This article was downloaded by: [Canadian Research Knowledge Network]
On: 1 August 2009
Access details: Access Details: [subscription number 908883645]
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Biological Dynamics

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t744398444

Dynamics of an HIV-1 therapy model of fighting a virus with another virus

Xiamei Jiang ${ }^{\text {a }}$; Pei Yu ${ }^{\text {b }}$; Zhaohui Yuan ${ }^{\text {c }}$; Xingfu Zou ${ }^{\text {b }}$
a Department of Computer and Mathematical Sciences, University of Toronto at Scarborough, Toronto, Ont., Canada ${ }^{\text {b }}$ Department of Applied Mathematics, University of Western Ontario, London, Ont., Canada ${ }^{\text {c }}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, China

First Published:July2009

To cite this Article Jiang, Xiamei, Yu, Pei, Yuan, Zhaohui and Zou, Xingfu(2009)'Dynamics of an HIV-1 therapy model of fighting a virus with another virus',Journal of Biological Dynamics,3:4,387 - 409
To link to this Article: DOI: 10.1080/17513750802485007
URL: http://dx.doi.org/10.1080/17513750802485007

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


Dynamics of an HIV-1 therapy model of fighting a virus with another virus

Xiamei Jiang ${ }^{\text {a }}$, Pei Yu ${ }^{\text {b }}$, Zhaohui Yuan ${ }^{\text {c }}$ and Xingfu Zou ${ }^{\text {b }}$ *
${ }^{a}$ Department of Computer and Mathematical Sciences, University of Toronto at Scarborough, Toronto, Ont., Canada; ${ }^{b}$ Department of Applied Mathematics, University of Western Ontario, London, Ont., Canada; ${ }^{c}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, China

(Received 25 January 2008; final version received 11 September 2008)

Abstract

In this paper, we rigorously analyse an ordinary differential equation system that models fighting the HIV-1 virus with a genetically modified virus. We show that when the basic reproduction ratio $\mathcal{R}_{0}<1$, then the infection-free equilibrium E_{0} is globally asymptotically stable; when $\mathcal{R}_{0}>1, E_{0}$ loses its stability and there is the single-infection equilibrium E_{s}. If $\mathcal{R}_{0} \in(1,1+\delta)$ where δ is a positive constant explicitly depending on system parameters, then the single-infection equilibrium E_{s} that is globally asymptotically stable, while when $\mathcal{R}_{0}>1+\delta, E_{\mathrm{s}}$ becomes unstable and the double-infection equilibrium E_{d} comes into existence. When \mathcal{R}_{0} is slightly larger than $1+\delta, E_{\mathrm{d}}$ is stable and it loses its stability via Hopf bifurcation when \mathcal{R}_{0} is further increased in some ways. Through a numerical example and by applying a normal form theory, we demonstrate how to determine the bifurcation direction and stability, as well as the estimates of the amplitudes and the periods of the bifurcated periodic solutions. We also perform numerical simulations which agree with the theoretical results. The approaches we use here are a combination of analysis of characteristic equations, fluctuation lemma, Lyapunov function and normal form theory.

Keywords: HIV-1 dynamics; recombinant virus; stability; Lyapunov function; LaSalle invariance principle; fluctuation lemma

AMS Subject Classification: 34K25; 34K60; 92B05; 92D30

1. Introduction

In recent years, mathematical modelling has contributed greatly to the understanding of HIV-1 infection in host and has provided valuable insight into HIV-1 pathogenesis. Among various models is the class by differential equations, which quantitatively describe the dynamics of the HIV-1 virus, healthy and infected cells and even possibly the immune responses. By studying these models, researchers have gained much knowledge about the mechanism of the interactions of these components within a host, and have thereby enhanced the progress in understanding the HIV-1 infection (see, e.g. [14-17]). Such understanding in turn may offer guidance for developing new drugs and for designing optimal combination of existing therapies (see, e.g. [6,10,18] and the references therein).

[^0]A standard and classic differential equation model for HIV infection is the following system of ordinary differential equations (ODEs) (see, e.g. [10,14,16]):

$$
\begin{align*}
\dot{x} & =\lambda-d x-\beta x v, \\
\dot{y} & =\beta x v-a y, \tag{1}\\
\dot{v} & =k y-p v,
\end{align*}
$$

where $x(t), y(t)$ and $v(t)$ are the densities of uninfected target cells, infected target cells and the free virus, respectively, at time t. Here a mass action infection mechanism is adopted, with an infection rate constant β. The healthy cell is assumed to be produced at a constant rate λ. It is also assumed that once cells are infected, they may die at rate a either due to the action of the virus or the immune system, and in the mean time, they each produces HIV- 1 virus particles at a rate k during their life which on average has length $1 / a$.

