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Abstract
In this paper, we consider a single species population model over patches with delay and non-
local interactions, for which no symmetry for the dispersion (connection) matrix is assumed.
We show that there exists a positive equilibrium when the dispersal rate is large. We also
discuss the stability/instability of this positive equilibrium, establish the threshold dynam-
ics and explore the associated Hopf bifurcation. Moreover, we demonstrate our theoretical
results by a nonlocal logistic population model and by the Nicholson’s blowflies model.
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1 Introduction

Themutual effect of diffusion and time delay has been investigated extensively in continuous
space settings by reaction-diffusion equationmodels. For example, for the following classical
delayed logistic (Pearl-Verhulst) model

∂u(x, t)

∂t
= d�u + u(x, t) (m(x) − b(x)u(x, t − τ)) , x ∈ �, t > 0, (1.1)

the stability/instability of the positive steady state and the associated Hopf bifurcation were
analyzed for the homogeneous Neumann boundary condition [7,18,20,32] and the homo-
geneuos Dirichlet boundary condition [2,3,13,15,22,23,28,29]. Here the intrinsic growth rate
m(x) can be spatially dependent and change sign, and b(x) > 0 represents the intraspecific
competition. Considering the effect of nonlocal competition, Britton [1] improved model
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(1.1) and proposed the following nonlocal model:

∂u

∂t
= d�u + u [1 + αu − (1 + α)g ∗ u] , x ∈ �, t > 0, (1.2)

where αu denotes the local aggregation, and g ∗ u represents the intraspecific competition
and has different forms, e.g. g ∗ u = ∫

�
g(x, y)u(y, t − τ)dy which represents a purely

spatial average. For the unbounded domain, the existence of periodic traveling wave solu-
tions was shown in [1], and we also refer to [5,9,10,12] and the references therein for the
Hopf bifurcation of model (1.2) on the bounded domain. Another classical delayed single
population model is the following Nicholson’s blowflies model:

∂u

∂t
= d�u + p(x)u(x, t − τ)e−a(x)u(x,t−τ) − δ(x)u(x, t), x ∈ �, t > 0, (1.3)

where p(x) > 0 is the maximum per capita egg production rate, 1/a(x) > 0 is the size
at which the population reproduces at its maximum rate, δ(x) is the per capita daily death
rate. We refer to [30,31] and the references therein for the stability/instability of the positive
steady state.

When the spatial environment is regarded as a discrete variable, the above mentioned
models (1.1)-(1.3) have the associated patch forms. Actually, they are all included by the
following general form:

⎧
⎪⎨

⎪⎩

du j

dt
= d

n∑

k=1

α jkuk + f j

(

u j ,

n∑

k=1

β jkuk(t − τ)

)

, t > 0, j = 1, . . . , n,

u(t) = ψ(t) ≥ 0, t ∈ [−τ, 0].
(1.4)

where n ≥ 2 is the number of patches, u j represents the population density in patch j ,
and u = (u1, . . . , un)T ; f j (·, ·) is the growth rate function; d > 0 is the dispersal rate of
the population; and time delay τ ≥ 0 represents the maturation time of the population. Here
A := (α jk)n×n is the connectionmatrix, whereα jk( j �= k) ≥ 0 denotes the rate ofmovement
from patch k to patch j , α j j denotes the rate of leaving patch j , and α j j = −∑

k �= j αk j for
j = 1, . . . , n; and the matrix B := (β jk)n×n �= 0n×n represents the nonlocal effects if it is
not a diagonal matrix.

If

f j (x, y) = x(m j − y), j = 1, . . . , n, (1.5)

and B = diag(b j ), then model (1.4) is a patch form of (1.1), and the stability of the pos-
itive equilibrium and the associated Hopf bifurcation were investigated in [4,16] when the
connection matrix A is symmetric; if

f j (x, y) = x(m j + a j x − (1 + a j )y), j = 1, . . . , n, (1.6)

then model (1.4) is a patch form of (1.2), and the Hopf bifurcation was also considered in
[14,17] when A and B are symmetric by virtue of the symmetric Hopf bifurcation theory
[27]. The symmetric Hopf bifurcation theory was also used to analyze the Hopf bifurcation
for coupled neural network models with some symmetric assumptions, see e.g. [11,34]. If

f j (x, y) = p j ye
−a j y − δ j x, j = 1, . . . , n, (1.7)

and B is an identity matrix, then model (1.4) is a patch form of (1.3), the existence and global
stability of the positive equilibrium was analyzed in [8], and there exists no results on Hopf
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bifurcations to our knowledge. Moreover, we remark that a delay induced Hopf bifurcations
were also investigated in [25,33] for two or three patches with other forms of nonlocal delay.

A natural question is whether Hopf bifurcations can occur for model (1.4) when A and B
are asymmetric. In this paper, we give an affirmative answer to this question for the case of
a large dispersal rate d . Throughout the paper, we assume that:

(H1) The connection matrix A := (α jk)n×n is irreducible and quasi-positive.

Here we remark that real matrices with nonnegative off-diagonal elements are referred
to as quasi-positive matrices (or respectively, essentially nonnegative matrices). Denote the
spectral bound of A by

s(A) := max{Reμ : μ is an eignvalue of A}. (1.8)

It follows directly from the Perron-Frobenius theorem that, under assumption (H1), s(A) is
a simple eigenvalue of A with an eigenvector η � 0, where

η = (η1, . . . , ηn)
T , η j > 0 for all j = 1, 2 . . . , n, and

n∑

j=1

η j = 1. (1.9)

Moreover, there exists no other eigenvalue with a nonnegative eigenvector. This, together
with the fact that

∑n
j=1 α jk = 0 for k = 1, . . . , n, implies s(A) = 0. We note that while

a symmetric dispersion matrix A in (H1) may mimic random diffusion of the species, an
asymmetric A could reflect advective movements of the species.

On the reaction part, based on the existing studies on various special cases of (1.4), we
impose the following assumption:

(H2) For all j = 1, . . . , n, f j (x, y) ∈ C4(R × R,R). Define

g(w) :=
n∑

j=1

f j (wη j , w
∑n

k=1 β jkηk)

w
,

where η = (η1, . . . , ηn)
T is defined in (1.9), and then g(w) is strictly decreasing in

w ∈ (0,∞), and M = lim
w→0

g(w) and N = lim
w→∞ g(w) exist, where 0 < M < ∞ and

−∞ ≤ N < 0.

We would also like to point out that assumption (H2) can actually accommodate all those
reaction terms in the aforementioned works (and most, if not all, in the literature). For
example, assumption (H2) is satisfied for (1.5) when

∑n
j=1 m jη j > 0, and (1.6) and (1.7)

are illustrated in Sect. 3. Aswill be seen in Sect. 2, (H2)will play a crucial role in guaranteeing
the existence of a positive equilibrium for a large dispersal rate d .

To analyze the Hopf bifurcation for network or patch models, a common used assumption
is that the dispersion matrix A is symmetric. Then the symmetric Hopf bifurcation theory or
some other methods can be used, see [4,19,27] and references therein. In [4], we showed that
the perturbation method in [2] can also be used for Hopf bifurcations of patch models. Here
we do not assume symmetry for the dispersion matrix A, and it brings some more technical
hurdles. We overcome these difficulties via constructing an equivalent system (see (2.26))
for the eigenvalue problem, which is different from [2,4].

