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Abstract

This paper explores the impact of delay on the existence of traveling wave fronts in reaction–di&usion
equations of KPP–Fisher type. For two such equations, one being local and the other with nonlocal e&ect
arising from the age structure of the population, we show that delay can induce slow traveling wave fronts.
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1. Introduction

The most classic and the simplest case of nonlinear reaction–di&usion equation that was :rst shown
to have traveling wave fronts is the so-called Fisher–KPP equation (Fisher [4] and Kolmogorov,
Petrovskii and Piskunov [10])

@u
@t

= ru(t; x)
[

1 − u(t; x)
K

]
+ D

@2u
@x2 ; (1.1)

where r and D are positive parameters. Eq. (1.1) was :rst suggested by Fisher [4] as a deterministic
version of a stochastic model for the spatial spread of a favored gene in a population. It is also a
natural extension of the logistic growth population ODE model.
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Eq. (1.1) can be normalized into the simpler form

@u
@t

= u(t; x)[1 − u(t; x)] +
@2u
@x2 (1.2)

by rescaling t∗ = rt, x∗ =
√

(r=D)x, u ∗ = u=K and omitting the asterisks for notational simplicity.
Eq. (1.2) and its traveling wave solutions have been widely studied (see, e.g., [3,13] and references
therein), not only because it has in itself wide applicability but also because it is the prototype
equation which admits the traveling wave front solutions. It is also a convenient equation from
which many techniques can be developed for analyzing single species models with spatial dispersal.

As far as traveling wave fronts are concerned, a reaction–di&usion equation with a monostable
nonlinearity typically admits a family of wave speeds, while an equation with a bistable nonlinearity
usually can only have an unique (if any) wave speed. Eq. (1.2) has an monostable reaction term
f(u) = u(1 − u), and it has been shown that (1.2) can have traveling wave front with any speed
c¿ 2, but does not allow wave front with speed c¡ 2. In other words, c∗ =2 serves as the minimal
wave speed for (1.2) (see, e.g., [3,13]).

It has been widely argued and accepted (see, e.g., [7,11,18]) that for various reasons, time delay
should be taken into consideration in modeling. If one wants to incorporate a single discrete time
delay ¿ 0 into (1.2), as was done by many researchers to the corresponding logistic ODE model,
one has the following two choices:

@u
@t

= u(t; x)[1 − u(t − ; x)] +
@2u
@x2 (1.3)

and

@u
@t

= u(t − ; x)[1 − u(t; x)] +
@2u
@x2 : (1.4)

The former comes from the corresponding ODE model (also called Hutchinson equation), and has
been extensively studied in the literature (see [8,11,16], and references therein), and the latter was
derived by Kobayashi [9] from a branching process.

In population biology, age structure cannot be ignored for some species. Recently, So et al. [15]
derived a model for the growth of the matured population of a single species, taking into account
the age structure, and the model turns out to be the following reaction-di&usion equation with both
time delay and spatially nonlocal e&ect

@w
@t

= Dm
@2w
@x2 − dmw + �

∫ ∞

−∞
b(w(t − ; y))f�(x − y) dy: (1.5)

Here,

� = e−
∫ 

0 dI(a) da; � =
∫ 

0
DI(a) da

and

f�(x) =
1√
4��

e−x2=4�;

where ¿ 0 is the mature age, Dm and dm are the di&usion and death rates of the mature, respec-
tively, which are assumed to be constants, while DI and dI are the di&usion and death rates of the
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immature, respectively, and b(·) is the birth function. Here � reIects the impact of the death rate of
the immature and � represents the e&ect of the dispersal rate of the immature on the matured popu-
lation. Notice that the death rate and di&usion rate of the immature enter (1.5) in a totally di&erent
way from that of the matured. When = 0 (hence �= 0 and �= 1), which means neglecting the age
structure, (1.5) with the birth function b(w) = rw(1 − �w) with r ¿dm reduces to the KPP–Fisher
equation (1.1) (see (3.11)). For a justi:cation of such a birth function, one may recall that the
widely used logistic nonlinearity ru(1−u=K) in (1.1) is actually a result of lumping together such a
birth term bw(1 − �u) and a death term du. Other functions with a single hump reIecting the peak
of productivity may also be used, but in order to avoid hiding the main ideas behind complicated
mathematical computations, we adopt this quadratic birth function in the rest of this paper. For the
same birth function but without assuming � = 0 and � = 1, (1.5) becomes