It is known that the HIV-1 virus load is a crucial measurement of the severity of an HIV-1 carrier. When the load exceeds certain level after a clinically latent phase, the $\mathrm{CD}^{+} \mathrm{T}$-cell count declines drastically, indicating a transition from HIV to AIDS (see, e.g. [5,20]). Most of the existing therapies for HIV and/or AIDS employ inhibitors of the enzymes required for replication of HIV-1 virus to reduce the load (see, e.g. [3,8]). Recent progress in genetic engineering has offered an alternative approach: modification of a viral genome can produce recombinants capable of controlling infections by other virus. Indeed, this method had been used to modify rhabdovirus, including the rabies and the vesicular stomatitis, making them capable of infecting and killing cells previously attacked by HIV-1 (for details, see, e.g. [9,13,19,22]). To understand this approach of fighting a virus with a genetically modified virus, Revilla and Garcia-Ramos [18] proposed a mathematical model which is a result of incorporating into Equation (1) two more variables: the density w of the recombinant (genetically modified) virus and the density z of doubly infected cells.

$$
\begin{align*}
\dot{x} & =\lambda-d x-\beta x v, \\
\dot{y} & =\beta x v-a y-\alpha w y, \\
\dot{z} & =\alpha w y-b z, \tag{2}\\
\dot{v} & =k y-p v, \\
\dot{w} & =c z-q w .
\end{align*}
$$

Here it is assumed that (i) recombinant infects cells previously infected by the pathogen, turning them at rate $\alpha w y$ into doubly infected cells, and in the mean time, recombinants are removed at a rate $q w$ and (ii) the doubly infected cells die at a rate of $b z$ and release recombinants at a rate $c z$.

In [18], the authors only analysed the structure of the equilibria of the system (2) and performed some numerical simulations. System (2) has a dimension higher than 2, and it is well known that for systems with higher dimensions, equilibria cannot determine solutions' long-term behaviours, and complicated dynamics (periodic solutions and even chaos) may occur which would make the system unpredictable. Therefore, theoretically determining the global dynamics of Equation (2) is an important yet challenging problem, and this constitutes the purpose of this paper. In Section 2, we will justify the well-posedness of the model by showing the positivity and boundedness of solutions of Equation (2) and review the existence result on equilibria and the basic reproduction number \mathcal{R}_{0}. In Section 3, we show that when $\mathcal{R}_{0}<1$, the disease-free equilibrium is globally asymptotically stable, and when $\mathcal{R}_{0}>1$ it is unstable. In Section 4, we prove that there is a $\delta>0$ depending on all parameters except for λ, such that if $1<\mathcal{R}_{0}<1+\delta$, then the single-infection equilibrium exists and is globally asymptotically stable, and when $\mathcal{R}_{0}>1+\delta$, this equilibrium loses its stability. Note that $\mathcal{R}_{0}>1+\delta$ is also the condition for the existence of double-infection
equilibrium. In Section 5, we analyse the stability of the double-infection equilibrium E_{d} and prove that when \mathcal{R}_{0} is slightly larger than $1+\delta$, solutions of the model converge to the E_{d}; but when \mathcal{R}_{0} is further increased in some way, E_{d} loses its stability via Hopf bifurcation, giving rise to stable periodic solutions. This theoretical result confirms what we stated earlier: equilibria cannot fully determine the solution dynamics, and stability analysis is important and indeed necessary. Through a numerical example, we illustrate in Section 6 how to obtain more information about the Hopf bifurcation, including the bifurcation direction, the stability, amplitude and frequency of the bifurcated periodic solution. Such information is crucial for giving good estimates of the virus load and healthy cells' density in the case that these quantities are periodic in time variable t (i.e. sustained fluctuations), based on which, a therapy is usually determined. It may also provide guidance for designing a optimal clinical sampling strategy, such as the best time intervals of sampling. The approaches we used here are a combination of analysis of characteristic equations, fluctuation lemma, Lyapunov function and normal form theory. Our numerical simulations agree with the theoretical results. In the last section, we summarize the main results and discuss possible modifications of the model.

2. Well-posedness, equilibria and basic reproduction numbers

Since the variables are densities which cannot be negative, one expects that starting from nonnegative initial values, the corresponding solution remains non-negative. This can be easily confirmed as below. First, from the first equation of Equation (2), we have

$$
x(t)=\mathrm{e}^{-\int_{0}^{t}(d+\beta v(s)) \mathrm{d} s} x(0)+\lambda \int_{0}^{t} \mathrm{e}^{-\int_{\mathrm{s}}^{t}(d+\beta v(\xi)) \mathrm{d} \xi} \mathrm{~d} s
$$

implying $x(t)>0$ for $t>0$ provided that $x(0) \geq 0$. In a similar way, one can establish nonnegativity of the other four variables $y(t), z(t), v(t), w(t)$ for $t>0$ provided that $y(0) \geq 0$, $z(0) \geq 0, v(0) \geq 0$ and $w(0) \geq 0$. Moreover, if in addition, $y(0)>0$ (or $z(0)>0$ or $v(0)>0$ or $w(0)>0)$, then $y(t)>0($ or $z(t)>0$ or $v(t)>0$ or $w(t)>0)$ for $t>0$.

