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We present an optimal control model for influenza vaccination strategies in an open
population. The model is based on an extended Kermack–McKendrick model with the
vaccination rate being a measurable function. The objective of this optimal control model
is to describe the vaccination strategies so that the total cost arising from vaccination and
infections is minimized. We show that the optimal control is a non-singular bang-bang
control which has a finite number of switchings. A scheme for the solution of the optimal
control problem is formulated using the shooting method. We also carry out numerical
simulations to illustrate the general results and to examine the effects of parameters on
the optimal vaccination strategy. The simulations show that the ratio of the per capita
treatment cost and per capita vaccination cost has a significant effect on the optimal
strategy, while the vaccination rate of the newly recruited class turns out to have less
effect.

Keywords: Influenza; Vaccination; Optimal Control; Bang-Bang Control; Carathéodory
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1. Introduction

Influenza is an acute respiratory illness that transmits rapidly in seasonal epidemics
and incurs human fatalities and monetary expenses. Historical influenza pandemics
include the 1889–1890 Russian flu, 1918–1920 Spanish flu, 1957–1958 Asian flu
and the 1968–1969 Hong Kong flu.1 Even the relatively milder 1968–1969 Hong
Kong flu killed more than 0.75 million people. Vaccination against influenza is often
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recommended for high-risk groups, such as children and the elderly, or for people
that have asthma, diabetes or heart diseases. There has been no major pandemic
since the 1968 Hong Kong Flu till the 2009 H1N1 influenza pandemic, while the
1977–1978 quasi-pandemic Russian Flu is not considered as a major pandemic.
Immunity to previous pandemic influenza strains and vaccination may have limited
the spread of the virus and may have helped prevent further pandemic.1 However,
annual influenza outbreaks still result in 250,000–500,000 deaths and the costs of
direct and indirect losses caused by influenza are between $1 million and $6 million
per 100,000 inhabitants yearly in industrialized countries.2

Vaccination has been an important strategy in the control of influenza epi-
demiology. It is well known that the cost of vaccination is much lower than the
cost resulting from infections which may include treatment cost and other indirect
losses due to infections. Due to this, vaccination has been an active research topic
for several diseases. See, for example, Refs. 1–10 and the references therein.

Optimal control theory has been applied to investigating optimal vaccination
strategies since the early 1970s. For example, Hethcote and Waltman11 considered
a Kermack–McKendrick model (KM model) with a general cost functional sub-
ject to state constraints, where a dynamic programming technique was employed
to construct discretized optimal vaccination schedules. A more complicated model
based on the KM model for optimal control of an epidemic, which incorporates
distributed latent and incubation periods, was considered by Gupta and Rink.12

Morton and Wickwire13 proposed a control model based on the KM model for opti-
mal immunization scheme and obtained an optimal bang-bang control by apply-
ing dynamic programming and the Pontaryagin’s maximum principle. Di Blasio14

obtained a synthesis of optimal vaccination for a KM model with quadratic inte-
grand for the objective functional. More recent work can be found, for example, in
the references.15–24

As remarked in Ref. 17, a simple extension of the KM model by incorporating
demographic structure in the host population presents a challenge for the optimal
vaccination. Moreover, it is well known that when considering an optimal con-
trol problem, the control is typically only assumed to be measurable (instead of
continuous) function; yet many techniques for epidemic models given by ordinary
differential equations require continuity for the right-hand sides of such models. As
an attempt to overcome the difficulties caused by incorporating demographic struc-
ture and by allowing discontinuous control (vaccination strategy), we consider in
this paper a simple extended KM model with vaccination on both new recruitments
and susceptibles. The objective of the optimal control model is to find an optimal
vaccination strategy so that the total costs arising from vaccination infections are
minimized.

The rest of this paper is organized as follow. In Sec. 2, we propose an opti-
mal control model where the dynamics of influenza are governed by an extended
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KM model with the vaccination policy being a measurable function. We estab-
lish the positivity of solutions to this extended KM model in Sec. 3. In Sec. 4,
we prove the existence of the optimal control in the space of Lebesgue measur-
able functions using Filoppov’s existence theorem for Lagrange type problems, and
describe the characteristics of the optimal vaccination using Pontaryagin’s max-
imal principle. In this section, we also develop a scheme for solving the optimal
control. We carry out some numerical simulations in Sec. 5 to illustrate the gen-
eral results, by which we also explore the sensitivity of the parameters. We con-
clude the paper in Sec. 6, where we summarize the main results and draw some
conclusions.

2. Optimal Control Model for Vaccination Strategies

To this end, we need a basic disease model to describe the dynamics of influenza
disease. Influenza disease is caused by virus, as such, we assume all recovered indi-
viduals have immunity to the same strain of influenza during the epidemic. As such,
SIR or SEIR (if latency is not neglected) models are suitable choices. There have
been many such models, but we adopt the strategy of “starting with simple” in our
first attempt, by choosing the following classic SIR model:


Ṡ = k − µS − βIS,

İ = βIS − (µ+ d+ r)I,

Ṙ = rI − µR.