@w
@t

= Dm
@2w
@x2 − dmw + �

∫ ∞

−∞
rw(t − ; y)[1 − �w(t − ; y)]f�(x − y) dy: (1.6)

It is well known that delays can have very complicated impact on the dynamics of a system
(see, e.g., [7,11,18]). For example, delays can cause the loss of stability, and can induce various
oscillations and even chaos. In this paper, we are interested in the impact of delay on the existence
of traveling wave fronts of reaction–di&usion equations. For simplicity, we only report results on
the equations of KPP–Fisher types as mentioned above. By comparing the existence results for the
aforementioned equations, we will show that delay can induce slow (e.g., in the sense of c¡ 2 for
(1.4)) traveling wave fronts. As far as the author knows, delay induced traveling wave fronts have
not been reported elsewhere. Our approach will be the iteration technique recently developed in [19],
which has also been successfully employed by So and Zou [17], So et al. [15], Gourley [6], and
Ma [12].

It is worth pointing out that existence of traveling wave fronts of (1.3) has already been addressed
in [19] by using the iteration method. Roughly speaking, it is shown in [19] that for any c¿ 2,
(1.3) still admits a wave front with speed c, provided that ¿ 0 is suMciently small. But when 
increases, the numeric simulations in [1] and [6] shows that the monotonicity of the wave fronts
will disappear, and oscillatory and even periodic waves may occur. Thus, as far as monotone wave
fronts go, delay can prevent fronts as well.

Also note that traveling wave fronts of (1.4) may be obtained as well by using the general theory
of Schaaf [14], which is the pioneering work in this topic. But Schaaf’s theory is only for scalar
reaction–di&usion equations with a single discrete delay and with nonlinear term that is monotone
with respect to the delayed term and is spatially local, and thus cannot be applied to (1.6), but our
method can. Another merit of our approach is that the iteration provides a scheme for approximation
of the pro:le of the wave front.

2. Delay induced traveling wave fronts in (1.4)

By a traveling wave front of (1.4), we mean a solution of (1.4) of the form u(t; x) = �(x + ct),
where c¿ 0, � satis:es the following delay ordinary di&erential equation

c�′(t) = �′′(t) + �(t − c)[1 − �(t)]; t ∈R (2.1)
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and is subject to the following asymptotic boundary condition

lim
t→−∞�(t) = 0; lim

t→∞�(t) = 1: (2.2)

Note that the wave speed c¿ 0 in (2.1) is unknown in advance and needs to be determined while
solving (2.1)–(2.2) for �. Thus indeed (2.1)–(2.2) is an eigenvalue problem.

The following result is well known (see e.g., [3,13]).

Theorem 2.1. When  = 0; (2.1)–(2.2) has a monotone solution if and only if c¿ 2. In other
words; in the absence of delay; c = 2 is the minimal wave speed for (1.2).

The main result in this section is the following:

Theorem 2.2. The following hold:

(i) For every c¿ 2; (2.1)–(2.2) always has a monotone solution; regardless of the value of ¿ 0.
(ii) For every c∈ (0; 2); (2.1)–(2.2) also has a monotone solution if

¿
(

2
c

)2

ln
2
c
: (2.3)

Remark 2.1. Comparing Theorems 2.1 and 2.2; we see the delay can induce arbitrarily slow (c¡ 2)
traveling wave fronts for (1.4).