Solutions to Equation (2) also remain bounded. To see this, let ($x(t), y(t), z(t), v(t), w(t))$ be a non-negative solution. Choose $\epsilon_{1} \in(0, a / k)$ and $\epsilon_{2} \in(0, b / c)$, and let

$$
g(t)=x(t)+y(t)+z(t)+\epsilon_{1} v(t)+\epsilon_{2} w(t) .
$$

Then

$$
\begin{aligned}
g^{\prime}(t) & =\lambda-d x-\left(a-\epsilon_{1} k\right) y-\left(b-\epsilon_{2} c\right) z-\epsilon_{1} p v-\epsilon_{2} q w \\
& = \begin{cases}<0 & \text { for } d x+\left(a-\epsilon_{1} k\right) y+\left(b-\epsilon_{2} c\right) z+\epsilon_{1} p v+\epsilon_{2} q w>\lambda, \\
>0 & \text { for } d x+\left(a-\epsilon_{1} k\right) y+\left(b-\epsilon_{2} c\right) z+\epsilon_{1} p v+\epsilon_{2} q w<\lambda .\end{cases}
\end{aligned}
$$

This implies that every component of (x, y, z, v, w) must be bounded. By the extension theory of ODEs, the boundedness of a solution also implies that it exists for all $t \geq 0$.

Model system (2) always has the infection-free equilibrium $E_{0}:(\lambda / d, 0,0,0,0)$. The other two possible biologically meaningful equilibria are

$$
\begin{aligned}
& E_{\mathrm{s}}=\left(\frac{a p}{\beta k}, \frac{\lambda}{a}-\frac{d p}{\beta k}, 0, \frac{\lambda k}{a p}-\frac{d}{\beta}, 0\right) \\
& E_{\mathrm{d}}=\left(\frac{\lambda \alpha c p}{d \alpha c p+\beta b k q}, \frac{b q}{\alpha c}, \frac{q(\alpha \beta \lambda c k-\beta a b k q-\alpha a c d p)}{\alpha c(\beta b k q+\alpha c d p)}, \frac{b k q}{\alpha c p}, \frac{\alpha \beta \lambda c k-\beta a b k q-\alpha a c d p}{\alpha(\beta b k q+\alpha c d p)}\right)
\end{aligned}
$$

with the former being the singly infected equilibrium and the latter being the doubly infected equilibrium. From the biological meaning of the basic reproduction numbers, Revilla and GarciaRamos [18] identified \mathcal{R}_{0} as

$$
\mathcal{R}_{0}=\frac{\beta \lambda k}{a p d} .
$$

Applying the general mathematical theory of basic reproduction numbers for disease model described by ODEs (see, e.g. [21]), we can easily confirm the above formula. It turns out that the value of \mathcal{R}_{0} determines the existence of the single-infection equilibrium: E_{S} exists if and only if $\mathcal{R}_{0}>1$.

The double-infection equilibrium exists (biologically meaningful) if and only if $Q>0$ where

$$
Q=\alpha \beta \lambda c k-\beta a b k q-\alpha a c d p
$$

Introducing the second basic reproduction number

$$
\mathcal{R}_{\mathrm{d}}=\frac{c \lambda \alpha}{a b q}\left(1-\frac{1}{R_{0}}\right)
$$

for the doubly infected cells, one can easily verify that

$$
Q=a \beta b k q\left(\mathcal{R}_{\mathrm{d}}-1\right)
$$

and hence

$$
\mathcal{R}_{\mathrm{d}}>1 \Longleftrightarrow Q>0
$$

For convenience, we denote

$$
D=\beta b k q+\alpha c d p
$$

With the above identities, E_{s} and E_{d} can be expressed by the following simpler formulas:

$$
\begin{aligned}
E_{\mathrm{s}} & =\left(\frac{a p}{\beta k}, \frac{\lambda}{\alpha}\left(1-\frac{1}{R_{0}}\right), 0, \frac{d}{\beta}\left(R_{0}-1\right), 0\right), \\
E_{\mathrm{d}} & =\left(\frac{\lambda \alpha c p}{D}, \frac{b q}{\alpha c}, \frac{q Q}{\alpha c D}, \frac{b k q}{\alpha c p}, \frac{Q}{\alpha D}\right) .
\end{aligned}
$$

In order to analyse local stability of Equation (2) at an equilibrium E, we need to calculate the the Jacobian matrix of Equation (2) at $E=(\hat{x}, \hat{y}, \hat{z}, \hat{v}, \hat{w})$ as below:

$$
J(E)=\left(\begin{array}{ccccc}
-(d+\beta \hat{v}) & 0 & 0 & -\beta \hat{x} & 0 \tag{3}\\
\beta \hat{v} & -\alpha \hat{w}-a & 0 & \beta \hat{x} & -\alpha \hat{y} \\
0 & \alpha \hat{w} & -b & 0 & \alpha \hat{y} \\
0 & k & 0 & -p & 0 \\
0 & 0 & c & 0 & -q
\end{array}\right) .
$$

The characteristic equation of Equation (2) at E is $\operatorname{det}(\lambda I-J(E))=0$, whose roots determine the local stability of E.