(2.1)

Here S, I and R are sub-populations: susceptible, infective and recovered classes,
and all parameters are positive constants where k being the recruitment rate (new
recruits may include, e.g., new borns and new immigrants), µ is the natural death
rate, d is the disease caused death rate, r is the recovery rate and β is the infection
rate. Noting that S and I are actually decoupled from R, one only needs to consider
the system consisting of the S and I variables:{

Ṡ = k − µS − βIS,

İ = βIS − (µ+ d+ r)I.
(2.2)

For this model, the disease dynamics is fully determined by the basic reproduction
number

R0 =
β

µ+ d+ r
· k
µ
, (2.3)

in the sense that if R0 < 1 then the disease will die out; if R0 > 1 the disease will
persist with all positive solutions of (2.2) tending to a unique endemic equilibrium.

When a vaccine is offered to the newly recruited and susceptible individuals at
proportions p and u respectively, with p, u ∈ [0, 1], the model (2.2) is modified to
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the following 


Ṡ = k(1 − p) − (µ+ u)S − βIS ,

İ = βIS − (µ+ d+ r)I,

V̇ = pk + uS − µV,

Ṙ = rI − µR.

(2.4)

Again, the S and I equations are decoupled from the V and R equations, so one
only needs to consider the decoupled subsystem:{

Ṡ = k(1 − p) − (µ+ u)S − βIS ,

İ = βIS − (µ+ d+ r)I.
(2.5)

If both p and u are constants, this model has the basic reproduction number

Rv
0 =

β

µ+ d+ r
· (1 − p)k
µ+ u

, (2.6)

and the model has the global threshold dynamics characterized by Rv
0: if Rv

0 < 1,
then the disease will die out; if Rv

0 > 1, the disease will persist with all positive
solutions converging to a unique endemic equilibrium. From the formula for Rv

0, it
is seen that increasing p or u or both may bring Rv

0 down to a level less than 1,
helping eventually eliminate the disease. Indeed, setting Rv

0 < 1 and solving this
inequality for p or u will give a minimal vaccination rate for newly recruited or
susceptible sub-population required to eliminate the disease.

The above are results concerning the long term (asymptotical) disease dynamics.
Two issues arise: (i) maintaining constant vaccination rates is in general impracti-
cal; (ii) cost is ignored. We now address these two issues by formulating the corre-
sponding model into an optimal control problem. To avoid making the problem too
complicated, we keep one of the two vaccination rate to be a constant and allow the
other to be time dependent. To be more precise, we assume that the vaccination
rate p for new recruits is a constant and let the vaccination rate u for susceptibles
be time dependent, taking from the so-called admissible control set

U := {u | the map u : [0, T ] � t→ u(t) ∈ [0, q] is Lebesgue measurable}, (2.7)

where T > 0 is a fixed final time and q ∈ [0, 1] is the maximal vaccination rate.
Let cq be the cost of vaccinating a susceptible individual and cσ be the cost

of treating an infectious individual. In general, cσ is much larger than cq, so α :=
cσ/cq is usually very large. With these cost parameters, we introduce the following
objective functional

J0(u) =
∫ T

0

cqu(t)S(t)dt+
∫ T

0

(cσβS(t)I(t) + kpcq)dt

=
∫ T

0

cqu(t)S(t)dt+
∫ T

0

αcqβS(t)I(t)dt + kpcqT. (2.8)
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Here, the first and the third terms on the right side account for the costs for
vaccinating the susceptible individuals and new recruits respectively, and the second
term reflects the cost for treating the infected individuals. Since we have assumed
that k > 0 and p > 0 are constants, we can indeed drop the last term as well as
the parameter cq in (2.8) and seek control u(t) that minimizes the following new
objective functional

J(u) =
∫ T

0

u(t)S(t)dt+
∫ T

0

αβS(t)I(t)dt. (2.9)

The above preparation then leads to the following optimal control problem with
state constraints:

min
u∈U

J(u) =
∫ T

0

u(t)S(t)dt+
∫ T

0

αβS(t)I(t)dt (2.10)

subject to 

Ṡ = k(1 − p) − (µ+ u)S − βIS ,

İ = βIS − (µ+ d+ r)I,

u ∈ U , (S(0), I(0)) = (S0, I0) ∈ (0,+∞) × (0,+∞).

(2.11)

To proceed further, we need to show that the constraint equations in (2.11) will
yield positive states S(t) and I(t) for t ≥ 0, and we do this in the next section.

3. Positivity of Solution of (2.11)

We first explore some basic properties of solutions to (2.11), including existence,
uniqueness and positivity of the state variables S(t) and I(t) for t ≥ 0. To this
end, we put T = +∞ in this section. Note that the control u is only a measurable
function and is not assumed to be continuous. Therefore, system (2.11) is a set
of Carathéodory equations25 with the right-hand side possibly being discontinuous
with respect to the time variable t. Thus, we need to appeal to some results on the
initial value problem (IVP) for a Carathéodory equation{

ẋ = F (t, x), (t, x) ∈ D ⊂ R × R
n,

x(t0) = x0,
(3.1)

where D is an open set and the function F (t, x) : R×R
n → R satisfies the following

Carathéodory conditions in the domain D of the (t, x)-space:

(A1) the function F (t, x) is continuous in x for almost all t;
(A2) the function F (t, x) is measurable in t for every x;
(A3) there exists an integrable function m(t) so that |F (t, x)| ≤ m(t).