Now, we denote the following notations. For μ ∈ C, we define the real and imaginary
parts by Reμ and Imμ, respectively. We denote complexification of a linear space Z to be
ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}, and define the domain of a linear operator T by
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D(T ), the kernel of T byN (T ), and the range of T byR(T ). For the complex-valued space
C
n , we choose the standard inner product 〈u, v〉 = ∑n

j=1 u jv j , and for u ∈ C
n , we define

‖u‖∞ = max
j=1,...,n

∣
∣u j

∣
∣ , ‖u‖2 =

⎛

⎝
n∑

j=1

∣
∣u j

∣
∣2

⎞

⎠

1/2

. (1.10)

The rest of the paper is organized as follows. In Sect. 2, we study the existence of the
positive equilibrium ud and the associated Hopf bifurcation when the dispersal rate d is
sufficiently large. In Sect. 3, we apply the obtained theoretical results to a nonlocal logistic
population model and a Nicholson’s blowflies model, and also give some numerical simula-
tions.

2 Positive Equilibrium and Hopf Bifurcation

In this section, we will consider the Hopf bifurcation of model (1.4) when the dispersal rate
d is sufficiently large. Let λ = 1/d throughout the paper, and consequently, the existence of
a Hopf bifurcation for a large d is equivalent to that for a small λ.

2.1 Existence of Positive Equilibrium

In this subsection, we show the existence of the positive equilibrium ud = (ud,1, . . . , ud,n)
T

(or equivalently uλ) of Eq. (1.4), and uλ = (uλ,1, . . . , uλ,n)
T satisfies

n∑

k=1

α jkuk + λ f j

(

u j ,

n∑

k=1

β jkuk

)

= 0, j = 1, . . . , n, (2.1)

where λ = 1/d . It is well known that, for every x = (x1, . . . , xn)T ∈ R
n ,

y = x − γ η ∈ X1,

where η is as in (1.9), γ = ∑n
j=1 x j ∈ R and

X1 =
⎧
⎨

⎩
(x1, . . . , xn)

T ∈ R
n :

n∑

j=1

x j = 0

⎫
⎬

⎭
. (2.2)

From assumption (H2), we give the following result for further application.

Lemma 2.1 Denote

G(w) :=
n∑

j=1

f j

(

wη j , w

n∑

k=1

β jkηk

)

, (2.3)

where η = (η1, . . . , ηn)
T is defined in (1.9). Then G(w) = 0 has a unique positive solution

w = c0 and G ′(c0) < 0.

Proof Clearly,G(w) = wg(w), where g(w) is defined in (H2). Since g(w) is strictly decreas-
ing, and

lim
w→0

g(w) ∈ (0,∞) and lim
w→∞ g(w) ∈ [−∞, 0),
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we see that g(w) = 0 has a unique positive solution w = c0, which implies that G(w) = 0
has a unique positive solution w = c0. A direct computation yields

G ′(c0) = c0g
′(c0) < 0.

This complete the proof. ��

Now we show the existence of the positive equilibrium uλ near λ = 0.

Lemma 2.2 There exists λ1 > 0 and a continuously differentiable mapping λ �→ uλ from
[0, λ1] to R

n such that uλ is a positive solution of Eq. (2.1) for λ ∈ (0, λ1]. Moreover,

limλ→0 uλ = u0 = (
u0,1, . . . , u0,n

)T
, where u0 = c0η, and c0 and η are defined in Lemma

2.1 and Eq. (1.9), respectively.

Proof Define h : R × R × X1 �→ R
n by

h(λ, c,w) = (h1(λ, c,w), . . . , hn(λ, c,w))T ,

where

h j (λ, c,w) =
n∑

k=1

α jkwk + λ f j

(

cη j + w j ,

n∑

k=1

β jk(cηk + wk)

)

= 0 for j = 1, . . . , n.

Letting

u = cη + w, (2.4)

where η is defined in (1.9), c ∈ R, w ∈ X1 and X1 is defined in (2.2). Plugging (2.4) into
(2.1), we see that (λ, u) solves (2.1), where λ > 0 and u ∈ R

n , if and only if h(λ, c,w) = 0
is solvable for some value of λ > 0, c ∈ R and w ∈ X1.

Obviously, h(0, c, 0) = 0 for all c ∈ R. One can easily check that

D(λ,w)h(0, c, 0)[σ, v] =

⎛

⎜
⎜
⎜
⎝

∑n
k=1 α1kvk + σ f1

(
cη1, c

∑n
k=1 β1kηk

)
∑n

k=1 α2kvk + σ f2
(
cη2, c

∑n
k=1 β2kηk

)

...∑n
k=1 αnkvk + σ fn

(
cηn, c

∑n
k=1 βnkηk

)

⎞

⎟
⎟
⎟
⎠

,

where v = (v1, . . . , vn)
T ∈ X1 and D(λ,w)h(0, c, 0) is the Fréchet derivative of h(λ, c,w)

with respect to (λ,w) at (0, c, 0). It follows from Lemma 2.1 that
⎛

⎜
⎜
⎜
⎝

f1
(
c0η1, c0

∑n
k=1 β1kηk

)

f2
(
c0η2, c0

∑n
k=1 β2kηk

)

...

fn
(
c0ηn, c0

∑n
k=1 βnkηk

)

⎞

⎟
⎟
⎟
⎠

∈ X1.

Then we see that there exists a unique v∗ ∈ X1 such that

D(λ,w)h(0, c0, 0)[1, v∗] = 0,

which yields

N
(
D(λ,w)h(0, c0, 0)

) = {(
s, sv∗) : s ∈ R

}
.
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A direct computation shows that

DcD(λ,w)h(0, c0, 0)[1, v∗] =

⎛

⎜
⎜
⎜
⎝

η1a01 +∑n
k=1 β1kηkb01

η2a02 +∑n
k=1 β2kηkb02
...

ηna0n +∑n
k=1 βnkηkb0n

⎞

⎟
⎟
⎟
⎠

,

where DcD(λ,w)h(0, c0, 0) is the Fréchet derivative of D(λ,w)h(λ, c,w) with respect to c at
(0, c0, 0), and

a0j = ∂ f j
∂x

∣
∣
(c0η j ,c0

∑n
k=1 β jkηk)

, b0j = ∂ f j
∂ y

∣
∣
(c0η j ,c0

∑n
k=1 β jkηk)

, j = 1, . . . , n. (2.5)

We claim that

DcD(λ,w)h(0, c0, 0)
[
1, v∗] /∈ R

(
D(λ,w)h(0, c0, 0)

)
. (2.6)

If it is not true, then there exists (σ̂ , v̂) such that

n∑

k=1

α jk v̂k + σ̂ f j

(

c0η j , c0

n∑

k=1

β jkηk

)

= η j a
0
j +

n∑

k=1

β jkηkb
0
j , j = 1, . . . , n.

This implies that
⎛

⎜
⎜
⎜
⎝

η1a01 +∑n
k=1 β1kηkb01

η2a02 +∑n
k=1 β2kηkb02
...

ηna0n +∑n
k=1 βnkηkb0n

⎞

⎟
⎟
⎟
⎠

∈ X1,

which contradicts the fact in Lemma 2.1 that

G ′(c0) =
n∑

j=1

η j a
0
j +

n∑

j=1

n∑

k=1

β jkηkb
0
j < 0. (2.7)

Therefore, (2.6) holds, and we see from the Crandall-Rabinowitz bifurcation theorem [6] that
the solutions of h(λ, c,w) = 0 near (0, c0, 0) defines a curve

{(λ(s), c(s),w(s)) : s ∈ (−ε, ε)},
where λ(s), c(s),w(s) are smooth, λ(0) = 0, c(0) = c0, w(0) = 0, w′(0) = v∗ and
λ′(0) = 1.Noticing thatλ′(0) = 1 > 0,we see thatλ(s) has a inverse function s(λ) for a small
s. Then there exists λ1 > 0 such that (2.1) has a positive solution uλ = c(s(λ))η + w(s(λ))

for λ ∈ (0, λ1] , and limλ→0 uλ = u0, where

u0 = c(s(0))η + w(s(0)) = c(0)η + w(0) = c0η.