3. Stability of the infection-free equilibrium

For the infection-free equilibrium $E=E_{0}$, some fundamental calculations give the corresponding characteristic equation

$$
\begin{equation*}
(\xi+d)(\xi+b)(\xi+q)\left(\xi^{2}+(p+a) \xi+\left(a p-\frac{\beta \lambda k}{d}\right)\right)=0 \tag{4}
\end{equation*}
$$

The stability of E_{0} is determined by the sign of real parts of the roots of Equation (4): if all roots of Equation (4) have negative real parts, then E_{0} is asymptotically stable; if there is at least one root of Equation (4) has positive real part, then E_{0} is unstable. Obviously, it suffices to consider the quadratic equation

$$
\begin{equation*}
\xi^{2}+(p+a) \xi+a p-\frac{\beta \lambda k}{d}=0 \tag{5}
\end{equation*}
$$

Using the Decarte's rule of sign, we know that whether or not the two roots of Equation (5) have negative real part is determined by the sign of $a p-\beta \lambda k / d$: the negativity (positivity) of the real parts of the two root of Equation (5) is equivalent to $a p-\beta \lambda k / d>0(a p-\beta \lambda k / d<0)$, that is, $\mathcal{R}_{0}<1\left(\mathcal{R}_{0}>1\right)$.

Indeed, by employing the fluctuation lemma (see, e.g. [4]), we can prove the global asymptotic stability of the infection-free equilibrium E_{0} under the condition $\mathcal{R}_{0}<1$. For this purpose, we first introduce some basic notations. For a continuous and bounded function $f:[0, \infty) \rightarrow R$, let

$$
f_{\infty}=\lim \inf _{t \rightarrow \infty} f(t), \quad f^{\infty}=\lim \sup _{t \rightarrow \infty} f(t) .
$$

In Section 2, we have shown that for any initial values $x_{0} \geq 0, y_{0} \geq 0, z_{0} \geq 0, v_{0} \geq 0, w_{0} \geq 0$, the corresponding solution $(x(t), y(t), z(t), v(t), z(t))$ remains non-negative and is bounded from above. Therefore, the $\lim \inf _{t \rightarrow \infty}$ and $\lim \sup _{t \rightarrow \infty}$ exist for all these five component functions. By the fluctuation lemma (see, e.g. [4]), there exists a sequence t_{n} with $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x\left(t_{n}\right)=x^{\infty}, \quad \lim _{n \rightarrow \infty} \dot{x}\left(t_{n}\right)=0 \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

From the first equation of Equation (2), we obtain

$$
\dot{x}\left(t_{n}\right)+d x\left(t_{n}\right)+\beta x\left(t_{n}\right) v\left(t_{n}\right)=\lambda .
$$

Letting $n \rightarrow \infty$ in the above equation leads to the following estimate

$$
\begin{equation*}
d x^{\infty} \leq\left(d+\beta v_{\infty}\right) x^{\infty} \leq \lambda \tag{7}
\end{equation*}
$$

Similar treatment to the rest of the equations in Equation (2) gives

$$
\begin{align*}
a y^{\infty} & \leq\left(a+\alpha w_{\infty}\right) y^{\infty} \leq \beta x^{\infty} v^{\infty}, \tag{8}\\
b z^{\infty} & \leq \alpha w^{\infty} y^{\infty}, \tag{9}\\
p v^{\infty} & \leq k y^{\infty}, \tag{10}\\
q w^{\infty} & \leq c z^{\infty} . \tag{11}
\end{align*}
$$

We claim that $y^{\infty}=0$. Otherwise, $v^{\infty}>0$ by Equation (8). From Equations (7), (8) and (10), it follows that

$$
p v^{\infty} \leq k y^{\infty} \leq \frac{k \beta}{a} x^{\infty} v^{\infty} \leq \frac{k \lambda \beta}{a d} v^{\infty}
$$

leading to

$$
p \leq \frac{k \lambda \beta}{a d}
$$

This contradicts to the condition $\mathcal{R}_{0}<1$. Hence, $y^{\infty}=0$ which also implies $z^{\infty}=0, v^{\infty}=$ $0, w^{\infty}=0$ by Equations (7)-(9). Now, by the relation $0 \leq y_{\infty} \leq y^{\infty}$, we then conclude that $y(t) \rightarrow 0$ as $t \rightarrow \infty$. Similarly, $z(t), v(t)$ and $w(t)$ all approach 0 as $t \rightarrow \infty$. Finally, with $v(t) \rightarrow 0$, the first equation in Equation (2) becomes an asymptotically autonomous equation with the limiting equation being $\dot{x}=\lambda-d x$. By the theory for the asymptotically autonomous systems (see, e.g. [1]), we know that the function $x(t) \rightarrow \lambda / d$ as $t \rightarrow \infty$. The local stability of E_{0} established in Section 2 under the assumption $\mathcal{R}_{0}<1$ and the global attractivity of E_{0} established above give the global asymptotical stability of E_{0}.