The proof of Theorem 2.2 consists of several lemmas, which will be given in the remainder of
this section.

De:ne the pro8le set for (2.1)–(2.2) by

� =


�∈C(R;R):

(i) � is nondecreasing in R;

(ii) lim
t→−∞�(t) = 0; lim

t→∞�(t) = 1:


 :

A function �∈C(R;R) is called an upper (resp. lower) solution of (2.1) if it is di&erentiable almost
everywhere (a.e.) and satis:es

c�′¿�′′(t) + �(t − c)[1 − �(t)]; a:e: in R;

(resp: c�′6�′′(t) + �(t − c)[1 − �(t)]; a:e: in R):

Let Xc = C([ − c; 0];R) and f be the nonlinear term in (2.1), i.e., f :Xc → R is de:ned by
f(�) = �(−c)[1 − �(0)]. Then it is easily seen that

(A1) f(0̂) = f(1̂) = 0 and f(û) �= 0 for u∈ (0; 1), where û denotes the constant function taking
value u on [ − c; 0].

(A2) (quasi-monotonicity) There exists �¿ 0 (say, � = 1) such that

f(�) − f( ) + �[�(0) −  (0)]¿ 0

for �;  ∈Xc with 06  (s)6�(s)6 1; s∈ [ − c; 0].
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Therefore, we can apply Wu and Zou [19, Theorem 3.6] to (2.1)–(2.2) to produce the following
result:

Lemma 2.1. Suppose that (2.1) has an upper solution Q� in � and a lower solution � (which is not
necessarily in �) with 06�(t)6 Q�(t)6 1 and �(t) �≡ 0 in R; then (2.1)–(2.2) has a monotone
a solution.

In what follows, we will construct a pair of upper-lower solutions required in the above lemma,
and thus conclude the existence of traveling wave fronts for (1.4). To this end, we linearize (2.1)
at 0 to get

c�′(t) = �′′(t) + �(t − c): (2.4)

The characteristic equation of (2.4) is

 c(!) := e−!c − ![c − !] = 0: (2.5)

Lemma 2.2. Under each of the two conditions in Theorem 2.2;  c(!) = 0 has two positive real
roots: !1 ¡!2 and

 c(!) =




¿ 0 for !¿!2;

¡ 0 for !∈ (!1; !2);

¿ 0 for !¡!1:
(2.6)

Proof. The function h(!) = ![c − !] is concave down with the maximum c2=4 attained at c=2. The
function g(!)=e−c! is nonincreasing and g(c=2)=e−c2=2. The conclusion immediately follows from
comparing c2=4 with e−c2=2.

In the rest of this section, we will use the two positive real roots !1 ¡!2 in Lemma 2.2 to
construct the upper and lower solutions required in Lemma 2.1.

Lemma 2.3. Q�(t) = min{1; e!1t} is an upper solution of (2.1) and Q�∈�.

Proof. The proof is a direct veri:cation; and is thus omitted here.

Next, we choose $¿ 0 such that $¡!1 ¡!1 + $¡!2, and de:ne �(t) = max{0; (1 −Me$t)e!1t},
where the constant M ¿ 1 is to be determined.

Lemma 2.4. For su9ciently large M; �(t) is a lower solution of (2.1).

Proof. Let t1 = (1=$) ln 1=M . Then t1 ¡ 0 for M ¿ 1 and

�(t) =

{
0 for t ¿ t1;

(1 −Me$t)e!1t for t ¡ t1:
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For t ¿ t1; �(t) = 0; and hence;

�′′(t) − c�′(t) + �(t)[1 − �(t − c)] = �(t − c)¿ 0:

For t ¡ t1;

�(t) = [1 −Me$t]e!1t ;

�′(t) = [!1 −M ($ + !1]e$t)e!1t ;

�′′(t) = [!2
1 −M (!1 + $)2e$t]e!1t�(t − c) = [1 −Me$(t−c)]e!1(t−c):

