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Abstract

We compare two finite difference schemes for Kolmogorov type of ordinary differential equations: Euler’s scheme
(a derivative approximation scheme) and an integral approximation (IA) scheme, from the view point of dynamical
systems. Among the topics we investigate are equilibria and their stability, periodic orbits and their stability, and
topological chaos of these two resulting nonlinear discrete dynamical systems.
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1. Introduction

Consider the scalar differential equation of the Kolmogorov type

ẋ = xf (x), (1.1)
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wheref isC1 mapping fromR+ into R with

f ′(x)<0 ∀x ∈ R+, f (x̄)= 0 for some x̄ >0. (1.2)

Almost all ODE models for the population growth of single species have the form of (1.1), and from
biological point of view, condition (1.2) is typical and standard.

When seeking numerical solutions of (1.1) on the unbounded interval[0,∞), Euler’s finite difference
scheme is frequently used, leading to the following difference equation:

xn+1 = xn + �xnf (xn). (1.3)

Here,xn = x(n�) with � being the uniform mesh. It is known that Euler’s method is based on the
approximation of the derivativex′(t)≈ [x(t + �) − x(t)]/� for small �. On the other hand, one can
rewrite (1.1) as

x(t + �)= x(t)e
∫ t+�
t f (x(s)) ds . (1.4)

Taking t = n� and using the approximation of the integral
∫ t+�
t

f (x(s))ds≈ f (x(t))� results in an
alternative finite difference scheme:

xn+1 = xne
�f (xn). (1.5)

We call (1.3) the Euler’s scheme and (1.5) the integral approximation scheme or simply the IA scheme
for (1.1). We see that the same ODE can lead to different nonlinear discrete dynamical systems.

Taking the prototypef (x)=r(1−x/K) in (1.1) gives the well-known logistic equationẋ=rx(1−x/K),
the dynamics of which is quite simple: all positive solutions converge to the positive equilibriumx =K.
However, the corresponding Euler’s scheme is of the form

xn+1 = xn(a − bxn), (1.6)

which could demonstrate very complicated long-term behaviour (see, e.g.,[9, pp. 41–47]). This simple
example warns that one has to be careful when choosing a numeric scheme for a given ordinary differential
equation.

An immediate observation is that the interval[0,∞) is invariant under (1.5), but is not under (1.3).
On the other hand, in numerical analysis, it is known that approximations of integrals isgenerallymore
effective than approximations of derivatives. This makes one wonder if the IA scheme is any better than
the Euler’s scheme in terms of the long-term behaviour of the solution sequences of (1.3) and (1.5),
comparing with the solution of (1.1). Thus, it is interesting and worthwhile to compare these two schemes
from the view point of dynamical systems, and this is the right purpose of this paper. Among the topics of
investigation are equilibria and their stability (local and global), periodic doubling bifurcations and their
stability, and topological chaos, for the two nonlinear discrete dynamical systems (1.3) and (1.5) resulted
from the same differential equation (1.1). The topic of chaos is especially worth exploring, since although
there is no chaos in one or two-dimensional ordinary differential systems (ODEs), for discrete dynamical
systems, chaos can occur even in one-dimensional systems. Indeed, it has been shown that the Euler’s
scheme sometimes exhibits a very complicated dynamical behaviour[11]. For the chaotic behaviour of
Euler’s finite difference scheme for high-dimensional ODEs, see[7].
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2. Local and global stability

For convenience, let

F�(x)= x(1 + �f (x)), G�(x)= xe�f (x). (2.1)

We will discuss the dynamics of iterates ofF andG, respectively.
Under the assumption (1.2),F andG have two fixed pointsx = 0 and x̄. A direct calculation

shows that

F ′
�(0)= 1 + �f (0)>1, G′

�(0)= e�f (0) >1 (2.2)

and

F ′
�(x̄)= 1 + �x̄f ′(x̄), G′

�(x̄)= 1 + �x̄f ′(x̄). (2.3)

Thus, we immediately have the following local stability result.

Theorem 2.1. (i) Under the assumption(1.2), the fixed point0 is a repeller ofF� andG� for all �>0;
(ii) The positive fixed point̄x is locally stable for bothF� andG� if 0< �< �0 and unstable if�> �0,
where

�0 = − 2

x̄f ′(x̄)
. (2.4)

In general, global stability is more demanding, and it is usually in respect to some invariant set ofF�

andG�. A typical condition to ensure an invariant set for maps is the so called unimodal property. The
following lemma addresses this property forF� andG�.