Summarizing the above results, we have proved the following theorem.

Theorem 3.1 When $\mathcal{R}_{0}<1$, the infection-free equilibrium E_{0} is globally asymptotically stable implying the virus cannot invade regardless of initial load; when $\mathcal{R}_{0}>1, E_{0}$ becomes unstable implying that virus may persist.

4. Stability of the single-infection equilibrium

From Section 3, we know that when \mathcal{R}_{0} increases to pass the value 1 , the disease-free equilibrium loses its stability and the single-infection equilibrium E_{s} comes into existence. In this section, we study the stability of E_{s}.

For the local stability of E_{s}, the characteristic equation of the linearized system of the model (2) at E_{S} is given by

$$
\begin{equation*}
\xi^{5}+a_{4} \xi^{4}+a_{3} \xi^{3}+a_{2} \xi^{2}+a_{1} \xi+a_{0}=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1}= & a+b+q+p+\frac{\beta \lambda k}{a p}, \\
a_{2}= & a b+a q+b q+b p+q p+\frac{\beta \lambda k}{a}+\frac{\beta \lambda k}{p}+\frac{\beta \lambda k q}{a p}+\frac{\beta \lambda b k}{a p}-\frac{\alpha \lambda c}{a}+\frac{\alpha c d p}{\beta k}, \\
a_{3}= & a b p+b q p+a b q-a d p-\alpha \lambda c+\frac{\beta \lambda b k}{a}+\frac{\beta \lambda k q}{a}-\frac{\alpha \lambda c p}{a}+\frac{\alpha \lambda c d}{a} \\
& +\frac{\beta \lambda b k q}{a p}-\frac{\alpha \beta \lambda^{2} c k}{a^{2} p}+\frac{\alpha a c d p}{\beta k}+\frac{\alpha c d p^{2}}{\beta k}+\frac{\beta \lambda b k}{p}+\frac{\beta \lambda k q}{p}, \\
a_{4}= & -a b d p-a d q p+\beta \lambda b k+\beta \lambda k q+\alpha \lambda c d+\frac{\beta \lambda b k q}{a}+\frac{\alpha \lambda c d p}{a}-\frac{\alpha \beta \lambda^{2} c k}{a^{2}} \\
& -\frac{\alpha \beta \lambda^{2} c k}{a p}+\frac{\beta \lambda b k q}{p}, \\
a_{5}= & -a b d q p+\beta \lambda b q k+2 \alpha \lambda c d p-\frac{\alpha \beta \lambda^{2} c d}{a}-\frac{\alpha a c d^{2} p^{2}}{\beta k} .
\end{aligned}
$$

Equation (12) may be rewritten as

$$
\begin{aligned}
& {\left[\xi^{2}+(b+q) \xi+b q-\frac{\alpha \lambda c}{a}+\frac{\alpha c d p}{\beta k}\right]} \\
& \quad \times\left[\xi^{3}+\left(a+p+\frac{\beta \lambda k}{a p}\right) \xi^{2}+\left(\beta \lambda k+\frac{\beta k p}{a}+\frac{\beta \lambda k}{p}\right) \xi+\beta \lambda k-a d p\right]=0 .
\end{aligned}
$$

Thus, the eigenvalues of Equation (12) are determined by the following two equations:

$$
\begin{equation*}
\xi^{2}+(b+q) \xi+b q-\frac{\alpha \lambda c}{a}+\frac{\alpha c d p}{\beta k}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{3}+\left(a+p+\frac{\beta \lambda k}{a p}\right) \xi^{2}+\left(\beta \lambda k+\frac{\beta k p}{a}+\frac{\beta \lambda k}{p}\right) \xi+\beta \lambda k-a d p=0 \tag{14}
\end{equation*}
$$

Equation (14) is a cubic equation of the form

$$
\xi^{3}+b_{2} \xi^{2}+b_{1} \xi+b_{0}=0
$$

The Routh-Hurwitz theorem (see [2]) for this equation states that all roots have negative real parts if and only if $b_{2}>0, b_{0}>0$ and $b_{1} b_{2}-b_{0}>0$. Now, for Equation (14),

$$
\begin{aligned}
& b_{2}=a+p+\frac{\beta \lambda k}{a p}>0 \\
& b_{0}=\beta \lambda k-a d p>0 \quad\left(\text { because } \mathcal{R}_{0}>1\right)
\end{aligned}
$$

It is also easy to verify that $b_{1} b_{2}-b_{0}>0$. Hence, all roots of the cubic equation (14) have negative real parts.

For the quadratic equation (13), by a similar argument to that for Equation (5), we know that the two roots of Equation (13) have negative real parts if and only if

$$
b+q>0 \quad \text { and } \quad b q-\frac{\alpha \lambda c}{a}+\frac{\alpha c d p}{\beta k}>0
$$

The first inequality holds automatically (since $b>0$ and $q>0$) and the second one is equivalent to $\mathcal{R}_{\mathrm{d}}<1$ (or $Q<0$). Consequently, the single-infected equilibrium E_{s} exists if and only if $\mathcal{R}_{0}>1$, and is locally stable if and only if $\mathcal{R}_{\mathrm{d}}<1$ (or $Q<0$).

