ — Dt
é}l

= R e+ et~ 6 < 50— &)

1
<§(71‘511€m”)2(01 +e)(1 + py)
=0(v; + ¢).

Cases 2.1-2.3 show (3.19) holds. Let é—0 in (3.19). Then we conclude that
v; <v;. This contradiction implies that v; = 0. The proof is complete. [

Proof of Theorem 1.5. By letting

yi(0) = x1(1), and yo(t) = 6 'xa(1), i=1,2 (3.20)
one can transform (3.1) to

(1) = = r(F + ()i — 1) + Syt — )],

P(t) = — ra (o + 22D oy (t — ta1) + ya(t — 2)]. (3.21)

Then, we can similarly show that the conclusion of Theorem 1.5 holds.

4. Discussion

For the delayed logistic equation (1.5), it is well known that when rt <3
the positive equilibrium x* = 1 is locally asymptotically stable, and when rt
passes though 7 the stability of x* is lost and Hopf bifurcation occurs. There
is still a range (%, %) for rz, for which the global dynamics of (1.5) remains
unclear.

Now, we can similarly consider the local stability of the positive
equilibrium x* = (x¥,x%) for (1.2). Recall that under the conditions of
Theorems 1.1-1.4, the delays in the interspecific interactions have no impact
on the stability of x*. So, in order to avoid complexity, we only focus on the
impact of 7; i=1,2, by assuming 7, =0 =1,,. In such a case, the
linearization of (1.2) at x™* is

X](l) = — C]]xl(l — ‘E]]) — C]zXz(Z),

(1) = — cax1(t) — cnxa(t — 22), 4.1)

3 — ¥ ) . sk ) — sk ) _ sk
where ¢ =X}, cio =Xy, ¢ =rxX5u,, cxn =ryxi. Thus, the char-
acteristic equation is

O+ cr1e™ ™M) (A + cpe ™) = cppeay. 4.2)
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Analysing (4.2) is not trivial at all, so we only consider a special case when
c11 = ¢ =: c and t;; = 73 =: 7. Then (4.2) reduces to

(h+ ce™™) = cppea, (4.3)
which can be further rewritten as
(z+1ce™) = Pepey (4.9)

with z = tA. Taking square root to (4.4), we have

z+1ceF = 14/c1202 (4.5)

and

zZ4+tce = —14/C1202]. (4.6)
Now by the well-known result for the Hayes’ equation (see, e.g. [2, Theorem
13.8] or [9, Theorem A3]), we know that when

¢

— 4.7
‘cc<sm 7 4.7
then, x* is locally asymptotically stable, and Hopf bifurcation occurs at
Tc = Sir‘f % where ¢ is the solution of ¢ =1,/cipcrtanl in £e(0,%).

Obviously, (4.7) is equivalent to
- ¢ _ & d-mpw)
x¥siné  siné (1 —y;) °

=1,2. (4.8)

Note that (i) 1 <g=<% for £€(0,%); and (i) when ¢12¢21 =0 (i.e. pyp—0),
¢ —7%. Comparing Theorem 1.3 and the above observation, we know that for

the above simplified case, Hopf bifurcation occurs at some
e (3(1 — W ol — )
T2 20— )
So, further increasing delay does destabilize the system. When u; —»0,i =
1,2, we reproduce the unclear interval (%, %) for the delayed logistic equation.

(4.9)
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