The following lemmas are standard results on existence, uniqueness and continua-
tion of solutions to an initial value problem for a Carathéodory equation, see, e.g.,
Ref. 26.
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Lemma 3.1. Assume that (t0, x0) ∈ D and F (t, x) satisfies (A1)–(A3) for t0 ≤
t ≤ t0 + a, |x − x0| ≤ b. Then on a closed interval [t0, t0 + d], where d > 0, there
exists a solution to IVP (3.1).

Lemma 3.2. Let (t0, x0) ∈ D. Assume that F (t, x) satisfies (A1)–(A3) and there
exists a summable function l(t) such that

(F (t, x) − F (t, y)) · (x− y) ≤ l(t)|x− y|2 (3.2)

for every (t, x), (t, y) ∈ D. Then there exists a unique solution to the IVP (3.1).

Lemma 3.3. Let the conditions in Lemma 3.2 be satisfied. Then the solution to
(3.1) can be extended to the boundary of D.

Making use of the above lemmas, we can obtain the following theorem for (2.11),
the proof of which is given in the Appendix.

Theorem 3.1. Let (S0, I0) ∈ (0,+∞) × (0,+∞). Then there exists a unique
solution (S, I) : R � t → (S(t), I(t)) ∈ R

2 for system (2.11) with (S(t), I(t)) ∈
(0,+∞) × (0,+∞) for all t ≥ 0.

4. Optimal Vaccination Strategies

Let (S0, I0) ∈ (0,∞) × (0,∞) be fixed. By Theorem 3.1, we know that for every
u ∈ U , (2.11) has a uniques solution (S(t), I(t)) for all t > 0, satisfying (S(t), I(t)) ∈
(0,+∞)× (0,+∞) for all t ∈ [0,+∞). We call (u(t), S(t), I(t)) an admissible triple
for the objective functional J defined by (2.10). Let Ω be the set of all admissible
triples. Obviously Theorem 3.1 shows that Ω is not empty. We now fix T > 0, and
consider the optimal control problem (2.10) and (2.11), that is, seeking the minimal
of J in the admissible set Ω. To this end, and for reader’s convenience, we first recall
some theoretical results from optimal control theory (see, e.g., Ref. 25).

Let A be a subset of the t− x space R
n+1, and A(t) be the projection of A on

the x space at t, that is A(t) = {x ∈ R
n : (t, x) ∈ A}. Let B be a given subset

in the (t1 − x1) − (t2 − x2) space R
n+1 × R

n+1. For every (t, x) ∈ A, let U(t, x)
be a given subset of the u-space R

m and M ⊂ R
1+n+m be the set of all (t, x, u)

with (t, x) ∈ A. Let Q̃(t, x) ⊂ R
n+1 be the set of all (z0, z) with z0 ≥ f0(t, x, u),

z = f(t, x, u) for some u ∈ U(t, x), where f0(t, x, u) and f(t, x, u) are functions for
the following optimal control problem of Lagrange type:

Minimize J(x, u) = g(t1, x1, t2, x2) +
∫ t2

t1

f0(t, x(t), u(t))dt

{
ẋ(t) = f(t, x, u), t ∈ [t1, t2] a.e.,

(t, x(t)) ∈ A, u(t) ∈ U(t, x(t)), (t1, x(t1), t2, x(t2)) ∈ B,
(4.1)
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where x(t) ∈ R
n, u(t) ∈ R

m, x is absolutely continuous, u is measurable in [t1, t2]
and f0(·, x(·), u(·)) is Lebesgue-integrable in [t1, t2] and g(t1, x1, t2, x2) is lower semi-
continuous in B.

We now introduce the Filippov’s Existence Theorem for the Lagrange problem
(4.1) (see Ref. 25, p. 314).

Theorem 4.1. Let A and M be compact, B closed, and g lower semicontinuous on
B. Assume that f0(t, x, u) and f(t, x, u) are continuous on M . If for almost all t the
sets Q̃(t, x) with x ∈ A(t) are convex, then the functional J(x, u) given by (4.1) has
an absolute minimum in the nonempty class Ω of all admissible pairs (x(t), u(t)).

4.1. Existence of optimal bang-bang control

By employing the above result to (2.10) and (2.11), we can obtain the existence of
optimal control for this problem, the proof of which is given in the Appendix.

Theorem 4.2. There exists a solution to the optimal control problem (2.10) and
(2.11).

To further characterize the optimal control, we need the following definition.

Definition 4.1. We call u ∈ U a bang-bang control if it only assumes its boundary
values. We call t∗ ∈ (0, T ) a switching time of the bang-bang control u ∈ U if
limt→t∗ u(t) does not exist.

It turns out that the optimal control for (2.10) and (2.11) is such a control:

Theorem 4.3. The optimal control of (2.10) and (2.11) is a bang-bang control.

The proof of this theorem is given in the Appendix.

4.2. Switching times of bang-bang control

For a bang-bang control, determining the switching times is obviously of both the-
oretical and practical importance. Unfortunately, for most such controls, switching
times cannot be explicitly obtained, and numeric computations are naturally sec-
ond choice. As such, computational methods for switching times of a bang-bang
control have been widely discussed in the literature, see, for instance, Refs. 27–29.