Indeed, by constructing a Lyapunov function and applying the LaSalle's invariance principle, we can show that when $\mathcal{R}_{0}>1$ and $\mathcal{R}_{\mathrm{d}}<1, E_{\mathrm{s}}$ is globally asymptotically stable. To this end and for convenience for notation, denote by $x_{\mathrm{s}}, y_{\mathrm{s}}$ and v_{s} the three positive components of the single-infection equilibrium E_{s}, that is, $x_{\mathrm{s}}=a p / \beta k, y_{\mathrm{s}}=\lambda / a-d p / \beta k$ and $v_{\mathrm{s}}=\lambda k / a p-d / \beta$. Define

$$
\begin{equation*}
V=\left(x-x_{\mathrm{s}}-x_{\mathrm{s}} \ln \frac{x}{x_{\mathrm{s}}}\right)+\left(y-y_{\mathrm{s}}-y_{\mathrm{s}} \ln \frac{y}{y_{\mathrm{s}}}\right)+z+\frac{a}{k}\left(v-v_{\mathrm{s}}-v_{\mathrm{s}} \ln \frac{v}{v_{\mathrm{s}}}\right)+\frac{b}{c} w \tag{15}
\end{equation*}
$$

for $x>0, y>0, z \geq 0, v>0, w \geq 0$. By calculus of multi-variable functions, it can be easily seen that $V(x, y, z, v, w)$ has a global minimum attained at E_{s} and thus, $V(x, y, z, v, w) \geq 0$ and
$V(x, y, z, v, w)=0$ if and only $(x, y, z, v, w)=E_{\mathrm{s}}$. Making use of the equilibrium equation at E_{s}, the derivative of V along positive solutions of Equation (2) can be estimated as

$$
\begin{align*}
V^{\prime}= & x^{\prime}-\frac{x_{\mathrm{s}}}{x} x^{\prime}+y^{\prime}-\frac{y_{\mathrm{s}}}{y} y^{\prime}+z^{\prime}+\frac{a}{k}\left(v^{\prime}-\frac{v_{\mathrm{s}}}{v} v^{\prime}\right)+\frac{b}{c} w^{\prime} \\
= & \lambda-d x-\beta x v-\frac{\lambda}{x} x_{\mathrm{s}}+d x_{\mathrm{s}}+\beta x_{\mathrm{s}} v+\beta x v-a y-\alpha w y-\frac{\beta x v y_{\mathrm{s}}}{y}+a y_{\mathrm{s}}+\alpha w y_{\mathrm{s}} \\
& +\alpha w y-b z+a y-\frac{a p}{k} v-\frac{a y v_{\mathrm{s}}}{v}+\frac{a p}{k} v_{\mathrm{s}}+b z-\frac{b q}{c} w \\
= & d x_{\mathrm{s}}\left(2-\frac{x_{\mathrm{s}}}{x}-\frac{x}{x_{\mathrm{s}}}\right)+\beta x_{\mathrm{s}} v_{\mathrm{s}}-\frac{\beta x_{\mathrm{s}}^{2} v_{\mathrm{s}}}{x}+\beta x_{\mathrm{s}} v-\frac{\beta x v y_{\mathrm{s}}}{y}+a y_{\mathrm{s}} \\
& +\alpha w y_{\mathrm{s}}-\frac{a p}{k} v-\frac{a y v_{\mathrm{s}}}{v}+\frac{a p}{k} v_{\mathrm{s}}-\frac{b q}{c} w \\
= & \beta x_{\mathrm{s}} v_{\mathrm{s}}-\frac{\beta x_{\mathrm{s}}^{2} v_{\mathrm{s}}}{x}+\beta x_{\mathrm{s}} v-\frac{\beta x v y_{\mathrm{s}}}{y}+\beta x_{\mathrm{s}} v_{\mathrm{s}}+\alpha w y_{\mathrm{s}}-\frac{a p}{k} v-\frac{a y v_{\mathrm{s}}}{v}+\frac{a p}{k} v_{\mathrm{s}}-\frac{b q}{c} w \\
= & \beta x_{\mathrm{s}} v_{\mathrm{s}}-\frac{\beta x_{\mathrm{s}}^{2} v_{\mathrm{s}}}{x}-\frac{\beta x v y_{\mathrm{s}}}{y}+\beta x_{\mathrm{s}} v_{\mathrm{s}}+\alpha w y_{\mathrm{s}}-\frac{a y v_{\mathrm{s}}}{v}+\beta x_{\mathrm{s}} v_{\mathrm{s}}-\frac{b q}{c} w \\
= & 3 \beta x_{\mathrm{s}} v_{\mathrm{s}}-\frac{\beta x_{\mathrm{s}}^{2} v_{\mathrm{s}}}{x}-\frac{\beta x v y_{\mathrm{s}}}{y}-\frac{a y v_{\mathrm{s}}}{v}+\left(\alpha y_{\mathrm{s}}-\frac{b q}{c}\right) w \\
= & \beta x_{\mathrm{s}} v_{\mathrm{s}}\left(3-\frac{x_{\mathrm{s}}}{x}-\frac{x v y_{\mathrm{s}}}{x_{\mathrm{s}} v_{\mathrm{s}} y}-\frac{a y}{\beta x_{\mathrm{s}} v}\right)+\left(\alpha y_{\mathrm{s}}-\frac{b q}{c}\right) w \\
= & \beta x_{\mathrm{s}} v_{\mathrm{s}}\left(3-\frac{x_{\mathrm{s}}}{x}-\frac{x v y_{\mathrm{s}}}{x_{\mathrm{s}} v_{\mathrm{s}} y}-\frac{a y}{\beta x_{\mathrm{s}} v}\right)+\left(\frac{\alpha \beta x_{\mathrm{s}} v_{\mathrm{s}}}{a}-\frac{b q}{c}\right) w \\
\leq & 3 \beta x_{\mathrm{s}} v_{\mathrm{s}}\left(1-\sqrt[3]{\left.\frac{x_{\mathrm{s}}}{x} \frac{x v y_{\mathrm{s}}}{x_{\mathrm{s}} v_{\mathrm{s}} y} \frac{a y}{\beta x_{\mathrm{s}} v}\right)+\left(\frac{p d \alpha}{k \beta}\left(R_{0}-1\right)-\frac{b q}{c}\right) w}\right. \\
= & 3 \beta x_{\mathrm{s}} v_{\mathrm{s}}\left(1-\sqrt[3]{\frac{a y_{\mathrm{s}}}{\beta x_{\mathrm{s}} v_{\mathrm{s}}}}\right)+\frac{p d \alpha}{k \beta}\left(R_{0}-1-\frac{k b q \beta}{c p d \alpha}\right) w=\frac{p d \alpha}{k \beta}\left(R_{0}-1-\frac{k b q \beta}{c p d \alpha}\right) w . \tag{16}\\
& =10
\end{align*}
$$