This completes the proof. ��
Note that λ = 1/d throughout the paper. Then we have shown the existence of the positive
equilibrium with respect to the parameter d , as stated in the following lemma.

Lemma 2.3 Assume that d ∈ [d̂,∞), where d̂ is sufficiently large. Then there exists a continu-
ously differentiablemapping d �→ ud from [d̂,∞) toRn such that ud is a positive equilibrium
of model (1.4) for d ∈ [d̂,∞). Moreover, limd→∞ ud = u0 = (

u0,1, . . . , u0,n
)T

, where u0
is defined in Lemma 2.2.
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2.2 The Eigenvalue Problem

In this subsection, we consider the eigenvalue problem associated with the positive equilib-
rium uλ obtained in Lemma 2.2 (or equivalently, ud obtained in Lemma 2.3). Linearizing
system (1.4) at uλ, we have

dv

dt
= d Av + diag

(
aλ
j

)
v + diag

(
bλ
j

)
Bv(t − τ), (2.8)

where d = 1/λ, and

aλ
j = ∂ f j

∂x

∣
∣
(uλ, j ,

∑n
k=1 β jkuλ,k)

, bλ
j = ∂ f j

∂ y

∣
∣
(uλ, j ,

∑n
k=1 β jkuλ,k)

. (2.9)

Then aλ
j = a0j and b

λ
j = b0j for λ = 0, where a0j and b0j are defined in (2.5).

It follows from [26] that the solution semigroup of (2.8) has the infinitesimal generator
Aτ (λ) satisfying

Aτ (λ)� = �̇, (2.10)

with the domain

D (Aτ (λ)) = {
� ∈ CC ∩ C1

C
: �(0) ∈ C

n,

�̇(0) = d A�(0) + diag
(
aλ
j

)
�(0) + diag

(
bλ
j

)
B�(−τ)

}
,

where CC = C ([−τ, 0],Cn) and C1
C

= C1 ([−τ, 0],Cn). Then, we see that μ ∈ C is an
eigenvalue of Aτ (λ), if and only if there exists ψ = (ψ1, . . . , ψn)

T (�= 0) ∈ C
n such that

�(λ,μ, τ)ψ :=
[
A + λ diag

(
aλ
j

)
+ λe−μτ diag

(
bλ
j

)
B − λμI

]
ψ

=Aψ + λ diag
(
aλ
j

)
ψ + λe−μτ diag

(
bλ
j

)
Bψ − λμψ = 0,

(2.11)

where λ = 1/d .
Firstly, we obtain a priori estimates for solutions of Eq. (2.11), which is crucial for the

analysis of the Hopf bifurcation.

Lemma 2.4 Assume that
(
μλ, τλ,ψλ

)
solves Eq. (2.11) for λ ∈ (0, λ1], where λ1 is defined

in Lemma 2.2, Reμλ, τλ ≥ 0, and ψλ = (ψλ,1, . . . , ψλ,n)
T (�= 0) ∈ C

n satisfies ‖ψλ‖22 =
‖η‖22. Then there exists λ̂1 ∈ (0, λ1] such that |μλ| is bounded for λ ∈ (0, λ̂1].
Proof Substituting

(
μλ, τλ,ψλ

)
into (2.11), we have

n∑

k=1

α jkψλ,k + λaλ
jψλ, j + λe−μλτλbλ

j

(
n∑

k=1

β jkψλ,k

)

− λμλψλ, j = 0, j = 1, . . . , n.

(2.12)

Multiplying (2.12) by ψλ, j and summing these over all j yield

n∑

j=1

n∑

k=1

α jkψλ, jψλ,k + λ

n∑

j=1

aλ
j |ψλ, j |2 + λe−μλτλ

n∑

j=1

n∑

k=1

β jkb
λ
jψλ, jψλ,k

− λμλ

n∑

j=1

|ψλ, j |2 = 0.
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Note that ‖ψλ‖22 = ‖η‖22. Then for λ ∈ (0, λ1], we have
|λμλ| ≤ λ1 max

λ∈[0,λ1],1≤ j≤n
|aλ

j | + λ1n max
1≤ j,k≤n

|β jk | max
λ∈[0,λ1],1≤ j≤n

|bλ
j | + n max

1≤ j,k≤n
|α jk |,

which implies that |λμλ| is bounded for λ ∈ (0, λ1].
Thenwe claim that limλ→0 |λμλ| = 0. Note that ‖ψλ‖22 = ‖η‖22.We see that if the claim is

not true, then there exists a sequence {λl}∞l=1 and a constant κ �= 0 such that liml→∞ λl = 0,
liml→∞ λlμλl = κ with Reκ ≥ 0, and liml→∞ ψλl

= ψ∗ with ‖ψ∗‖22 = ‖η‖22. Then it
follows from (2.11) that

Aψ∗ − κψ∗ = 0,

which implies that κ(�= s(A)) is an eigenvalue of A. If follows from [21, Corollary 4.3.2]
that Reκ < 0, which is a contradiction. Therefore, limλ→0 |λμλ| = 0.

Finally, we show there exists λ̂1 ∈ (0, λ1] such that |μλ| is bounded for λ ∈ (0, λ̂1).
If it is not true, then there exists a sequence, which we still denote by {λl}∞l=1, such that
liml→∞ λl = 0, and liml→∞ |μλl | = ∞. Ignoring a scalar factor, ψλl

can be represented as

ψλl
= rλlη + wλl , wλl ∈ (X1)C , rλl ≥ 0, (2.13)

where X1 is defined in (2.2). Plugging (2.13) into (2.12), we have, for j = 1, . . . , n,

n∑

k=1

α jkwλl ,k + λla
λl
j (rλlη j + wλl , j ) + λlb

λl
j

n∑

k=1

β jk(rλlηk + wλl ,k)e
−μλl τλl

−λlμλl (rλlη j + wλl , j ) = 0. (2.14)

Summing (2.14) over all j yields

μλl rλl =
n∑

j=1

[

aλl
j (rλlη j + wλl , j ) + bλl

j

n∑

k=1

β jk(rλlηk + wλl ,k)e
−μλl τλl

]

. (2.15)

Noticing that ‖ψλ‖22 = ‖η‖22, we see that there exists a subsequence
{
λlq
}∞
q=1 (we still use

{λl}∞l=1 for convenience) and ψ∗ = (ψ∗
1 , . . . , ψ∗

n ) ∈ C
n(‖ψ∗‖22 = ‖η‖22) such that

lim
l→∞ ψλl

= lim
l→∞

(
rλlη + wλl

) = ψ∗. (2.16)

Since limλ→0 |λμλ| = 0, taking the limit of (2.14) as l → ∞, we see that Aψ∗ = 0. This,
combined with the fact that ‖ψ∗‖22 = ‖η‖22, implies that ψ∗ = κ1η with |κ1| = 1. It follows
from (2.16) that

lim
l→∞

n∑

j=1

(
rλlη j + wλl , j

) = lim
l→∞ rλl =

n∑

j=1

ψ∗
j = κ1, (2.17)

which yields κ1 ≥ 0, and consequently κ1 = 1. Therefore,

lim
l→∞ rλl = 1, lim

l→∞ wλl = 0. (2.18)

This, combined with (2.15), implies that {|μλl |}∞l=1 is bounded, which is a contradiction. This
completes the proof. ��

From Lemma 2.4, we have the following result.
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Theorem 2.5 Let

r̃1 =
n∑

j=1

a0jη j and r̃2 =
n∑

j=1

n∑

k=1

β jkb
0
jηk, (2.19)

where a0j and b
0
j are defined in (2.5), and assume that r̃1 − r̃2 < 0. Then there exists λ2 > 0,

where λ2 is sufficiently small, such that

σ (Aτ (λ)) ⊂ {x + iy : x, y ∈ R, x < 0} for λ ∈ (0, λ2] and τ ≥ 0.