Lemma 2.2. In addition to(1.2),assume that there exists a constant�0>0 andx0>0 such that

f ′(x)� − 1

�0
∀x >x0 and f ′′(x)�0 in [0,∞). (2.5)

Then for any�>0, F� andG� are unimodal onR+. That is, for any�>0, there existxm1(�)>0 and
xm2(�)>0such thatF�(x) andG�(x) increase on[0, xm1(�)] and[0, xm2(�)], respectively,and decrease
on [xm1(�),+∞) and[xm2(�),+∞), respectively.

Proof. We first compute the derivatives ofF� andG�(x) as below

F ′
�(x)= 1 + �f (x)+ �xf ′(x), (2.6)

G′
�(x)= e�f (x)[1 + �xf ′(x)]. (2.7)

By (1.2), (2.5) and (2.6), we know that there existsxm1(�)>0 such thatF ′
�(x)>0 for x <xm1(�), and

F ′
�(x)<0 for x >xm1(�), giving the unimodal property ofF ′

�(x) on R+. Similarly, from (1.2), (2.5)
and (2.7), it follows that there existsxm2(�)>0 such thatG′

�(x)>0 for x <xm2(�), andG′
�(x)<0 for

x >xm2(�), implying thatG�(x) is also unimodal onR+. This completes the proof. �
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Denote byM1(�) andM2(�) the maximum values ofF�(x) andG�(x) on R+, respectively. By the
proof of Lemma 2.2, we know

M1(�)= F�(xm1(�)), M2(�)=G�(xm2(�)), (2.8)

where the maximum pointsxm1(�) andxm2(�) satisfy, respectively, the following equations:

f (xm1(�))+ xm1(�)f
′(xm1(�))= −1

�
, xm2(�)f

′(xm2(�))= −1

�
. (2.9)

Let

h1(x)� f (x)+ xf ′(x), h2(x)� xf ′(x).

Then, by (2.5),hi(x), i= 1,2, are decreasing functions. Hence, as functions of�, xm1(�) andxm2(�) are
decreasing. Therefore, we have

Lemma 2.3. Under the assumptions of Lemma2.2, let �1 = − 1
x̄f ′(x̄) , then

x̄�xmi(�), i = 1,2 (2.10)

if and only if0< ���1.

Proof. The conclusion follows from the above observation onhi(x), i = 1,2, and the fact that

hi(x̄)= x̄f ′(x̄)= − 1

�1
, i = 1,2. �

For any�>0, letxF (�) be the unique positive solution of the equation

1 + �f (x)= 0.

Lemma 2.4. Under the assumptions of Lemma2.2,we have

(i) for i = 1,2,Mi(�) is monotonically increasing and continuously differentiable on� ∈ [�1,+∞),
and

Mi(�1)= x̄, lim
�→+∞Mi(�)= +∞;

(ii) xF (�) is monotonically decreasing and continuously differentiable on�>0,and

xF (0)= +∞, lim
�→+∞ xF (�)= x̄.

Proof. LetM ′
i (�) denote the derivative ofMi(�) with respect to�, i = 1,2. It follows from Lemma 2.3

that for�> �1, xmi(�)< x̄. Hence, for such�> �1

M ′
1(�)= xm1(�)f (xm1(�))>0, M ′

2(�)= xm2(�)f (xm2(�))e
�f (xm2(�)) >0. (2.11)

So (i) follows. The proof of (ii) is similar. �
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By Lemma 2.4, there exists a unique�2> �1 such that

M1(�2)= xF (�2). (2.12)

In terms of�1 and�2, we have the following results on invariant sets.

Lemma 2.5. Under the assumptions of Lemma2.2,we have the following:

(i) For 0< �< �1, F� has an invariant interval[0, xF (�)]. For �1< �< �2, F� has two invariant inter-
vals[0, xF (�)] andI1 � [F�(M1(�)),M1(�)]. Furthermore, I1 is an absorbing interval in the sense
that for anyx ∈ (0, xF (�)], there exists an integerk >0 such thatFk� (x) ∈ I1.