It is straightforward to verify that the condition $\mathcal{R}_{\mathrm{d}}<1$ (or $Q<0$) is equivalent to

$$
\begin{equation*}
\mathcal{R}_{0}<1+\frac{k b q \beta}{c p d \alpha}=: R_{1} . \tag{17}
\end{equation*}
$$

Thus, when $\mathcal{R}_{0} \in\left(1, R_{1}\right), V^{\prime} \leq 0$ and $V^{\prime}=0$ if and only if $(x, y, z, v, w)=E_{\mathrm{s}}$. By the LaSalle's invariance principle [7], we conclude that E_{S} is indeed globally asymptotically stable.

Summarizing the above analysis, we have established the following theorem.
Theorem 4.1 When $\mathcal{R}_{0}>1$ and $\mathcal{R}_{\mathrm{d}}<1$ (equivalently $Q<0$ or Equation (17) holds) hold, then the single-infection equilibrium E_{s} is globally asymptotically stable implying that the recombinant virus cannot survive but the pathogen virus can; when $\mathcal{R}_{\mathrm{d}}>1$, E_{s} becomes unstable implying that recombinant virus may persist.

5. Stability of the double-infection equilibrium E_{d} and Hopf bifurcation from E_{d}

When $\mathcal{R}_{\mathrm{d}}>1$ (equivalently $Q>0$ or $\mathcal{R}_{0}>R_{1}$), the single-infection equilibrium becomes unstable and there occurs the double-infection equilibrium E_{d}. Unlike for E_{0} and E_{s} at which the characteristic equations can be factored into product of lower degree polynomials, we are unable to factor the characteristic equation at E_{d}, and thus cannot determine the stability of E_{d} by the same way as in Sections 3 and 4. On the other hand, our preliminary simulations show that for certain parameter values satisfying $\mathcal{R}_{\mathrm{d}}>1$, solutions of Equation (2) converge to E_{d}, while for other parameter values the solutions of Equation (2) do not converge to E_{d}; instead they converge to a periodic solution. This observation shows the necessity and importance of some theoretical analyses on the stability of E_{d} as well as on possible Hopf bifurcation.