Thus;

�′′(t) − c�′(t) + �(t)[1 − �(t − c)]

= [!2
1 −M (!1 + $)2e$t]e!1t − c[!1 −M (!1 + $)e$t]e!1t

+ [1 −Me$(t−c)]e!1(t−c)[1 − (1 −Me$t)e!1t]

= e!1t{ c(!1) −Me$t c(!1 + $) − [1 −Me$(t−c)][1 −Me$t]e!1te−!1c}
= e!1t{−Me$t c(!1 + $) − [1 −Me$(t−c)][1 −Me$t]e!1te−!1c}:

Since t ¡ t1 ¡ 0 and $¡!1; we have e!1te−!1c ¡ e$t and

[1 −Me$(t−c)][1 −Me$t]6 [1 + Me$t]26 [1 + Me$t1 ]2 = [1 + 1]2 = 4:

Therefore;

�′′(t) − c�′(t) + �(t)[1 − �(t − c)]

¿ e!1t{−Me$t c(!1 + $) − 4e$t}

= e(!1+$)t[ −  c(!1 + $)]
{
M − 4

− c(!1 + $)

}
:

Now; by the choice of !1 and $; we know  c(!1 + $)¡ 0; and hence; the right-hand side of the
above inequality is nonnegative if we choose

M ¿
4

− c(!1 + $)
:

For such a M; � is a lower solution of (2.1); and this completes the proof of Lemma 2.4.

Remark 2.2. Note that in the proof of Theorem 2.2; the two positive real roots !1 and !2; whose
existence are established in Lemma 2.2; play a crucial role. From the proof of Lemma 2.2; (2.3)
is only a convenient and explicit condition on  that ensures the existence of such two positive
roots; and the best possible condition on  for this purpose can be obtained by solving the following
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equations:

!(c − !) = e−!c;

c − 2! = −ce−!c;

which come from the requirement that the two curves of g(!) and h(!) just touch.

Remark 2.3. Existence of solutions of (2.1)–(2.2) is obtained by constructing a proper pair of
upper-lower solutions of (2.1) as stated in Lemma 2.1. Indeed; a pro:le for the wave front of (1.4);
that is; a solution of (2.1)–(2.2); can be obtained by the convergence of the following iterations:

�m(t) =
1

&2 − &1

[∫ t

−∞
e&1(t−s)H (�m−1)(s) ds +

∫ ∞

t
e&2(t−s)H (�m−1)(s) ds

]
;

�0(t) = Q�(t);

where t ∈R; m = 1; 2; : : : ; and H :C(R;R) → C(R;R) is de:ned by

H (�)(t) = �(t − c)[1 − �(t)] + �(t); �∈C(R;R); t ∈R
and &i; i = 1; 2 are given by

&1 =
c −√

c2 + 4
2

; &2 =
c +

√
c2 + 4
2

:

For details of the iteration scheme for more general delayed systems; see [19].

3. Traveling waves fronts in the nonlocal model (1.6)

In this section, we give some results on existence of traveling wave fronts for the nonlocal model
(1.6), which are parallel to those for (1.4) in Section 2. For convenience of discussion, we assume
the following throughout this section:

(H1) dI(a) ≡ 0 (thus � = 1);
(H2) DI(a) = DI for all a∈ [0; ] (thus � = DI) with DI ¡ 2Dm;
(H3) dm ¡r6 2dm

and focus on the impact of the delay ¿ 0. Again as usual, by a traveling wave front of (1.6), we
mean a solution of (1.6) of the form w(t; x) = �(x + ct) with c¿ 0 being a constant (wave speed),
and the pro:le function � being monotone and satisfying lims→−∞ �(s) =w1 and lims→∞ �(s) =w2

where w1 ¡w2 are two equilibria of (1.6).
When  = 0 (hence � = 0), (1.6) reduces to

@w
@t

= Dm
@2w
@x2 + (r − dm)w(t; x)