(ii) For all �>0,R+ is always invariant underG�, while for �> �1, I2 � [G�(M2(�)),M2(�)] is also
invariant underG� and I2 is an absorbing interval in the sense that for anyx >0, there exists an
integerk >0 such thatGk�(x) ∈ I2.

From the above lemmas, we immediately obtain the following results on the global stability of the
mapsF� andG�.

Theorem 2.6. Under the assumptions of Lemma2.2, if 0< ���1, then

(i) F� is global asymptotically stable on(0, xF (�)], that is, for anyx ∈ (0, xF (�)], Fn� (x) converges to
x̄ asn → ∞, and the convergence is eventually monotone.

(ii) G� is global asymptotically stable onR+, that is, for anyx >0,Gn�(x) converges tōx asn → ∞,
and the convergence is eventually monotone.

Note that in the above theorem, while we can only establish the convergence ofFn� (x) for x∈(0, xF (�)],
the convergence ofGn�(x) is for all x ∈ R+, showing an advantage of the IA scheme.

Next, we consider�> �1. Obviously,x̄�M1(�)<M2(�) in this case. Define

gi(�)� �Mi(�)f
′(Mi(�)) for � ∈ [�1,+∞), i = 1,2. (2.13)

Then it is easily verified that

gi(�1)= −1, lim
�→∞ gi(�)= −∞,

gi(�0)< �0x̄f
′(x̄)= −2, g1(�)> g2(�),

g′
i(�)= [Mi(�)+ �M ′

i (�)]f ′(Mi(�))+ �Mi(�)f
′′(Mi(�))M

′
i (�)<0.

Thus, there exist constants�F and�G with �1< �G��F < �0 such that

g1(�F )= −2, g2(�G)= −2. (2.14)

Let

�0
F = min{�F , �2}, (2.15)

where�2 is given by (2.12).
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Theorem 2.7. Under the assumptions of Lemma2.2and assumingf ∈ C2, the following conclusions
hold:

(i) If �1< �< �0
F , then for anyx ∈ (0, xF (�)), F n� (x) also converges tōx asn → ∞, but the conver-

gence is eventually oscillatory aroundx̄.
(ii) If �1< �< �G, then for anyx >0,Gn�(x) also converges tōx asn → ∞ but the convergence is

eventually oscillatory around̄x.
Here�0

F and�G are defined as in(2.14)and(2.15).

Proof. When�1< �< �2, from Lemma 2.5,I1 andI2 are absorbing interval ofF� andG�, respectively.
It suffices to prove the theorem forx ∈ I1 andI2, respectively.

For (i), fix x ∈ I1 = [F�(M1(�)),M1(�)]. Taking the Liapunov function

V (xn)= (xn − x̄)2,

wherexn = Fn� (x), we have

V (xn+1)− V (xn)= (xn+1 − x̄)2 − (xn − x̄)2

= (xn+1 − xn)(xn+1 + xn − 2x̄)

= �xnf (xn)(�xn(f (xn)− f (x̄))+ 2(xn − x̄))

= �xnf (xn)(xn − x̄)(�xnf
′(�n)+ 2),

where�n is in between̄x andxn. Since

�xnf (xn)(xn − x̄)�0,

we see that

V (xn+1)− V (xn)�0,

provided that

�xnf
′(�n)+ 2>0.

Sincexn ∈ I1 by the invariant ofI1, a sufficient condition for the last equation to hold is

g1(�)� �M1(�)f
′(M1(�))>− 2.

Thus, if�1< �< �0
F , then

V (xn+1)�V (xn).

That is,{V (xn)} is a nonincreasing and bounded sequence, thus it converges. Let

lim
n→∞V (xn)= A.

We now claim thatA = 0. Indeed, ifA>0, then there exists a integerN such that for anyn>N ,
we have

|xn − x̄|>√A/2.
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Sincexn ∈ I1, from the above inequalities and (2.5), forn>N , we have

V (xn+1)− V (xn)

= �xnf (xn)(xn − x̄)(�xnf
′(�n)+ 2)

��xn max{−f (x̄ −√
A/2), f (x̄ +√

A/2)}√A/2(�xnf ′(�n)+ 2)

��F�(M1(�))max{−f (x̄ −√
A/2), f (x̄ +√

A/2)}√A/2(�M1(�)f
′(M1(�))+ 2).