In many existing works, the number of switching times is typically assumed to
be finite in the calculations. However, a priori information on the finiteness or the
number of switching times is essential for implementing a bang-bang control. In
this direction, Sussmann30 obtained an upper bound for the number of switching
times for a time-optimal control problem. Wickwire31,32 and Behncke17 developed
some techniques to obtain the uniqueness of the switching time for their models.
However, the aforementioned techniques do not seem to be applicable (at least,
directly) to the model in the current paper. In the following, we shall prove that
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there is, indeed, only a finite number of switchings for the optimal bang-bang control
for (2.10) and (2.11). To this end, we first derive the condition that governs the
switching times.

Theorem 4.4. The optimal bang-bang control u∗ of (2.10) and (2.11) satisfies

u∗(t) =

{
0 if λ1(t) < 1,

q if λ1(t) > 1,
(4.2)

where (λ1, λ2) satisfies the adjoint Eqs. (A.2).

The detailed derivation (proof) is given in the Appendix.
The following theorem confirms that there are only finite many switching times

for the optimal (bang-bang) control for (2.10) and (2.11).

Theorem 4.5. If α > 1 and I0 > 0, then the optimal control u∗ of (2.10) and
(2.11) has a finite number of switchings.

The proof is given in the Appendix.

4.3. A shooting method for the optimal control problem

The optimal bang-bang control for (2.10) and (2.11) confirmed above cannot be
obtained explicitly. From the results in Sec. 4 (i.e., Theorems 4.3 and 4.4), we know
that solving (2.10) and (2.11) is equivalent to determining the switching times of
the bang-bang control. In this section, we develop a scheme for this purpose, by
using the idea of shooting proposed in Ref. 27.

Combining the state system (2.11) with the adjoint system (A.2) and the
transversality condition (A.10), we have the following system



Ṡ = k(1 − p) − (µ+ u)S − βIS,

İ = βIS − (µ+ d+ r)I,

λ̇1 = −u− αβI + λ1(µ+ u+ βI) − λ2βI,

λ̇2 = −αβS + λ1βS − λ2(βS − µ− d− r),

(S(0), I(0)) = (S0, I0) ∈ (0, ∞) × (0, ∞),

(λ1(T ), λ2(T )) = (0, 0),

u∗(t) =

{
0 if λ1(t) < 1,

q if λ1(t) > 1.

(4.3)

We need to find a set of switching times of u∗ so that the optimality system (4.3)
is solved. We note that the optimality system (4.3) is not a standard initial value
problem for (S, I, λ1, λ2) since only the initial values for (S, I) are given, while for
(λ1, λ2) it is the terminal values that are prescribed.
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Note that λ1(T ) = 0 < 1. We conclude from Theorem 4.4 and the absolute
continuity of λ1 that u∗(t) = 0 for t ∈ (tf , T ), where tf is the last switching time
of u∗(t). This suggests that we can solve (4.3) backward. To this end, let ũ(t) =
u(T − t), S̃(t) = S(T − t), Ĩ(t) = I(T − t), λ̃1(t) = λ1(T − t) and λ̃2(t) = λ2(T − t)
for all t ∈ [0, T ]. Then the optimality system (4.3) is transformed to



˙̃S = −[k(1 − p) − (µ+ ũ)S̃ − βĨS̃],

˙̃I = −[βĨS̃ − (µ+ d+ r)Ĩ ],

˙̃
λ1 = ũ+ αβĨ − λ̃1(µ+ ũ+ βĨ) + λ̃2βĨ,

˙̃
λ2 = αβS̃ − λ̃1βS̃ + λ̃2(βS̃ − µ− d− r),

(S̃(T ), Ĩ(T )) = (S0, I0) ∈ (0,∞) × (0,∞),

(λ̃1(0), λ̃2(0)) = (0, 0),

ũ∗(t) =

{
0 if λ̃1(t) < 1,

q if λ̃1(t) > 1.

(4.4)

Using the shooting method proposed in Ref. 27, for given (a, b) ∈ (0,∞) × (0,∞),
we can solve the following initial value problem (4.5) without the terminal condition
for (S̃(t), Ĩ(t)): 



˙̃S = −[k(1 − p) − (µ+ ũ)S̃ − βĨS̃],

˙̃I = −[βĨS̃ − (µ+ d+ r)Ĩ ],

˙̃
λ1 = ũ+ αβĨ − λ̃1(µ+ ũ+ βĨ) + λ̃2βĨ,

˙̃
λ2 = αβS̃ − λ̃1βS̃ + λ̃2(βS̃ − µ− d− r),

(S̃(0), Ĩ(0)) = (a, b) ∈ (0,∞) × (0,∞),

(λ̃1(0), λ̃2(0)) = (0, 0),

ũ∗(t) =

{
0 if λ̃1(t) < 1,

q if λ̃2(t) > 1.