[
1 − r�

r − dm
w(t; x)

]
: (3.1)

Note that since � = 1 and
∫∞
−∞ f�(y) dy = 1, (1.6) and (3.1) share the same equilibria 0 and

(r − dm)=r�. For (3.1), the following result is classical (see, e.g., [3,13]).
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Theorem 3.1. (i) For every c¿ 2
√

Dm(r − dm); (3.1) has a traveling wave front with speed c
connecting 0 and (r − dm)=r�; (ii) For any c∈ (0; 2

√
Dm(r − dm)); (3.1) does not admit traveling

wave front with speed c connecting 0 and (r − dm)=r�.

Allowing ¿ 0 in (1.6), we have the following main theorem:

Theorem 3.2. The following hold:

(i) For every c¿ 2
√

Dm(r − dm); regardless of the value of ¿ 0; (1.6) always has a traveling
wave front with speed c connecting 0 and (r − dm)=r�.

(ii) For every c∈ (0; 2
√

Dm(r − dm)); (1.6) also admits a traveling wave front with speed c con-
necting 0 and (r − dm)=r�; provided that

¿
2Dm

c2[1 − DI=(2Dm)]
ln

r
[c2=(4D2

m) + dm
: (3.2)

The proof of Theorem 3.2 is similar to that of Theorem 2.2. Thus, in the rest of this section we
only give an outline consisting of several lemmas, but omitting the details. We also refer a reader to
[15] where the traveling wave fronts of (1.5) are considered for the birth function b(w) = pwe−aw

which also has a single hump.
By the de:nition of traveling wave fronts, we need to look for a monotone function �(t) satisfying

the following equation:

c�′(t) = Dm�′′(t) − dm�(t) + r
∫ ∞

−∞
�(t − c− y)[1 − ��(t − c− y)]f�(y) dy (3.3)

and subject to the boundary conditions

�(−∞) = 0; �(∞) =
r − dm

r�
:=K: (3.4)

Eq. (3.3) is a second-order functional equation of mixed type (namely, with both advanced and
delayed arguments), and thus (as mentioned in the introduction), the method and theory in [14] are
not applicable.

Based on (3.3)–(3.4), we de:ne the pro&le set for traveling wave fronts of (1.6) as

�∗ =


�∈C(R;R):

(i) � is nondecreasing in R;

(ii) lim
t→−∞�(t) = 0; lim

t→∞�(t) = K:


 :

We also de:ne H ∗ :C(R;R) → C(R;R) by

H ∗(�)(t) = r
∫ ∞

−∞
�(t − c− y)[1 − ��(t − c− y)]f�(y) dy; �∈C(R;R); t ∈R:

The operator H ∗ has some nice properties as stated below.
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Lemma 3.1. For any �∈�∗; we have

(i) H ∗(�)(t)¿ 0; for all t ∈R;
(ii) H ∗(�)(t) is nondecreasing in t ∈R.

(iii) H ∗( )(t)6H ∗(�)(t); for all t ∈R; provided  ∈C(R;R) is such that 06  (t)6�(t)6K
for t ∈R.

As in Section 2, we can de:ne upper and lower solutions for (3.3) as follows:

De&nition 3.2. A function �∈C(R;R) is called an upper (resp. lower) solution of (3.3) if it is
di&erentiable almost everywhere (a.e.) and satis:es the inequality

c�′¿Dm�′′(t) − dm�(t) + H ∗(�)(t); a:e: in R

(resp: c�′6Dm�′′(t) − dm�(t) + H ∗(�)(t); a:e: in R):

Now, assume that an upper solution Q�∈�∗ and a lower solution of � (which is not necessarily
in �∗) of (3.3) are given (we will see how to obtain such a pair later in this section) so that

(P1) 06�(t)6 Q�(t)6K for all t ∈R;
(P2) �(t) �≡ 0.