Lettingn → ∞, we have

0< �F�(M1(�))max{−f (x̄ −√
A/2), f (x̄ +√

A/2)}√A/2(�M1(�)f
′(M1(�))+ 2)<0

for �1< �< �0
F . A contradiction. This shows thatA= 0, and soxn → x̄ asn → ∞.

On the other hand,�> �1 guarantees that there exists a neighbourhood(x̄ − �0, x̄ + �0) of x̄ on which
F�(x) is decreasing, and thus,F�(x)> x̄ if x ∈ (x̄ − �0, x̄) andF�(x)< x̄ if x ∈ (x̄, x̄ + �0). Therefore,
the convergence ofxn to x̄ is in an eventually oscillatory wayn → ∞.

For (ii), we take the Liapunov function

V (xn)= (ln xn − ln x̄)2.

Then

V (xn+1)− V (xn)= (ln xn+1 − ln xn)(ln xn+1 + ln xn − 2 ln x̄)

= �f (xn)[2(ln xn − ln x̄)+ �(f (eln xn)− f (eln x̄ ))]
= �f (xn)[2(ln xn − ln x̄)+ �e�nf (e�n)(ln xn − ln x̄)]
= �f (xn)(ln xn − ln x̄)[2 + ��nf

′(�n)],
sincef (eln x̄ )= f (x̄)= 0, where�n is in between ln̄x and lnxn and so�n = e�n is in between̄x andxn.

The rest of the proof is in a way similar to the proof of (i).�

This theorem identifies the ranges of mesh� within which, the Euler’s scheme and the IA scheme each
converges to the positive fixed pointx̄, in eventually oscillatory way. Since�G��F ��0

F , the Euler’s
scheme is better than IA scheme if the global stability ofx̄ is concerned. However, the basin for the
former is only a finite interval(0, x�] while the basin for the later is the infinite intervalR+.

3. Period doubling bifurcation and negative Schwarzian derivative

In Section 2, we have seen that the range of the mesh� for local stability of the positive fixed point̄x is
the same for bothF� andG� (the range for global stability may be different though). In this section, we
will see that for a class off , there is essentially difference betweenF� andG� on the period doubling
bifurcation, as well on the sign of Schwarzian derivative which plays an important role in one-dimensional
discrete dynamical systems.

Firstly, let us discuss period doubling bifurcation as the parameter� exceed the critical value�0, which
is given by (2.4). To this end, we need the following lemma from[10].
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Lemma 3.1(Robinson[10, p. 246, Theorem 3.1]). Assume thatg : R2 → R is aCr function jointly in
both variable withr�3,and that g satisfies the following conditions:

(i) The pointx0 is a fixed point fors = s0: g(x0, s0)= x0.
(ii) �g

�x (x0, s0)= −1.
(iii)

� �
[

�2g

�s�x
+ 1

2

(
�g

�s

)(
�2g

�x2

)]
(x0,s0)

<0.

(iv)

� �
(

1

6

�3g

�x3(x0, s0)

)
+
(

1

2

�2g

�x2 (x0, s0)

)2

�= 0.

Then, there is a period doubling bifurcation at(x0, s0).More specifically, there is a periodic orbit with
period2when s is in a small right neighbourhood ofs0. The stability type of the period2 orbit depends
on the sign of�: the period2 orbit is attracting if�>0; and it is repelling if�<0.

ForF� andG�, we can establish the following.

Theorem 3.2. Letf (x) beC3 such thatf (x̄)= 0, f ′(x̄)<0 for somex̄ >0 and�0 = − 2
x̄f ′(x̄) . Then

F ′
�0
(x̄)= −1, G′

�0
(x̄)= −1, (3.1)

�F = �G = x̄f ′(x̄)<0, (3.2)

�F = − 1

�F

(
f ′′(x̄)+ 1

3
x̄f ′′′(x̄)

)
+ 1

�2
F

(2f ′(x̄)+ x̄f ′′(x̄))2, (3.3)

�G = �F + �0f
′′(x̄)− 10

3x̄2 . (3.4)

Here�F , �G, �F and�G, are defined as in Lemma3.1but are, instead of g, for F and G respectively.