Proof If the conclusion is not true, then there exists a positive sequence {λl}∞l=1 such
that liml→∞ λl = 0, and, for l ≥ 1, �(λl , μ, τ) ψ = 0 is solvable for some value of(
μλl , τλl ,ψλl

)
withReμλl , Imμλl ≥ 0, τλl ≥ 0 and 0 �= ψλl

∈ C
n . Noticing that {|μλl |}∞l=1

is bounded from Lemma 2.4, we see that there exists a subsequence
{
λlq
}∞
q=1 (we still use

{λl}∞l=1 for convenience) such that liml→∞ μλl = μ∗, and

lim
l→∞(e−τλl (Reμλl ), e−iτλl (Imμλl )) = (σ ∗, e−iθ∗

),

where

σ ∗ ∈ [0, 1], θ∗ ∈ [0, 2π), μ∗ ∈ C
(Reμ∗, Imμ∗ ≥ 0

)
. (2.20)

As is proved in Lemma 2.4 (see the proof between (2.13) and (2.18)),ψλl
can be represented

as

ψλl
= rλlη + wλl , wλl ∈ (X1)C , rλl ≥ 0,

‖ψλl
‖22 = r2λl‖η‖22 + rλl

n∑

j=1

η j (wλl , j + wλl , j ) + ‖wλl‖22 = ‖η‖22,
(2.21)

where {rλl }∞l=1 and {wλl }∞l=1 satisfy

lim
l→∞ rλl = 1, lim

l→∞ wλl = 0,

and (2.15) holds. Taking the limits of (2.15) on the both sides as l → ∞, we have

n∑

j=1

(

a0jη j + σ ∗b0j
n∑

k=1

β jkηke
−iθ∗

)

= μ∗,

which implies that
{
r̃1 + σ ∗̃r2 cos θ∗ = Reμ∗,
Imμ∗ + σ ∗̃r2 sin θ∗ = 0.

(2.22)

In fact, it follows from Lemma 2.1 and (2.7) that

G ′(c0) = r̃1 + r̃2 < 0. (2.23)

Noticing that r̃1 − r̃2 < 0, we have

r̃1 < min {̃r2, −̃r2} ≤ 0 and − 1 < −̃r2/̃r1 < 1.

Then, we see from the first equation of (2.22) that

− r̃2
r̃1

cos θ∗σ ∗ ≥ 1,

which is a contradiction. ��
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From Theorem 2.5, we see that if r̃1 − r̃2 < 0, then all the eigenvalues of Aτ (λ) have
negative real parts for λ ∈ (0, λ2], where λ2 is sufficiently small. In the following, we show
thatHopf bifurcations can occur in the case r̃1−r̃2 > 0. Clearly, Aτ (λ) has a purely imaginary
eigenvalue μ = iν(ν > 0) for some τ ≥ 0, if and only if

Aψ + λ diag
(
aλ
j

)
ψ + λ diag

(
bλ
j

)
Bψe−iθ − iλνψ = 0 (2.24)

is solvable for some value of ν > 0, θ ∈ [0, 2π) and ψ(�= 0) ∈ C
n . Ignoring a scalar factor,

ψ(�= 0) ∈ C
n in (2.24) can be represented as

ψ = rη + w, w ∈ (X1)C , r ≥ 0,

‖ψ‖22 = r2‖η‖22 + r
n∑

j=1

η j (w j + w j ) + ‖w‖22 = ‖η‖22.
(2.25)

Plugging (2.25) into (2.24), we see that (ν, θ,ψ) is a solution of (2.24), where ν > 0,
θ ∈ [0, 2π) and ψ ∈ C

n(‖ψ‖22 = ‖η‖22), if and only if the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1, j (w, r , ν, θ, λ)

:=
n∑

k=1

α jkwk + λ

[

aλ
j (rη j + w j ) + bλ

j

n∑

k=1

β jk(rηk + wk)e
−iθ − iν(rη j + w j )

]

− λ

n

n∑

j=1

[

aλ
j (rη j + w j ) + bλ

j

n∑

k=1

β jk(rηk + wk)e
−iθ − iν(rη j + w j )

]

= 0, j = 1, . . . , n

F2(w, r , ν, θ, λ) :=
n∑

j=1

[

aλ
j (rη j + w j ) + bλ

j

n∑

k=1

β jk(rηk + wk)e
−iθ − iν(rη j + w j )

]

= 0

F3(w, r , ν, θ, λ) := (r2 − 1)‖η‖22 + r
n∑

k=1

ηk(wk + wk) + ‖w‖22 = 0

(2.26)

is solvable for some value of w = (w1, . . . , wn)
T ∈ (X1)C, ν > 0, r ≥ 0 and θ ∈ [0, 2π).

Set F1 = (F1,1, . . . , F1,n)T , and define F : (X1)C × R
4 �→ (X1)C × C × R by F =

(F1,1, . . . , F1,n, F2, F3)T .
We first obtain that F(w, r , ν, θ, λ) = 0 has a unique solution for λ = 0.

Lemma 2.6 Assume that r̃1−r̃2 > 0, where r̃1 and r̃2 are defined in (2.19). Then the following
equation

{
F(w, r , ν, θ, 0) = 0
w ∈ (X1)C, r ≥ 0, ν ≥ 0, θ ∈ [0, 2π] (2.27)

has a unique solution (w0, r0, ν0, θ0), where

w0 = 0, r0 = 1, θ0 = arccos (−̃r1/̃r2) , ν0 =
√
r̃22 − r̃21 . (2.28)

Proof From (2.26), we see that F1(w, r , ν, θ, 0) = 0 if and only if w = w0 = 0. This,
combined with F3(w, r , ν, θ, 0) = 0, implies that r = r0 = 1.

Substituting w = w0 and r = r0 into F2(w, r , ν, θ, 0) = 0, we have

n∑

j=1

[

a0jη j + b0j

n∑

k=1

β jkηke
−iθ − iνη j

]

= 0. (2.29)
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Then (2.29) has a solution (θ, ν), where θ ∈ [0, 2π ], ν ≥ 0, if and only if
{
r̃1 + r̃2 cos θ = 0,

ν + r̃2 sin θ = 0,
(2.30)

where r̃1 and r̃2 are defined in (2.19).
Since r̃1 − r̃2 > 0 and r̃1 + r̃2 < 0 from (2.23), we have

r̃2 < min {̃r1, −̃r1} ≤ 0 and − 1 < −̃r1/̃r2 < 1.

This, combined with (2.30), implies

θ = θ0 = arccos (−̃r1/̃r2) , ν = ν0 =
√
r̃22 − r̃21 .

This completes the proof. ��

Now, we solve F = 0 for a small λ.

Theorem 2.7 Assume that r̃1 − r̃2 > 0 and λ ∈ (0, λ2], where λ2 is sufficiently small.
Then there exists a continuously differentiable mapping λ �→ (wλ, rλ, νλ, θλ) from [0, λ2] to
(X1)C × R

3 such that (wλ, rλ, νλ, θλ) is the unique solution of the following problem
{
F(w, r , ν, θ, λ) = 0

w ∈ (X1)C, r ≥ 0, ν > 0, θ ∈ [0, 2π)
(2.31)

for λ ∈ (0, λ2].