Consider the following iteration scheme:

cw′
n(t) = Dmw′′

n (t) − dmwn(t) + H ∗(wn−1)(t); t ∈R; n = 1; 2; : : : (3.5)

with the boundary conditions

lim
t→−∞wn(t) = 0; lim

t→∞wn(t) = K; (3.6)

where w0 = Q�. Solving (3.5)–(3.6) for n = 1; 2; : : : ; leads to a sequence of functions {wn}∞n=1, given
by

w0(t) = Q�(t); t ∈R;

wn(t) =
1

Dm(�2 − �1)

[∫ t

−∞
e�1(t−s)H ∗(wn−1)(s) ds +

∫ ∞

t
e�2(t−s)H ∗(wn−1)(s) ds

]
; (3.7)

where t ∈R; n = 1; 2; : : : ; and

�1 =
c −√

c2 + 4Dmdm

2Dm
; �2 =

c +
√
c2 + 4Dmdm

2Dm
: (3.8)

Using Lemma 3.1, one can establish the following result (see [19, Lemmas 3.3–3.4 and Pro-
position 3.5]).

Theorem 3.3. The sequence of functions {wn}∞n=0 satis8es

(i) wn ∈�∗; for all n = 1; 2; : : : ;
(ii) �(t)6wn(t)6wn−1(t)6 Q�(t); for all n = 1; 2; : : : and t ∈R;
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(iii) each wn is an upper solution of (3.3); and;
(iv) �(t) := limn→∞ wn(t) is a solution of (3.3) and (3.4).

From Theorem 3.3, we see that the existence of traveling fronts for Eq. (1.6) follows from the
existence of a pair of upper and lower solutions of (3.3) satisfying (P1)–(P2). Theorem 3.3 also
provides a way to approximate the traveling wave front. In the remainder of this section, we will
construct such a pair of upper and lower solutions, under the conditions of Theorem 3.2. To this
end, we proceed as in Section 2.

Linearizing (3.3) at 0 gives

c�′(t) = Dm�′′(t) − dm�(t) + r
∫ ∞

−∞
�(t − cr − y)f�(y) dy

whose characteristic equation is

 ∗
c (!) := re�!2−!c − [c! + dm − Dm!2]:

It is easy to show

Lemma 3.4. Under each of the two conditions in Theorem 3.2;  ∗
c (!) = 0 has two positive real

roots !1 ¡!2 and

 ∗
c (!) =




¿ 0 for !¡!1;

¡ 0 for !∈ (!1; !2);

¿ 0 for !¿!2:

The proof of this lemma is by analyzing the properties of the two functions h(!) = re�!2−!c and
g(!) = c! + dm − Dm!2 using elementary calculus, and thus is omitted here.

Assuming the conditions of Theorem 3.2, we can choose $¿ 0 such that $¡!1 ¡!1 + $¡!2.
Using these positive constants, we de:ne functions Q� and � by

Q�(t) = min{K; Ke!1t};
�(t) = max{0; K(1 −Me$t)e!1t};

where M ¿ 1 is a constant to be determined. Clearly, Q� and � satisfy (P1)–(P2). What is left is
to show that Q� is an upper solution and � is a lower solution of (3.3), as claimed in the following
lemma:

Lemma 3.5. The following hold:

(i) Q�(t) is an upper solution of (3.3) and Q�(t)∈�∗;
(ii) �(t) is a lower solution of (3.3) if M is chosen such that

M¿
r�KG

− ∗
c (!1 + $)

;
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where

G =
∫ ∞

−∞
e−2!1(y+cr)[1 + e−$(y+cr)]2f�(y) dy¡∞:

The proof of this lemma is a direct veri:cation and is omitted.
Finally, Theorem 3.2 follows from Theorem 3.3 and Lemmas 3.4–3.5.

Remark 3.1. Theorems 3.1–3.2 shows that even in the nonlocal Eq. (1.6); delay can also induce
slow wave fronts.