Proof. (3.1) is a direct result of (2.6)–(2.7) and the definition of�0. It is also easily seen

�F�

��

∣∣∣∣
(x̄,�0)

= �G�

��

∣∣∣∣
(x̄,�0)

= x̄f (x̄)= 0.

and

�2F�(x)

���x

∣∣∣∣
(x̄,�0)

= x̄f ′(x̄)= �2G�(x)

���x

∣∣∣∣
(x̄,�0)

.

So, we have�F = �G = x̄f ′(x̄)<0. A direct calculation shows that

F ′′′
� (x)|(x̄,�0) = 3�0f

′′(x̄)+ �0x̄f
′′′(x̄),

G′′′
� (x)|(x̄,�0) = 3�0f

′′(x̄)+ �0x̄f
′′′(x̄)+ 3�2

0(f
′(x̄))2 + 3�2

0x̄f
′(x̄)f ′′(x̄)+ x̄(�0f

′(x̄))3.

A routine check combined with (2.6)–(2.7) can show (3.3) and (3.4).�
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Lemma 3.1 and Theorem 3.2 show that,F� andG� have period doubling bifurcation at the same
parameter value� = �0, and the stability of the respective periodic 2 orbits ofF� andG� are determined
by the signs of�F and�G which are given by the convenient formulas (3.3) and (3.4). From these formulas,
we see that iff ′′(x)<0 then�G < �F , and thus the Euler scheme is better than IA scheme. But in general
we cannot make comparison about the stability of the bifurcated periodic 2 solutions ofF� andG�, as is
numerically illustrated in the following example.

Example 3.1. Consider

f (x)= (1 − x)+ a(1 − x)2 + b(1 − x)3, (3.5)

wherea andb are nonnegative positive constants. Then we havex̄ = 1 and

f ′(1)= −1, f ′′(1)= 2a, f ′′′(1)= −6b,

�0 = 2, �F = �G = −1.

By (3.2) and (3.3), we obtain

�F = 2(a − b)+ 4(a − 1)2,

�G = �F + 4a − 10
3 .

Consider the following cases for the parametersa andb:

(i) a = 0 andb = 1. In this case,�F = 2>0 and�G = 2 − 10
3 = −4

3 <0.
(ii) a = 1 andb = 2. In this case,�F = −2<0 and�G = −4

3 <0.
(iii) a = b = 2. In this case,�F = 4>0 and�G = 12− 10

3 >0.
(iv) a = 1 andb = 1.1. In this case,�F = −0.2<0 and�G = 7

15>0.

The negative Schwarzian derivative condition is a much more subtle property and it provides a powerful
tool in one-dimensional dynamics. There are many theorems which are proved only for maps with negative
Schwarzian derivatives (see, e.g.,[8]). We quote below some results forC1-unimodal maps with negative
Schwarzian derivative, which will be used later.

Assume thatg isC3. TheSchwarzian derivativeof g atx, denote bySg(x) is defined

Sg(x)= g′′′(x)
g′(x)

− 2

3

(
g′′(x)
g′(x)

)2

. (3.6)

Definition 3.1. We callg aS-unimodal map if

(S1) g isC1-unimodal.That is,g : [a, b] → [a, b] is continuously differentiable and there existsa < c<b
such thatg′(x)>0 if a <x <c andg′(x)<0 if c <x <b.

(S2) g is third-order continuously differentiable.
(S3) Sg(x)<0 for all x ∈ [a, b] (here we allow the value−∞ for Sg(x) atx = c).
(S4) [g(b), b] is invariant underg.
(S5) g

′′(c)<0.

The following two lemmas are from[4].
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Lemma 3.3(Collet and Eckmann[4, p. 105, Lemma II.4.6]). If g is a polynomial of degree large than
or equal to2 and all zeros ofg′ are real thenSg <0.

Lemma 3.4(Collet and Eckmann[4, p. 95, Corollary II.4.2; p. 119, Proposition II.5.7]). Assume that g
is S-unimodal, then

(i) g has at most one stable periodic orbit, plus possibly a stable fixed point in the interval[a, g(b)).
(ii) If g has a stable period orbit, then

L(Eg)= 0, (3.7)

whereEg={x ∈ [a, b] | gn(x) does not tend to the stable periodic orbit of g},andL is Lebesguemeasure
onR.