Proof Let T (χ , κ, ε, ϑ) = (T1,1, . . . , T1,n, T2, T3)T : (X1)C × R
3 �→ (X1)C × C × R be

the Fréchet derivative of F with respect to (w, r , ν, θ) at (w0, r0, ν0, θ0, 0). Thus, we have

T1(χ , κ, ε, ϑ) =
⎛

⎝
n∑

j=1

α1 jχ j , . . . ,

n∑

j=1

αnjχ j

⎞

⎠

T

,

T2(χ , κ, ε, ϑ) =
n∑

j=1

a0jχ j + e−iθ0
n∑

j=1

n∑

k=1

β jkb
0
jχk − iν0

n∑

j=1

χ j − iε − ĩr2e
−iθ0ϑ,

T3(χ , κ, ε, ϑ) =
n∑

j=1

η j (χ j + χ j ) + 2κ‖η‖22,

(2.32)

where χ = (χ1, . . . , χn)
T ∈ (X1)C. A direct computation implies that T is a bijection from

(X1)C × R
3 to (X1)C × C × R. It follows from the implicit function theorem that there

exists λ2 > 0 and a continuously differentiable mapping λ �→ (wλ, rλ, νλ, θλ) from [0, λ2]
to (X1)C × R

3 such that (wλ, rλ, νλ, θλ) satisfies (2.31).
Next, we prove the uniqueness of the solution of (2.31). Actually, we only need to

verify that if (wλ, rλ, νλ, θλ) satisfies (2.31), then
(
wλ, rλ, νλ, θλ

) → (w0, r0, ν0, θ0) =
(0, 1, ν0, θ0) as λ → 0. Note that θλ ∈ [0, 2π ], and |νλ| is also bounded for λ ∈ (0, λ̂1]
from Lemma 2.4. Then we see that, for any sequence {λl}∞l=1 satisfying liml→∞ λl = 0,
there exists a subsequence

{
λlq
}∞
q=1 (we still use {λl}∞l=1 for convenience), θ

0 ∈ [0, 2π] and
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ν0 ≥ 0 such that liml→∞ θλl = θ0 and liml→∞ νλl = ν0. As is proved in Lemma 2.4 (see
the proof between (2.13) and (2.18)), we see that

lim
l→∞ rλl = r0 = 1, lim

l→∞ wλl = w0 = 0.

Taking the limits of F2(wλl , rλl , νλl , θλl , λl) = 0 in (2.26) as l → ∞, we have

n∑

j=1

[

a0jη j + b0j

n∑

k=1

β jkηke
−iθ0 − iν0η j

]

= 0,

which yields θ0 = θ0 and ν0 = ν0, Therefore,
(
wλ, rλ, νλ, θλ

) → (w0, r0, ν0, θ0) as λ → 0.
This completes the proof. ��

The following result is derived directly from Theorem 2.7.

Theorem 2.8 Assume that r̃1 − r̃2 > 0 and λ ∈ (0, λ2], where λ2 is sufficiently small. Then
the following equation

{
�(λ, iν, τ )ψ = 0
ν > 0, τ ≥ 0, ψ(�= 0) ∈ C

n

has a solution (ν, τ,ψ), if and only if

ν = νλ, ψ = κψλ, τ = τλ,l = θλ + 2lπ

νλ

, l = 0, 1, 2, · · · , (2.33)

where ψλ = rλη + wλ, κ is a nonzero constant, and wλ, rλ, θλ, νλ are defined in Theorem
2.7.

At the end of this subsection, we consider the adjoint eigenvalue problem of (2.11), which
is used in the next subsection for Hopf bifurcation analysis. For ψ, ψ̃ ∈ C

n , we have

〈ψ̃,�(λ, iν, τ )ψ〉 = 〈�̃(λ, iν, τ )ψ̃,ψ〉, (2.34)

where

�̃(λ, iν, τ ) = AT + λ diag
(
aλ
j

)
+ λBT diag(bλ

j )e
iντ + iλν,

�̃(λ, iν, τ )ψ̃ = AT ψ̃ + λ diag
(
aλ
j

)
ψ̃ + λBT diag(bλ

j )ψ̃eiντ + iλνψ̃ .

Here �̃(λ, iν, τ ) is the conjugate transpose of �(λ, iν, τ ). Similar to the study of (2.24), we
can conclude that if the corresponding adjoint equation

AT ψ̃ + λ diag
(
aλ
j

)
ψ̃ + λBT diag(bλ

j )ψ̃eiθ̃ + iλ̃νψ̃ = 0, ψ̃(�= 0) ∈ C
n (2.35)

is solvable for some value of ν̃ > 0, θ̃ ∈ [0, 2π), then

�̃ (λ, ĩν, τ̃l) ψ̃ = 0, where τ̃l = θ̃ + 2lπ

ν̃
, l = 0, 1, 2, · · · .

Similar to Theorem 2.7, we can show that there is a unique solution (̃ν, θ̃ , ψ̃) of (2.35) with
ψ̃(�= 0) ∈ C

n when λ is small.
For all x = (x1, . . . , xn)T ∈ R

n ,

x = γ̃ (1, 1, . . . , 1)T + ỹ,
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where

γ̃ =
n∑

j=1

η j x j ∈ R and ỹ ∈ X̃1 =
⎧
⎨

⎩
(x1, . . . , xn)

T ∈ R
n :

n∑

j=1

η j x j = 0

⎫
⎬

⎭
.

Ignoring a scalar factor, we see that ψ̃ in (2.35) can be represented as

ψ̃ = r̃(1, 1, . . . , 1)T + w̃, w̃ ∈ (
X̃1
)
C

, r̃ ≥ 0

‖ψ̃‖22 = r̃2n + r̃
n∑

j=1

(w̃ j + w̃ j ) + ‖w̃‖22 = n.
(2.36)

Plugging (2.36) into Eq. (2.35), we obtain that the following system is equivalent to (2.35),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃1, j (w̃, r̃ , ν̃, θ̃ , λ) :=
n∑

k=1

αk j w̃k + λ

[

aλ
j (̃r + w̃ j ) +

n∑

k=1

βk j b
λ
k (̃r + w̃k)e

iθ̃ + ĩν(̃r + w̃ j )

]

−λ

n∑

j=1

η j

[

aλ
j (̃r + w̃ j ) +

n∑

k=1

βk j b
λ
k (̃r + w̃k)e

iθ̃ + ĩν(̃r + w̃ j )

]

= 0,

F̃2(w̃, r̃ , ν̃, θ̃ , λ) :=
n∑

j=1

η j

[

aλ
j (̃r + w̃ j ) +

n∑

k=1

βk j b
λ
k (̃r + w̃k)e

iθ̃ + ĩν(̃r + w̃ j )

]

= 0,

F̃3(w̃, r̃ , ν̃, θ̃ , λ) := (̃r2 − 1)n + r̃
n∑

j=1

(w̃ j + w̃ j ) + ‖w̃‖22 = 0,

(2.37)

where w̃ = (w̃1, . . . , w̃n)
T ∈ (

X̃1
)
C

, ν̃ > 0, r̃ ≥ 0 and θ̃ ∈ [0, 2π). Set F̃1 =
(F̃1,1, . . . , F̃1,n)T , and define F̃ : (X̃1)C × R

4 �→ (X̃1)C × C × R by

F̃ = (F̃1,1, . . . , F̃1,n, F̃2, F̃3)
T .

A direct calculation implies that

F̃(w̃0, r̃0, ν̃0, θ̃0, 0) = 0,

where

w̃0 = 0, r̃0 = 1, θ̃0 = arccos (−̃r1/̃r2) , ν̃0 =
√
r̃22 − r̃21 , (2.38)

and r̃1 and r̃2 are defined in (2.19).
Therefore, we obtain the following result similar to Theorem 2.7 and Theorem 2.8, and

here we omit the proof.