(4.5)

The terminal value (S̃T , ĨT ) of (S̃(t), Ĩ(t)) for the initial value problem (4.5) will be
implicitly dependent on (a, b). Let G(a, b) = (S̃T , ĨT )− (S0, I0). Then, solving (4.4)
is reduced to solving

G(a, b) = 0. (4.6)

We point out that in general it is difficult, if not impossible, to find an explicit
expression for G(a, b), and hence, numerical solutions are naturally sought. In the
next section, we will present some results of numerical solutions based on this
shooting method.
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5. Numerical Results

In this section, we present some numerical results on the solutions of the optimality
system (4.4) by using the scheme proposed in Sec. 4.3 based on the shooting method.
We are also interested in the impact of the key parameters α (ratio of infection loss
and vaccination cost), β (transmission rate), p (vaccination rate for new recruits)
and r (recovery rate), so we will present our numerical results for different set
of values for these parameters. We prescribe our relative error for implementing
the shooting method for (4.6) to be O(10−8). Since the focus here is to illustrate
the scheme developed in the preceding section, we do not endeavour to obtain the
parameter values from clinic data, to which it is generally not easy to have access.
As such, we will take liberty to choose these parameter values to show the feasibility
of the scheme. Once the data for a particular flu strain is available, the numerical
computation of the switching times for the optimal control can be similarly done.

5.1. Effect of the ratio of infection losses and the vaccination cost

We note that the ratio parameter α only appears in the objective function of the
optimal control problem (2.10) and (2.11), while other parameters are included in
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Fig. 1. Numerical results of (4.5) and (4.6) when S0 = 0.9, I0 = 0.01, β = 0.1, µ = 0.01, d = 0.04,
k = 0.015, p = 0.5, q = 0.15, r = 0.1, and T = 365.
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the state equations. To explore the effect of α, we fix other parameters β = 0.1, µ =
0.01, d = 0.04, k = 0.015, p = 0.5, q = 0.15, r = 0.1. The initial values for S and I

are chosen to be S0 = 0.9, I0 = 0.01 and the T = 365.
Figure 1 presents the numerical results for four values of α ∈ {950, 1000,

1500, 2000}. For α ≤ 900, numerical simulations show that the optimal control
is identical to zero, which means that no vaccination is needed. If α is large
enough, e.g., larger than 950 (see Fig. 1), then there exists a single switching time
for the optimal bang-bang control, which indicates that vaccination is needed at
the beginning of influenza epidemic. The larger the magnitude of α, the longer
the vaccination period and the larger the total vaccinated population given by
h(t) =

∫ t

0 u(ξ)S(ξ)dξ.

5.2. Effect of the transmission rate on the optimal control

We are also interested in determining how the transmission rate β affects the
optimal vaccination strategies. To this end, we fix α = 1000, µ = 0.01, d = 0.04,
p = 0.5, q = 0.15, r = 0.1, T = 365, and let S0 = 0.9, I0 = 0.01. The
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Fig. 2. Numerical results of (4.5) and (4.6) when S0 = 0.9, I0 = 0.01, α = 1000, µ = 0.01,
d = 0.04, p = 0.5, q = 0.15, r = 0.1, T = 365.
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numerical results for system (4.5) and (4.6) are presented in Fig. 2 for five val-
ues of β ∈ {0.01, 0.05, 0.1, 0.5, 1}.

We can see from the numerical simulations that when the transmission rate is
very small (e.g., β ≤ 0.01), the optimal control u∗ is identical to zero on [0, T ],
meaning that no vaccination is needed from the view point of the optimal control;
while on the other extreme side, that is, when β is close to 1, vaccination is needed
for most of the time. It is also seen that when the vaccination is needed, there
exists one switching time for the optimal control. Moreover, when β is close to 1,
the populations of vaccinated, susceptible and infected individuals change rapidly
in time, in contrast to the case when β is close to 0.01.

5.3. Effect of vaccination rate p for new recruits

on the optimal control

To see the influence of the vaccination fraction p, we fix α = 1000, β = 0.1, µ =
0.01, d = 0.04, k = 0.015, q = 0.15, r = 0.1, T = 65 and let S(0) = 0.9, I(0) = 0.01.

The numerical simulations are presented in Fig. 3 for (4.5) and (4.6) for
p ∈ {0, 0.01, 0.1, 0.5, 1}, which seem to suggest that the optimal control, optimal
trajectories and the infected populations are not that sensitive to p, in contrast to
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Fig. 3. Numerical results of (4.5) and (4.6) with S0 = 0.9, I0 = 0.01, α = 1000, β = 0.1, µ = 0.01,
d = 0.04, k = 0.015, q = 0.15, r = 0.1, T = 365.
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Fig. 4. Numerical results of (4.5) and (4.6) with S0 = 0.9, I0 = 0.01, α = 1000, β = 0.1, µ = 0.01,
d = 0.04, k = 0.015, p = 0.5, q = 0.15, T = 365.

the impact of α and β. This is biologically understandable since both k(1− p) and
kp are very small, and hence, the contribution of new recruits is very small.

5.4. Effect of the recovery rate r

Figure 4 are results of numerical simulations of (4.5) and (4.6), where the parame-
ters α = 1000, β = 0.1, µ = 0.01, d = 0.04, k = 0.015, p = 0.5, q = 0.15, T = 365 and
the initial values S0 = 0.9, I0 = 0.01 are fixed, and the recovery rate r is given four
different values: r ∈ {0, 0.01, 0.1, 0.9} to show the effects of the recovery rate r. It
is clear from Fig. 4 that the larger the recovery rate is, the shorter the duration of
the optimal vaccination time interval will be. In particular, when r is close to 1, the
density of the infected population drops rapidly with respect to time t. Even though
we are considering vaccination strategies from the view point of optimal control, it
is still imaginable that efficient treatment, which would enhance recovery, can also
contribute significantly to the control of the disease.