Roughly speaking, Lemma 3.4(ii) implies that for a S-unimodal map, a local stable periodic orbit is
also almost globally stable.

Concerning the Schwarzian derivatives ofF� andG�, an observation is that for generalf the
correspondingF� and G� may have different signs for their Schwarzian derivatives. For ex-
ample, let

f (x)= s − x

with s >0, then

F�(x)= x(1 + �(s − x))

is a quadratic map, which, by Lemma 3.3, has negative Schwarzian derivative for all�>0 ands >0. On
the other hand, for thisf the correspondingG� is given by

G� = xe�(s−x)

and a direct computation shows that its Schwarzian derivative is

SG�(x)= �2(3 − �x)

1 − �x
− 2

3

(
�(2 − �x)

1 − �x

)2

= �2

3(1 − �x)2
((�x − 2)2 − 3). (3.8)

Obviously,SG�(0)= �2/3, and thusSG�(x) is also positive in the right neighbourhood ofx = 0.
To show the feasibility of the results established above, in the rest of this section, we consider the

following particular ODE.

ẋ = x(1 − x2). (3.9)

For this equation, the corresponding Euler’s difference scheme is

xn+1 = xn(1 + �(1 − x2
n))�F�(xn) (3.10)
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and the IA difference scheme becomes

xn+1 = xne
�(1−x2

n)�G�(xn). (3.11)

For (3.10), since

F ′
�(x)= 1 + � − 3�x2,

has two real zeros, we have

SF �<0 ∀x�0,

by Lemma 3.3. On the other hand, the positive zero ofF�(x)= 0 is

xF (�)=
√

1 + �

�
, (3.12)

the maximum point is

xm(�)=
√

1 + �

3�
(3.13)

and the corresponding maximum value ofF� is

M1(�)= 2

3
(� + 1)

√
1 + �

3�
. (3.14)

Calculation shows

�0 = 1, �1 = 1

2
, �F = 3

41/3 − 1≈ 0.89, �2 = 3
√

3

2
− 1≈ 1.59.

By these values and the results above, we can summarize the dynamics of (3.10) as below.

(A1) If 0< ���1 = − 1
x̄f ′(x̄) = 1

2, then 1�xm(�) andFn� (x) tends, in an eventually monotone way, to
the fixed pointx̄ = 1 asn → ∞ for anyx ∈ (0, xF (�)), by Theorem 2.6.

(A2) If �1 = 0.5< �< �oF = min{�F , �2} ≈ 0.89, for any(0, xF (�), F n� (x)) converges, in an eventually
oscillatory way, tox̄ = 1, by Theorem 2.7.

(A3) Finally, by Theorem 3.2,F� has a period doubling bifurcation at(x̄, �0) = (1,1) and, according
to (3.2)

�F = 8>0.

It follows from Lemma 3.1 that the period 2 orbit bifurcated fromx̄ = 1 is stable. On the other hand, it
is easy to check thatF�(x) is S-unimodal on[0, xF (�)]. By Lemma 3.4, there exists a�1

F >1 such that
Fn� (x) tends to the stable period 2 orbit asn → ∞ for almost allx ∈ [0, xF (�)] if 1< �< �1

F .
We remark that there is a gap for� between�oF=0.89 and the critical value�=1 for periodic bifurcation.

For generalf , one may not be able to address the dynamics ofF�(x) when� is in this range. However
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for this particularf , one can. Indeed, for all� ∈ (0.5,1), we have−1<F ′
�(1)<0. By

F 2
� (xm(�))= F�(M1(�))= 2

3
(� + 1)xm(�)

(
1 + �

(
1 − 4

9

(� + 1)3

3�

))

= 2

81
xm(�)(� + 1)(23− 4�3 − 12�2 + 15�),

we see that

F 2
� (xm(�))> xm(�), (3.15)

provided that

h(�)� 2
81(� + 1)(23− 4�3 − 12�2 + 15�)>1. (3.16)

Since

h′′(�)= −12
81(8�2 + 16� − 1)<0

for � ∈ [0.5,1], andh(0.5)= 1, h(1)= 88
81>1, we do haveh(�)>1 for all � ∈ (0.5,1), and thus (3.15)

holds. Therefore, if 0.5< �<1, F n� (x) tends, in an eventually oscillatory way, to the fixed pointx̄ = 1
for all x ∈ (0, xF (�)).