Theorem 2.9 Assume that r̃1 − r̃2 > 0 and λ ∈ [0, λ2), where λ2 is sufficiently small. Then
the following two statements hold.

(i) There exists a continuously differentiable mapping λ �→ (w̃λ, r̃λ, ν̃λ, θ̃λ) from [0, λ2]
to (X̃1)C × R

3 such that F̃(w̃λ, r̃λ, ν̃λ, θ̃λ, λ) = 0. Moreover, for λ ∈ [0, λ2],
(w̃λ, r̃λ, ν̃λ, θ̃λ) is the unique solution of the following problem

{
F̃(w̃, r̃ , ν̃, θ̃ , λ) = 0,

w̃ ∈ (X1)C, r̃ ≥ 0, ν̃ > 0, θ̃ ∈ [0, 2π).
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(i i) For each λ ∈ (0, λ2], the following equation
{

�̃(λ, ĩν, τ̃ )ψ̃ = 0
ν̃ > 0, τ̃ ≥ 0, ψ̃(�= 0) ∈ C

n

has a solution (̃ν, τ̃ , ψ̃), if and only if

ν̃ = ν̃λ, ψ̃ = κ̃ψ̃λ, τ̃ = τ̃λ,l = θ̃λ + 2lπ

ν̃λ

, l = 0, 1, 2, · · · ,

where ψ̃λ = r̃λ(1, 1, . . . , 1)T + w̃λ, κ̃ is a nonzero constant, and w̃λ, r̃λ, θ̃λ, ν̃λ are
defined in (i).

Remark 2.10 It follows from Theorem 2.8 that 0 is an eigenvalue of�
(
λ, iνλ, τλ,l

)
, where νλ

and τλ,l are also defined inTheorem2.8.Noticing that �̃(λ, iν, τ ) is the conjugate transpose of
�(λ, iν, τ ), we see that 0 is also an eigenvalue of �̃(λ, iν, τ ). From the uniqueness of

(
ν̃λ, θ̃λ

)

in Theorem2.9, we obtain that νλ = ν̃λ and θλ = θ̃λ, and consequently τ̃λ,l = τλ,l .We remark
that the corresponding eigenfunction ψλ of �

(
λ, iνλ, τλ,l

)
with respect to eigenvalue 0 is

possibly different from ψ̃λ for �̃
(
λ, iνλ, τλ,l

)
.

2.3 Stability and Hopf Bifurcation

In this subsection,wefirst consider the stability of the positive equilibrium ud (or equivalently,
uλ) of model (1.4) when τ = 0. Note that we denote λ = 1/d throughout the paper, and then
the stability/instability of ud for a large d is equivalent to that of uλ for a small λ.

Theorem 2.11 Assume that d ∈ [d̂,∞), where d̂ is sufficiently large. Then the positive
equilibrium ud of model (1.4) (obtained in Lemma 2.3) is locally asymptotically stable when
τ = 0.

Proof Note that λ = 1/d . To the contrary, there exists a positive sequence {λl}∞l=1 such that
liml→∞ λl = 0, and, for l ≥ 1, the corresponding eigenvalue problem

Aψ + λl diag
(
aλl
j

)
ψ + λl diag

(
bλl
j

)
Bψ = λlμψ (2.39)

has an eigenvalue μλl with Reμλl ≥ 0, where aλl
j and bλl

j are defined in (2.9). Ignoring a
scalar factor, the associated eigenfunction ψλl

can be represented as

ψλl
= rλlη + wλl , wλl ∈ (X1)C , rλl ≥ 0,

‖ψλl
‖22 = r2λl‖η‖22 + rλl

n∑

j=1

η j (wλl , j + wλl , j ) + ‖wλl‖22 = ‖η‖22,
(2.40)

Noticing that {|μλl |}∞l=1 is bounded fromLemma2.4,we see that there exists a subsequence{
λlq
}∞
q=1 (we still use {λl}∞l=1 for convenience) such that liml→∞ μλl = μ∗ withReμ∗ ≥ 0.

As in the proof of Lemma 2.4 (see the proof between (2.13) and (2.18)), we have

μλl rλl =
n∑

j=1

[

aλl
j (rλlη j + wλl , j ) + bλl

j

n∑

k=1

β jk(rλlηk + wλl ,k)

]

, (2.41)

and

lim
l→∞ rλl = 1, lim

l→∞ wλl = 0.
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Taking the limits of (2.41) on the both sides as l → ∞, we have

n∑

j=1

(

a0jη j + b0j

n∑

k=1

β jkηk

)

= μ∗.

It follows from (2.7) and (2.19) that

μ∗ = r̃1 + r̃2 < 0,

which contradicts the fact that Reμ∗ ≥ 0. This completes the proof. ��
In the following, we will prove that iνλ (obtained in Theorem 2.8) is simple, and the

transversality condition holds.

Lemma 2.12 Assume that r̃1 − r̃2 > 0 and λ ∈ (0, λ2], where λ2 is sufficiently small. Let

Sl(λ) :=
n∑

j=1

ψ̃λ, jψλ, j + τλ,l e
−iθλ

n∑

j=1

n∑

k=1

β jkψ̃λ, jψλ,kb
λ
j , (2.42)

where ψ̃λ, ψλ, τλ,l and θλ are defined in Theorems 2.8 and 2.9, respectively. Then
limλ→0 Sl(λ) �= 0 for l = 0, 1, 2, · · · .

Proof From Theorems 2.7-2.9, we obtain that bλ
j → b0j , θλ → θ0, τλ,l → (θ0 + 2lπ)

ν0
,

ψλ → η and ψ̃λ → (1, . . . , 1)T as λ → 0, where θ0 and ν0 are defined in (2.28). This,
combined with (2.30), implies that

lim
λ→0

Sl(λ) =
n∑

j=1

η j + (θ0 + 2lπ)

ν0
e−iθ0

⎛

⎝
n∑

j=1

n∑

k=1

β jkb
0
jηk

⎞

⎠ ,

= 1 + (θ0 + 2lπ)

ν0
e−iθ0 r̃2

= 1 + (θ0 + 2lπ)

⎛

⎝− r̃1√
r̃22 − r̃21

+ i

⎞

⎠ �= 0.

(2.43)

This completes the proof. ��
Theorem 2.13 Assume that r̃1 − r̃2 > 0 and λ ∈ (0, λ2], where λ2 is sufficiently small. Then
μ = iνλ is a simple eigenvalue of Aτλ,l (λ) for l = 0, 1, 2, · · · .
Proof Firstly, from Theorem 2.8, we have N

[
Aτλ,l (λ) − iνλ

] = Span
[
eiνλθψλ

]
, where

θ ∈ [−τλ,l , 0] and ψλ is defined in Theorem 2.8. Then, we show that

N
[
Aτλ,l (λ) − iνλ

]2 = N
[
Aτλ,l (λ) − iνλ

]
.