6. Conclusion

In order to model the optimal vaccination strategies during an influenza epidemic,
we have proposed in this paper an optimal control model (2.10) and (2.11) where the
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objective functional and the state equations are linear with respect to the scalar
vaccination rates. We have addressed the well-posedness of the optimal control
model, and have proved the existence of the optimal bang-bang control and have
derived the characteristics of the bang-bang control including the finiteness of the
switching times. Based on a shooting technique, we have formulated a scheme for
solving the optimal control problem. We have also provided some numerical results
by implementing the scheme, which reveal, in various ways, the impact of some key
parameters.

Notice that in our numerical simulations for our model under the given param-
eter values, only one switching has been observed. According to Theorem 4.4, the
uniqueness of switching point is due to the fact that the co-state variable λ1 is not
oscillatory around 1 in a given time period. In a general situation, even finding
an upper bound of the switching times of an optimal bang-bang control is very
challenging, let alone finding exact times of switching.

The existence of a switching point in our numerical simulations depends sensi-
tively on the magnitude of the transmission rate β, as well as the ratio α of infection
losses and the vaccination costs. As is seen in Secs. 5.1 and 5.2, when α or β is suf-
ficiently small, the optimal control is identical to zero; when α or β is sufficiently
large, the optimal control has a switching point and vaccination is needed most of
the time. The influenza vaccination rate p for new recruits turns out to have less
impact on the optimal control than α and β do. Our results also show that if vacci-
nation is needed, it should be applied as early as possible, to the maximal capacity,
as can be seen from the numerical results. Such a conclusion is also obtained in
Ref. 17 for some models.

We point out that the solutions of the optimality system (4.3) are sensitive to
the initial guesses when shooting method is applied. In this paper, the relative error
for shooting method is O(10−8) which is achieved through a basic search method.
For more advanced high precision computations of optimality systems, a reader is
referred to, e.g., Refs. 28 and 29.

We end this section by pointing out that in this paper we only choose a simple
SIR model to start with. There have been many SIR models developed in the litera-
ture, with emphasis on various aspects of the disease. For example, some considered
more realistic demographic terms, some incorporated other infection mechanism
rather than the mass action. There are models containing latent sub-populations
and there are also models with relapse sub-populations. Starting from any of these
existing models, one can incorporate vaccinations (and possibly treatment) and
explore the optimal vaccination strategy in a similar way to this paper. It is in
this sense that this paper provides a general frame work for a class of optimal
vaccination problems; particularly the shooting method in deriving the scheme for
computing the switching times of the optimal control should also be feasible for
optimal vaccination problems built on other SIR models.
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Appendix: Proofs of Theorems

In this section, we provide the proofs of the main theorems in this paper.

Proof of Theorem 3.1. Let a > 0, b > 0 be positive constants and

f(t, S, I) = (k(1 − p) − (µ+ u(t))S − βIS, βIS − (µ+ d+ r)I),

D = {(t, S, I) : 0 ≤ t ≤ a, |(S, I) − (S0, I0)| ≤ b}.
Since each coordinate of f(t, S, I) is a polynomial of S, I and u, it is clear that
f(t, S, I) satisfies (3.2) and the Carathéodory conditions onD. Then by Lemmas 3.1
and 3.2, there exists a unique solution (S, I) on some interval [0, c], with 0 < c ≤ a,
to system (2.11) with initial values S0 > 0 and I0 > 0.

Claim 1. I(t) > 0 and S(t) > 0 for all t ∈ [0, c]. From the second equation of
system (2.11) it is clear that I(t) = I0e

R t
0 (βS(s)−µ−d−r)ds > 0 for all t ∈ [0, c]. Since

the function u(t) in (2.11) may not be continuous, the variation-of-constant method
can not be applied to prove S(t) > 0, and hence we need to seek an alternative way
as below.
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We first show that S(t) ≥ 0 for all t ∈ (0, c). Suppose not. Since S0 > 0, there
exist t0 ∈ (0, c) and ε0 > 0 small enough so that S(t0) = 0 and S(t) < 0 for all
t ∈ (t0, t0 + ε0). We note that in the interval [0, c] the solution (S, I) is absolutely
continuous and u is uniformly bounded. Then we can choose ε ∈ (0, ε0) small enough
so that Ṡ(t) = k(1 − p) − (µ + u(t))S(t) − βI(t)S(t) > 0 for almost all t ∈ (t0,
t0 + ε). Therefore, we have

S(t) =
∫ t

t0

Ṡ(s)ds > 0 for all t ∈ (t0, t0 + ε) ⊆ (t0, t0 + ε0).

This is a contradiction and hence S(t) ≥ 0 for all t ∈ (0, c).
We now show that S(t) 	= 0 for all t ∈ (0, c). Otherwise, there exists t∗ ∈ (0, c)

so that S(t∗) = 0. By the absolute continuity of S, I and the boundedness of u we
know that Ṡ(t) = k(1− p)− (µ+ u(t))S(t)− βI(t)S(t) > 0 for almost all t in some
open neighborhood (t∗−ε, t∗+ε) ⊆ (0, c) of t∗. Then we have S(t) =

∫ t

t∗ Ṡ(s)ds < 0
for all t ∈ (t∗ − ε, t∗). This contradicts the fact that S(t) ≥ 0 for all t ∈ (0, c).
Therefore, we have S(t) > 0 for all t ∈ (0, c). Similarly, we can show that S(c) 	= 0
and hence S(t) > 0 for all t ∈ [0, c]. This completes the proof of Claim 1.