4. Discussion

Traveling wave fronts are of fundamental importance in mathematical biology as well as in many
other :elds and the most basic reaction–di&usion model is the KPP–Fisher equation (1.1). In this
paper, we have discussed the impact of time delay on the existence of traveling wave fronts of two
equations ((1.4) and (1.6)) related to the KPP–Fisher equation, and found that delay can induce
(slow) traveling wave fronts. Our approach is by upper–lower solution technique and an iteration
method recently developed in [19], and it turns out that this approach is applicable to both (1.4)
with only local e&ect and (1.6) with nonlocal e&ect. This is mainly due to the fact that the nonlin-
earities are monotonically increasing with respect to the delayed term within the pro:le set. When a
nonlinearity does not possess the monotonicity, the problem becomes much harder. To see this, let
us compare the nonlinearities of (1.3) and (1.4). As is seen in [14], for (1.4), a typical maximum
principle still holds and the positive invariance of the interval [0; 1] can be easily established. But
this is not true for (1.3) for which, the nonlinearity is not monotone with respect to the delayed term.
Indeed, a solution of (1.3) with an initial function within [0; 1] can go beyond the upper boundary
1, and this constitutes one source for nonmonotone traveling waves. In fact, Gourley [6] considered
traveling wave fronts for the following equation:

@u
@t

(x; t) = u(x; t)
(

1 − u(x; t − )
1 + -u(x; t − )

)
+

@2u
@x2 (x; t); (4.1)

which reduces to (1.3) when - = 0, and showed that the (monotone) traveling wave fronts persist
for every c¿ 2 provided the  is suMciently small (this coincides with the conclusion in [19] but
obtained only for (1.3)). But as  increases, the wave fronts will lose their monotonicity. Similarly,
when r ¿ 2dm in (1.6), the nonlinearity will not be monotone in [0; K], and the impact of delay on
the existence of the traveling wave fronts remains an open problem.

Our nonlocal model (1.6) is derived based on an age structure. In the absence of delay, Gourley
[5] considered traveling wave fronts of the nonlocal Fisher equation

ut = uxx + u(x; t)
(

1 −
∫ ∞

−∞
g(x − y)u(y; t) dy

)
; x∈R; t ¿ 0; (4.2)
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where the kernel g(y) satis:es some biologically reasonable conditions, and the main concern of
Gourley [5] is the impact of the kernel on the existence of wave fronts. Also incorporating both
delay and nonlocal e&ect, Ashwin et al. [1] studied the traveling wave fronts for the following
equation related to KPP–Fisher equation

ut = uxx + u(x; t)[1 − g ∗ ∗u]; x∈R; t ¿ 0; (4.3)

where

g ∗ ∗u =
∫ t

−∞

∫ ∞

−∞
g(x − y; t − s)u(y; s) dy ds

and the convolution kernel g(y; s) satis:es some biologically reasonable assumptions (see [2] for a
justi:cation of (4.3)). Using a geometric singular perturbation analysis, Ashwin et al. [1] showed that
for a class of kernels including the one that reduces (4.3) to (1.3), for every c¿ 2, the (monotone)
traveling wave fronts persist provided the delay is suMciently small. When the delay is increased,
numeric simulations by Ashwin et al. [1] show that the wave fronts will lose monotonicity and
develop oscillations on the lee-side of the front. Also numerically observed in [1] are periodic
traveling waves (wave trains) and orbits connecting 0 and a wave train, when  in (1.3) is further
increased to ¿�=2. Theoretically proving these observations provides challenging but interesting
and important mathematical problems. We conjecture that (1.6) will demonstrate similar behavior
when r ¿ 2dm and ¿ 0 is increased to some extent.

In summary, the impact of delay on the existence of (monotone) traveling wave fronts is compli-
cated. Delay can induce in some cases and can prevent in some other cases traveling wave fronts,
depending on the nonlinearities.
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