If φ ∈ N
[
Aτλ,l (λ) − iνλ

]2, then
[
Aτλ,l (λ) − iνλ

]
φ ∈ N

[
Aτλ,l (λ) − iνλ

] = Span
[
eiνλθψλ

]
,

and consequently, there is a constant κ such that
[
Aτλ,l (λ) − iνλ

]
φ = κeiνλθψλ,
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which yields

φ̇(θ) = iνλφ(θ) + κeiνλθψλ, θ ∈ [−τλ,l , 0
]
,

φ̇(0) =d Aφ(0) + diag
(
aλ
j

)
φ(0) + diag(bλ

j )Bφ(−τλ,l).
(2.44)

From the first equation of Eq. (2.44), we deduce that

φ(θ) = φ(0)eiνλθ + κθeiνλθψλ,

φ̇(0) = iνλφ(0) + κψλ.
(2.45)

Then, Eqs. (2.44) and (2.45) imply that

d�
(
λ, iνλ, τλ,l

)
φ(0) =d Aφ(0) + diag

(
aλ
j

)
φ(0) + diag(bλ

j )Bφ(0)e−iθλ − iνλφ(0)

=κ
(
ψλ + τλ,l e

−iθλ diag(bλ
j )Bψλ

)
.

(2.46)

It follows from Remark 2.10 that d�̃
(
λ, ĩνλ, τ̃λ,l

)
ψ̃λ = d�̃

(
λ, iνλ, τλ,l

)
ψ̃λ = 0. Then,

multiplying (2.46) by (ψ̃λ,1, . . . , ψ̃λ,n), we have

0 = 〈
d�̃

(
λ, iνλ, τλ,l

)
ψ̃λ,φ(0)

〉 = 〈
ψ̃λ, d�

(
λ, iνλ, τλ,l

)
φ(0)

〉

= κ

⎛

⎝
n∑

j=1

ψ̃λ, jψλ, j + τλ,l e
−iθλ,l

n∑

j=1

n∑

k=1

β jkψ̃λ, jψλ,kb
λ
j

⎞

⎠ = κSl(λ).

As a consequence of Lemma2.12,we get κ = 0 forλ ∈ (0, λ2], whereλ2 is sufficiently small.
This leads to φ ∈ N

[
Aτλ,l (λ) − iνλ

]
, and consequently, λ = iνλ is a simple eigenvalue of

Aτλ,l for l = 0, 1, 2, · · · . ��

Note that μ = iνλ is a simple eigenvalue of Aτλ,l , and by using the implicit function
theorem we can show that there exists a neighborhood On × Dn × Hn of

(
τλ,l , iνλ,ψλ

)
and

a continuously differentiable function (μ(τ),ψ(τ )) : On → Dn × Hn such that for each
τ ∈ On, the only eigenvalue of Aτ (λ) in Dn is μ(τ), and

d�(λ,μ(τ), τ )ψ(τ )

:= d Aψ(τ ) + diag
(
aλ
j

)
ψ(τ ) + diag(bλ

j )Bψ(τ )e−μ(τ)τ − μ(τ)ψ(τ ) = 0,
(2.47)

where μ
(
τλ,l

) = iνλ and ψ
(
τλ,l

) = ψλ. Then, we show that the following transversality
condition holds.

Theorem 2.14 Assume that r̃1 − r̃2 > 0 and λ ∈ (0, λ2], where λ2 is sufficiently small. Then

dRe
[
μ
(
τλ,l

)]

dτ
> 0, l = 0, 1, 2, · · · .

Proof Differentiating Eq. (2.47) with respect to τ at τ = τλ,l , we obtain

−dμ
(
τλ,l

)

dτ

(
τλ,l diag(b

λ
j )Bψλe

−iθλ + ψλ

)

+d�
(
λ, iνλ, τλ,l

) dψ
(
τλ,l

)

dτ
− iνλ diag(b

λ
j )Bψλe

−iθλ = 0.
(2.48)
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Note that

〈

ψ̃λ, d�
(
λ, iνλ, τλ,l

) dψ
(
τλ,l

)

dτ

〉

=
〈

d�̃
(
d, iνλ, τλ,l

)
ψ̃λ,

dψ
(
τλ,l

)

dτ

〉

= 0. (2.49)

Then, multiplying Eq. (2.48) by (ψ̃λ,1, . . . , ψ̃λ,n), we have

dμ
(
τλ,l

)

dτ
= −iνλ

∑n
j=1

∑n
k=1 β jkψ̃λ, jψλ,kbλ

j e
−iθλ

∑n
j=1 ψ̃λ, jψλ, j + τλ,l

∑n
j=1

∑n
k=1 β jkψ̃λ, jψλ,kbλ

j e
−iθλ

= 1

|Sl(λ)|2

⎡

⎣−iνλe
−iθλ

⎛

⎝
n∑

j=1

ψ̃λ, jψλ, j

⎞

⎠
n∑

j=1

n∑

k=1

β jkψ̃λ, jψλ,kb
λ
j

−iνλτλ,l

∣
∣
∣
∣
∣
∣

n∑

j=1

n∑

k=1

β jkψ̃λ, jψλ,kb
λ
j

∣
∣
∣
∣
∣
∣

2
⎤

⎥
⎦ .

(2.50)

It follows from Theorems 2.7-2.9 that bλ
j → b0j , θλ → θ0, τλ,l → (θ0 + 2lπ)

ν0
, ψλ → η

and ψ̃λ → (1, . . . , 1)T as λ → 0, where θ0 and ν0 are defined in (2.28). Then we see from
(2.30) that

lim
λ→0

dRe
[
μ
(
τλ,l

)]

dτ
= ν20

limλ→0 |Sl(λ)|2 = r̃22 − r̃21
limλ→0 |Sl(λ)|2 > 0.

This completes the proof. ��

Note that λ = 1/d throughout the paper. Then, from Theorems 2.5, 2.8, 2.11, 2.13 and
2.14, we have the following result on the threshold dynamics of model (1.4).

Theorem 2.15 Assume that d > d̂ , where d̂ is sufficiently large. Let ud be the positive
equilibrium of model (1.4) obtained in Lemma 2.3. Then the following statements hold.

(i) If r̃1 − r̃2 < 0, where r̃1 and r̃2 are defined in (2.19), then the positive equilibrium ud is
locally asymptotically stable for τ ∈ [0,∞).

(i i) If r̃1 − r̃2 > 0, then there exists τ d0 > 0 such that the positive equilibrium ud of (1.4)
is locally asymptotically stable when τ ∈ [

0, τ d0
)
, and unstable when τ ∈ (

τ d0 ,∞)
.

Moreover, when τ = τ d0 , system (1.4) undergoes a Hopf bifurcation at ud .

3 Applications

In this section, we apply the obtained results in Sect. 2 to two concrete examples and give
some numerical simulations to illustrate the theoretical results.
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3.1 Example I

In this subsection, we consider model (1.4), where the nonlinearities f j (u, v) is defined in
(1.6):
⎧
⎪⎨

⎪⎩

du j

dt
= d

n∑

k=1

α jkuk + u j

[

m j − a j u j − (1 − a j )

n∑

k=1

β jkuk(t − τ)

]

, t > 0, j = 1, . . . , n,

u(t) = ψ(t) ≥ 0, t ∈ [−τ, 0],
(3.1)

where the connection matrix (α jk)n×n is irreducible and quasi-positive (or respectively,
essentially nonnegative). Here for simplicity, we assume that a j > 0 for j = 1, . . . , n,
which implies that the local aggregation has negative effect. If

n∑

j=1

n∑

k=1

(1 − a j )β jkη jηk +
n∑

j=1

a jη
2
j > 0 and

n∑

j=1

m jη j > 0, (3.2)

then

g(w) =
n∑

j=1

f j (wη j , w
∑n

k=1 β jkηk)

w
=

n∑

j=1

η j

[

m j − a jwη j − (1 − a j )w

n∑

k=1

β jkηk

]

is strictly decreasing in w ∈ (0,∞), and

M = lim
w→0

g(w) =
n∑

j=1

m jη j > 0, N = lim
w→∞ g(w) = −∞.

Therefore, assumptions (H1) and (H2) are satisfied. Then, from Lemma 2.3 and Theorem
2.15, we have the following result.