Next, we show that (S, I) can be extended to [0,+∞). Let [0, c∞) be the maximal
existence interval for (S, I). Then by Claim 1 we have (S(t), I(t)) ∈ (0,+∞) ×
(0,+∞) for every t ∈ [0, c∞). If c∞ = +∞, then the proof is complete. If c∞ < +∞,
then at least one of the limits limt→c∞ S(t) = +∞ and limt→c∞ I(t) = +∞ is
valid, otherwise, by the claim we conclude that [0, c∞) is not the maximal existence
interval for (S, I). We distinguish the following three cases:

Case 1. limt→c∞ S(t) = +∞ and limt→c∞ I(t) = +∞. By the first equation of
system (2.11), we have limt→c∞ Ṡ(t) = −∞ which implies that there exists ε > 0
such that S(t) is monotonically decreasing on (c∞−ε, c∞) and hence limt→c∞ S(t) <
+∞. This is a contradiction.

Case 2. limt→c∞ S(t) = +∞ and limt→c∞ I(t) < +∞. Then by the first equation
of system (2.11) we also have limt→c∞ Ṡ(t) = −∞. By Claim 1, we also obtain a
contradiction.

Case 3. limt→c∞ S(t) < +∞ and limt→c∞ I(t) = +∞. Then by the first equation
of system (2.11) we also have limt→c∞ Ṡ(t) = −∞. By Claim 1, we also obtain a
contradiction.

Therefore we have c∞ = +∞ and hence the solution (S, I) can be extended
for all t ∈ [0,+∞) with (S(t), I(t)) ∈ (0,+∞) × (0,+∞). This completes
the proof.

Proof of Theorem 4.2. Let (S0, I0) ∈ (0,∞) × (0,∞) be given. Adding the Ṡ
and İ equations in (2.11) leads to d

dt [S(t) + I(t)] ≤ k(1 − p)− µ[S(t) + I(t)] which
implies that [S(t)+ I(t)] ≤ [S0 + I0]+ k(1− p)/µ =: L for t ≥ 0. Thus, S(t) ∈ [0, L]
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and I(t) ∈ [0, L] for t ∈ [0, T ]. Let


f0 = uS + αβSI,

f = (k(1 − p) − (µ+ u)S − βIS, βIS − (µ+ d+ r)I),

g = 0,

n = 2, m = 1, t1 = 0, t2 = T,

(S(0), I(0)) = (S0, I0),

A = [0, T ]× [0, L] × [0, L],

B = {0} × {(S0, I0)} × {T } × R
2,

U = [0, q].

Note that A is compact in R
3, M = A×U is compact, and B = {0}× {(S0, I0)}×

{T } × R
2 is closed. Let Q̃(t, S, I) ⊂ R

3 be the set of all (z0, z) with z0 ≥ f0(t, S,
I, u), z = f(t, S, I, u) for some u ∈ U . Let (t, S, I) ∈ A, (z0

1 , z1) ∈ Q̃(t, S, I) and
(z0

2 , z2) ∈ Q̃(t, S, I). Then there exist u1 ∈ U, u2 ∈ U so that{
z0
1 ≥ f0(t, S, I, u1), z1 = f(t, S, I, u1),

z0
2 ≥ f0(t, S, I, u2), z2 = f(t, S, I, u2).

We note that both f and f0 are linear in u. Then for every s ∈ [0, 1] we have{
sz0

1 + (1 − s)z0
2 ≥ f0(t, S, I, su1 + (1 − s)u2),

sz1 + (1 − s)z2 = f(t, S, I, su1 + (1 − s)u2).

Note that U is convex, we have (sz0
1 + (1 − s)z0

2 , sz1 + (1 − s)z2) ∈ Q̃(t, S, I) with
su1 + (1− s)u2 ∈ U . It follows that Q̃(t, S, I) is convex. Then applying Lemma 4.1,
there exists a solution of the optimal control problem (2.10) and (2.11).

Proof of Theorem 4.3. We prove the theorem by applying the Pontaryagin’s
maximum principle to (2.10) and (2.11). The Hamiltonian is

H(S, I, λ1, λ2) = uS + αβSI + λ1[k(1 − p) − (µ+ u)S − βIS]

+λ2[βIS − (µ+ d+ r)I], (A.1)

where (λ1(t), λ2(t)) satisfies the adjoint equations

λ̇1 = −∂H

∂S
= −u− αβI + λ1(µ+ u+ βI) − λ2βI,

λ̇2 = −∂H
∂I

= −αβS + λ1βS − λ2(βS − µ− d− r).