For (3.11), in a similar way we can summarize the corresponding results as below.

(B1) If 0< �� 1
2 = �1, thenGn�(x) tends in an eventually monotone way, tox̄ = 1 asn → ∞ for any

x >0.
(B2) If 1

2 < �<1 = �0, thenGn�(x) tends, in an eventually oscillatory way, tox̄ = 1 asn → ∞ for any
x >0.

(B3) G�(x) has a period doubling bifurcation at(x̄, �0)= (1,1) and by (3.4)

�G = �F + �0f
′′(x̄)− 10

3x̄2 = 8 − 2 − 10

3
>0.

Hence the corresponding period 2 orbit is stable. In order to apply Lemma 3.4, we examine the sign of
the Schwarzian derivative ofG�(x). From (3.6),G� has negative Schwarzian derivative iff

3G′
�(x)G

′′′
� (x)− 2(G′′

�(x))
2<0.

A direct computation shows that

3G′
�(x)G

′′′
� (x)− 2(G′′

�(x))
2 = 2�e2�(1−x2)(8�3x5 − 36�2x4 + 18�x2 − 9)

= 2�e2�(1−x2)(8y3 − 36y2 + 18y − 9)

� h(y),

wherey = �x2. Thus if 0�y�4, that is, if

0�x�
2√
�
, (3.17)
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thenSG�(x)<0. Therefore, again from Lemma 3.4, there exists a�0
G>1 such that when 1<�<�0

G,G
n
�(x)

tends to the stable period 2 orbit asn → ∞, for almost allx ∈ (0, 2√
� ]. Note that the interval(0, 2√

� ]
attracts allx >0 after one iteration, we conclude that, indeed for almost allx >0,Gn�(x) converges to
the stable period 2 orbit asn → ∞.

4. Topological chaos

In this section, we will discuss the chaotic behaviour ofF� andG� for � large enough. To this end, we
need some definitions from one-dimensional discrete dynamical systems.

Let I be a compact interval inR andg be a continuous map fromI into itself. The definitions of fixed
points and periodic points are in the usual sense. To study the nature of orbits which are not periodic,
we define a “scrambled” set. A setS ⊂ I is called ascrambled setif it possesses the following
two properties:

(i) If x, y ∈ S with x �= y, then

lim sup
n→∞

|gn(x)− gn(y)|>0, lim inf
n→∞ |gn(x)− gn(y)| = 0.

(ii) If x ∈ S andy is any periodic point ofg,

lim sup
n→∞

|gn(x)− gn(y)|>0.

Thus, orbits starting from points in a scrambled set are not even asymptotically periodic. Moreover,
for any pair of initial points in the scrambled set, the orbits move apart and return close to each other
infinitely often.

As we known, there are many different notions for describing the dynamical complexity of a dynam-
ical system, such as Li–Yorke’s chaos[6], Devaney’s chaos[5], positive Liapunov exponent, etc., each
reflecting its own background. Another mathematical concept that may make the notion of chaos more
precise is the “topological entropy” which is a kind of quantitative measurement of chaos. Topological
entropy was first introduced in 1960s by Adler et al.[1] for a compact dynamical system. Later in 1970s,
Bowen[3] gave a new but equivalent definition for a uniformly continuous map on a (not necessarily
compact) metric space. In this section, we will say that a mapg exhibitstopological chaosif g has positive
topological entropy. For details on topological chaos and other notions of chaos, we refer, for example,
to [2,12], where the following equivalent statements can be found.

Lemma 4.1. Let g be a continuous map from I into itself. Then the following condition are equivalent.

(i) g has a periodic point whose period is not a power of2.
(ii) g exhibits topological chaos.

Furthermore, each of the above conditions implies that g has an uncountable scrambled setS ⊂ I .

From the above preparation, we see that in order to apply the above results on chaos to explore the
topological chaos ofF� andG�, the differentiability off is not needed. However, in order to be consistent
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and for convenience, we keep this condition and adopt all the assumptions and notations from the previous
sections.

By (2.14), we know that

�2 � sup{��0 |M1(�)− xF (�)�0} (4.1)

and Lemma 2.5 shows that the interval[0, xF (�)] is invariant underF� when 0< �< �2. The next theorem
describe the chaotic dynamics ofF� when�> �2.