Proposition 3.1 Assume that (α jk)n×n is irreducible and quasi-positive, (3.2) holds, and
d > d̂, where d̂ is sufficiently large. Then there exists a positive equilibrium ud of (3.1)
satisfying limd→∞ ud = c0η, where η is defined in (1.9) and

c0 =
∑n

j=1 m jη j
∑n

j=1
∑n

k=1(1 − a j )β jkη jηk +∑n
j=1 a jη

2
j

> 0.

Moreover, the following two statements hold.

(i) If

r̃1 − r̃2 =
n∑

j=1

m jη j − 2c0

n∑

j=1

a jη
2
j < 0,

then the positive equilibrium ud is locally asymptotically stable for τ ∈ [0,∞).
(i i) If

r̃1 − r̃2 =
n∑

j=1

m jη j − 2c0

n∑

j=1

a jη
2
j > 0,

then there exists τ d0 > 0 such that the positive equilibrium ud of (3.1) is locally asymp-
totically stable when τ ∈ [

0, τ d0
)
, and unstable when τ ∈ (

τ d0 ,∞)
. Moreover, when

τ = τ d0 , system (3.1) undergoes a Hopf bifurcation at ud .
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Fig. 1 A sample water network
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Fig. 2 The case r̃1 − r̃2 < 0. Here we only plot two patches for simplicity, d = 7, (a1, . . . , a6) =
(1.68, 0.84, 1.12, 0.56, 1.40, 0.84), and r̃1 − r̃2 = −39.956. (Left): τ = 0.01; (Right): τ = 20

Now we give some numerical simulations to support our theoretical results for model (3.1).
We consider the communities in a landscape, connected by a water network, see Fig. 1, and
more explanation for this network can be found in [24].

Then we choose the asymmetric connection matrix A = (α jk), B = (β jk) and (m j ) as
follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3 1 1 0 0 0
2 −1 0 0 0 0
1 0 −4 2 0 0
0 0 3 −9 1 2
0 0 0 4 −5 1
0 0 0 3 4 −3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2 2 0 0 0
4 2 0 0 0 0
2 0 2 4 0 0
0 0 6 2 2 4
0 0 0 8 2 2
0 0 0 6 8 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.3)

and

(m1, . . . ,m6) = (35, 15, 30,−15, 10, 15). (3.4)

It follows from Proposition 3.1 that when r̃1 − r̃2 < 0, the positive equilibrium is locally
asymptotically stable for all τ ≥ 0. Here we numerically illustrate this phenomenon for a
large and a small delay, and show that the solution converges to the positive equilibrium, see
Fig. 2.
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Fig. 3 The case r̃1 − r̃2 > 0. Here we only plot two patches for simplicity, d = 7, (a1, . . . , a6) =
(0.2, 0.2, 0.4, 0.2, 0.1, 0.3), and r̃1 − r̃2 = 16.472. (Left): τ = 0.01; (Right): τ = 0.2

Moreover, we also numerically show that a large delay τ canmake the positive equilibrium
unstable through aHopf bifurcation, and the solution converges to a positive periodic solution
when r̃1 − r̃2 > 0, see Fig. 3.

3.2 Example II

Now, we consider model (1.4), where the nonlinearities f j (u, v) is defined in (1.7):

⎧
⎪⎨

⎪⎩

du j

dt
= d

n∑

k=1

α jkuk + p ju j (t − τ)e−a j u j (t−τ) − δ j u j , t > 0, j = 1, . . . , n,

u(t) = ψ(t) ≥ 0, t ∈ [−τ, 0],
(3.5)

where p j , δ j , a j > 0 for j = 1, . . . , n, and the connection matrix (α jk)n×n is irreducible
and quasi-positive. If

n∑

j=1

p jη j >

n∑

j=1

δ jη j , (3.6)

then

g(w) =
n∑

j=1

f j (wη j , wη j )

w
=

n∑

j=1

(
p jη j e

−a jwη j − δ jη j
)

is strictly decreasing in w ∈ (0,∞), and

M = lim
w→0

g(w) =
n∑

j=1

(p jη j − δ jη j ) > 0, N = lim
w→∞ g(w) = −

n∑

j=1

δ jη j < 0.

Therefore, assumptions (H1) and (H2) are satisfied.
Then from Lemma 2.2 and Theorem 2.15, we have the following result.

Proposition 3.2 Assume that the positive parameters p j , δ j , a j ( j = 1, . . . , n) satisfy (3.6),
(α jk)n×n is irreducible and quasi-positive, and d > d̂ , where d̂ is sufficiently large. Then
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1 2 6 7

3 4 5 8 9

Fig. 4 Network schematic of two 2 × 2 grids, connected by a single “ bridge” patch

there exists a positive equilibrium ud of (3.5) satisfying limd→∞ ud = c0η, where η is defined
in (1.9), and c0 satisfies

n∑

j=1

p jη j e
−c0a jη j =

n∑

j=1

δ jη j . (3.7)

Moreover, the following two statements hold.

(i) If

r̃1 − r̃2 = −2
n∑

j=1

δ jη j + c0

n∑

j=1

a j p jη
2
j e

−c0a jη j < 0,

then the positive equilibrium ud is locally asymptotically stable for τ ∈ [0,∞).
(i i) If

r̃1 − r̃2 = −2
n∑

j=1

δ jη j + c0

n∑

j=1

a j p jη
2
j e

−c0a jη j > 0,

then exists τ d0 > 0 such that the positive equilibrium ud of (3.5) is locally asymptotically
stable when τ ∈ [

0, τ d0
)
, and unstable when τ ∈ (

τ d0 ,∞)
. Moreover, when τ = τ d0 ,

system (3.5) undergoes a Hopf bifurcation at ud .

Finally, we give some numerical simulations to demonstrate our theoretical results for
model (3.5). Here we consider a network of two 2× 2 grids, connected by a single “ bridge”
patch, see Fig. 4.

Then we choose the asymmetric connection matrix A = (α jk) and (a j ) as follows:

α12 = α13 = α24 = α31 = α42 = α45 = a58 = 1,

α67 = α68 = α76 = α86 = α89 = α98 = 1,

α21 = α34 = α85 = α97 = 2, α43 = α79 = 3,

α54 = 4, other α jk( j �= k) = 0,

(a1, . . . , a9) = (2, 2, 2, 2, 2, 2, 2, 2, 2).

For the case r̃1 − r̃2 < 0, we also choose a large and a small delay to numerically show that
the positive equilibrium is stable for all τ ≥ 0, see Fig. 5.
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Fig. 5 The case r̃1 − r̃2 < 0. Here we only plot two patches for simplicity, d = 5, (p1, . . . , p9) = (210,
214.2, 218.4, 222.6, 226.8, 231, 235.2, 239.4, 243.6), (δ1, . . . , δ9) = (20.8, 23.4, 26, 28.6, 31.2, 33.8, 36.4,
39, 41.6), and r̃1 − r̃2 = −0.51011. (Left): τ = 0.01; (Right): τ = 20
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Fig. 6 The case r̃1 − r̃2 > 0. Here we only plot two patches for simplicity, d = 5, (p1, . . . , p9) =
(450, 459, 468, 477, 486, 495, 504, 513, 522), (δ1, . . . , δ9) is the same as that in Fig. 5, and r̃1− r̃2 = 23.269.
(Left): τ = 0.01; (Right): τ = 0.1

Moreover, for r̃1− r̃2 > 0, we numerically show that a large delay τ can make the positive
equilibrium unstable through a Hopf bifurcation, and the solution converges to a positive
periodic solution, see Fig. 6.
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