(A.2)

Let

ψ(t) =
∂H

∂u
= S(t) − λ1(t)S(t). (A.3)

Suppose that the optimal control is not bang-bang, that is, u is singular in an open
interval O ⊂ [0, T ]. Then ψ(t) = 0 for all t ∈ O. By Theorem 3.1, we know that
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S(t) > 0 for all t ∈ [0, T ]. Then by (A.3) we have λ1(t) = 1 for all t ∈ O. It follows
from (A.2) that the equations


λ2 = 1 − α+

µ

βI
,

λ̇2 = (1 − α)βS − λ2(βS − µ− d− r),
(A.4)

hold for all t ∈ O. By (A.4) and by the second equation of (2.11) we have

λ̇2 = −µ
β

İ

I2
= −µ

β

βS − µ− d− r

I
, for all t ∈ O. (A.5)

Then by (A.4) and (A.5) we have

(1 − α)βS = (1 − α)(βS − µ− d− r). (A.6)

This is a contradiction since µ + d + r 	= 0 and hence the optimal control is
bang-bang.

Proof of Theorem 4.4. By Theorem 4.3, we know that the optimal control is
bang-bang. Then the switching function ψ(t) defined by (A.3) satisfies

u∗(t) =

{
0 if ψ(t) > 0,

q if ψ(t) < 0.
(A.7)

By Theorem 3.1, we have S(t) > 0 for t ≥ 0. Then ψ(t) = S(t) − λ1(t)S(t) > 0
corresponds to λ1(t) < 1 while ψ(t) = S(t) − λ1(t)S(t) < 0 corresponds to
λ1(t) > 1.

Proof of Theorem 4.5. For notational convenience, we assume, in the proof, that
(S, I) and (λ1, λ2) are solutions associated with u∗ for (2.11) and (A.2), respectively.
By Theorem 4.4, if t∗ ∈ (0, T ) is a switching time of u∗, then λ1(t∗) = 1, where
(λ1, λ2) satisfies the adjoint equations (A.2). Moreover, by the boundedness of u
and the absolute continuity of S, I, λ1 and λ2, we have

lim
t→t∗

λ̇1(t) = λ̇1(t∗) = µ+ (1 − α− λ2(t∗))βI(t∗). (A.8)

Then λ1 is continuously differentiable at t∗ and hence on (0, T ). By the boundedness
of u∗ and by (2.11) and (A.2), we obtain

λ̈1(t) = (λ1(t) − λ2(t) − α)βİ(t) + λ̇1(t)(µ + u∗(t) + βI(t)) − λ̇2(t)βI(t), (A.9)

for almost all t ∈ (0, T ). Therefore, λ1 is twice continuously differentiable for almost
all t ∈ (0, T ).

Now we show that u∗ has a finite number of switchings in (0, T ). By the way of
contradiction, we assume the opposite. Then, by Theorem 4.4, λ1 − 1 has infinitely
many zeros in (0, T ). Consequently there exists a sequence {tn}+∞

n=1 ⊂ (0, T ) so
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that λ1(tn) = 1 for all n ∈ N. The boundedness of {tn}+∞
n=1 implies that there

exists t0 ∈ [0, T ] so that limn→+∞ tn = t0 and λ1(t0) = limn→+∞ λ1(tn) = 1. Since
there is no terminal cost and the terminal state is free for (2.10) and (2.11), the
transversality condition for the adjoint variable (λ1(t), λ2(t)) satisfies

(λ1(T ), λ2(T )) = (0, 0). (A.10)

Since λ1(t0) = 1, it follows from (A.10) that t0 ∈ [0, T ), and hence

λ̇1(t0) = lim
n→+∞

λ1(tn) − λ1(t0)
tn − t0

= lim
n→+∞

1 − 1
tn − t0

= 0, (A.11)

where λ̇1(t0) is understood to be the right derivative if t0 = 0. We distinguish two
cases:

Case 1. t0 ∈ (0, T ). It follows from (2.11), (A.2), (A.9) and (A.11) that

lim
t→t0

λ̈1(t) = (1 − λ2(t0) − α)βİ(t0) − λ̇2(t0)βI(t0)

= β(1 − λ2(t0) − α)(βI(t0)S(t0) − (µ+ d+ r)I(t0))

− β(1 − λ2(t0) − α)βS(t0)I(t0) − (µ+ d+ r)βI(t0)λ2(t0)

= (α− 1)(µ+ d+ r)βI(t0) > 0.

Thus, there exists ε > 0 so that λ̈1(t) > 0 for almost all t ∈ (t0 − ε, t0 + ε). This,
together with (A.11), implies that

λ̇1(t) =
∫ t

t0

λ̈1(s)ds =

{
< 0 for all t ∈ (t0 − ε, t0),

> 0 for all t ∈ (t0, t0 + ε).
(A.12)

Therefore, λ1(t) > 1 for all t ∈ (t0 − ε, t0 + ε) except at t = t0 where λ1(t0) = 1. By
Theorem 4.4 there is no switching in the neighbourhood of t0. This is a contradiction
since t0 is an limit point of the switching times.

Case 2. t0 = 0. In this case, from (2.11), (A.2), (A.9) and (A.11), we can similarly
obtain the following for the right-sided limit at t0:

lim
t→t+0

λ̈1(t) = (1 − α)(µ + d+ r)βI(t0) > 0.

This, together with (A.11), also implies that there is an ε > 0 such that λ1(t) > 0 for
t ∈ (t0, t0 + ε). That is, there is no switching in (t0, t0 + ε), which is a contradiction
to the fact that t0 is an accumulation point of the switching times. This completes
the proof.
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