Theorem 4.2. Assume that f satisfies(1.2). If �> �2, then the interval[0, xF (�)] is no longer invariant
underF�. Indeed, in this case, F� has a periodic orbit of period three and hence has topological chaos.

Proof. SinceM1(�)> xF (�) when�> �2, there existsx∗ ∈ [0, x1(�)] such that

0 = F 3
� (x

∗)< x∗<F�(x
∗)<F 2

� (x
∗), (4.2)

which impliesF� has periodic orbit of period three. This completes the proof.�

In the sense of Sarkovskii’s ordering, one knows that “periodic three” is the strongest chaos. Chaos of
F� in a little bit weaker sense also exists for�< �2. To see this, let

�3 � inf {0< �< �2 |F 2
� (M1(�))< x̄}. (4.3)

Then, we have the following theorem.

Theorem 4.3. Assume that f satisfies(1.2).Then, for �3< ���2, F� has a periodic orbit of period6and
hence it also exhibits topological chaos.

Proof. For�3< ���2, we have

F 2
� (M1(�))< x̄.

There are two cases: either

F�(M1(�))<F
2
� (M1(�))< xm1(�)< x̄, (4.4)

or

F�(M1(�))< xm1(�)<F
2
� (M1(�))< x̄. (4.5)

In the first case,F� has a periodic orbit of period three. Thus it has also period 6 orbit by Sarkovskii’s
theorem. In the later case,F 2

� has a periodic orbit of period three and soF� has a period 6 orbit. �

To study the chaos of the mapG�, define

�4 � inf {0< � |G2
�(M2(�))< x̄}. (4.6)

Similar to Theorem 4.3, we have

Theorem 4.4. Under the assumption of Theorem4.2, if �> �4, thenG� has a periodic orbit of period6
and hence it exhibits topological chaos.
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Remark 4.1. We note that the constants�3 and�4 are in general not optimal in the sense thatF� andG�

may have topological chaos for some�< �3 and�< �4, respectively.

Finally, as an example, we study chaotic dynamics of the difference schemes (3.10) and (3.11) resulted
from the ordinary differential equation (3.9). We have seen in Section 3 that�2 = (3√

3/2)− 1≈ 1.5981,
andF� is global stable for(0, xF (�)] when 0< �<1 wherexF (�) is given by (3.12), and has a period
doubling bifurcation at�=1. Numerical computation shows that�3 ≈ 1.360, where�3 is defined by (4.3).
Thus, if 1.36< �<1.5981, F� has an invariant interval[0, xF (�2)] and has periodic orbit of period 6 in
this interval, and thus, exhibits topological chaos.F� experiences period doubling bifurcation when�
increases in (1, 1.360).

For the difference scheme (3.11), from Section 3, the dynamics ofG� is the same as that ofF� when
0< �<1, andG� has a period doubling bifurcation also at� = 1. For any�>0, the maximum point
(critical point) ofG� is

x2m(�)=
√

1

2�
.

Solving the inequality

G2
�(M2(�))=G3

�(x2m(�))< x̄ = 1,

numerically, we obtain

�> ≈ 1.417.

That is,�4 ≈ 1.417. Hence, by Theorem 4.4, if�>1.417, thenG� has a periodic orbit of period 6 and so
it exhibits topological chaos. Also, there is period doubling bifurcations when� increases in (1, 1.417)
for G�.

5. Conclusion

We have discussed the stability of the common equilibrium, the periodic doubling bifurcations and
their stability, and chaos in the Euler scheme (1.3) and the IA scheme (1.4) by developing some general
formulas. We have shown the feasibility of these formulas by applying them to some particular forms of
f (x). By comparing these formulas and some numerical examples, we have found that (i) as long as the
global stability of the equilibrium is concerned, the Euler scheme is better than the IA scheme in terms
of the step size parameter�; (ii) as long as the stability of the periodic 2 solutions are concerned, the
Euler scheme is also better than the IA scheme in the same sense provided thatf ′′(x)<0; and in the
casef ′′(x)<0 is not satisfied, example shows that there is no general comparison for the two schemes;
(iii) for the occurrence of chaos in terms of�, we are unable to obtain a general comparison result and
the conclusion seems to depend on particular forms off (x).
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