For convenience in the following analysis, we first do the following rescalings to reduce the number of parameters:

$$
\begin{gather*}
x \longrightarrow \mu_{1} x, \quad y \longrightarrow \mu_{2} y, \quad z \longrightarrow \mu_{3} z, \quad v \longrightarrow \mu_{4} v, \quad w \longrightarrow \mu_{5} w, \quad \tau=v t \tag{18}\\
\frac{d}{v} \longrightarrow d, \quad \frac{a}{v} \longrightarrow a, \quad \frac{b}{v} \longrightarrow b, \quad \frac{p}{v} \longrightarrow p, \quad \frac{q}{v} \longrightarrow q, \quad \frac{\alpha c}{k \beta} \longrightarrow c \tag{19}
\end{gather*}
$$

where

$$
\begin{equation*}
\nu=(\lambda k \beta)^{1 / 3}, \quad \mu_{1}=\mu_{2}=\mu_{3}=\frac{v^{2}}{k \beta}, \quad \mu_{4}=\frac{v}{\beta}, \quad \mu_{5}=\frac{v}{\alpha} . \tag{20}
\end{equation*}
$$

By the above, system (2) is transformed to

$$
\begin{align*}
& \frac{d x}{d \tau}=1-d x-x v \\
& \frac{d y}{d \tau}=-a y+x v-y w \\
& \frac{d z}{d \tau}=-b z+y w \tag{21}\\
& \frac{d v}{d \tau}=-p v+y \\
& \frac{d w}{d \tau}=-q w+c z
\end{align*}
$$

Under Equations (18)-(20), the basic reproduction number \mathcal{R}_{0} now becomes

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{1}{a d p} \tag{22}
\end{equation*}
$$

and the critical value of \mathcal{R}_{0} for the double-infection equilibrium E_{d} of Equation (2) to exist becomes

$$
\begin{equation*}
R_{1}:=1+\frac{b q}{c d p} \tag{23}
\end{equation*}
$$

In the rest of this section, we assume $\mathcal{R}_{0}>R_{1}$. Thus, the double-infection equilibrium E_{d} for Equation (21) exists and is now (by Equations (18)-(20)) given by

$$
\begin{equation*}
E_{\mathrm{d}}=\left(x_{\mathrm{d}}, y_{\mathrm{d}}, z_{\mathrm{d}}, v_{\mathrm{d}}, w_{\mathrm{d}}\right)=\left(\frac{c p}{b q+c d p}, \frac{b q}{c}, \frac{q}{b q+c d p}-\frac{a}{c}, \frac{b q}{c p}, \frac{c}{b q+c d p}-a\right) \tag{24}
\end{equation*}
$$

In order to examine the stability of E_{d} for Equation (21), we compute the Jacobian matrix of system (21) as

$$
J=\left[\begin{array}{ccccc}
-d-v & 0 & 0 & -x & 0 \tag{25}\\
v & -a-w & 0 & x & -y \\
0 & w & -b & 0 & y \\
0 & 1 & 0 & -p & 0 \\
0 & 0 & c & 0 & -q
\end{array}\right]
$$

By straightforward but tedious computations, the characteristic polynomial of J at E_{d} is obtained as follows:

$$
\begin{align*}
P_{\mathrm{d}}(\xi)= & \xi^{2}\left(\xi+d R_{1}\right)(\xi+b+q)\left(\xi+p+a \frac{\mathcal{R}_{0}}{R_{1}}\right) \\
& +\xi(\xi+b+q)\left(\frac{R_{1}-1}{R_{1}}\right)+a b q\left(\xi+d R_{1}\right)(\xi+p)\left(\frac{\mathcal{R}_{0}-R_{1}}{R_{1}}\right) \\
\equiv & \xi^{5}+a_{1} \xi^{4}+a_{2} \xi^{3}+a_{3} \xi^{2}+a_{4} \xi+a_{5} \tag{26}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=a \frac{\mathcal{R}_{0}}{R_{1}}+b+d R_{1}+p+q, \\
& a_{2}=(b+q)\left(p+a \frac{\mathcal{R}_{0}}{R_{1}}\right)+\left(b+q+p+a \frac{\mathcal{R}_{0}}{R_{1}}\right) d R_{1}, \\
& a_{3}=(b+q)\left(p+a \frac{\mathcal{R}_{0}}{R_{1}}\right) d R_{1}+\frac{R_{1}-1}{R_{1}}+a d q\left(\frac{\mathcal{R}_{0}-R_{1}}{R_{1}}\right), \tag{27}\\
& a_{4}=(b+q)\left(\frac{R_{1}-1}{R_{1}}\right)+a b q\left(p+d R_{1}\right)\left(\frac{\mathcal{R}_{0}-R_{1}}{R_{1}}\right), \\
& a_{5}=\frac{b q}{\mathcal{R}_{0}}\left(\mathcal{R}_{0}-R_{1}\right) .
\end{align*}
$$

It is obvious that $a_{1}>0$ and $a_{2}>0$ for any positive parameter values. Here we apply the Routh-Hurwitz criterion to find the stability of the equilibrium solution E_{d}. The necessary and sufficient conditions for E_{d} to be stable are given by

$$
\begin{equation*}
\Delta_{i}>0, \quad i=1,2, \ldots, 5 \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{1}=a_{1} \\
& \Delta_{2}=a_{1} a_{2}-a_{3} \\
& \Delta_{3}=a_{3} \Delta_{2}-a_{1}\left(a_{1} a_{4}-a_{5}\right), \tag{29}\\
& \Delta_{4}=a_{4} \Delta_{3}-a_{5}\left[a_{2} \Delta_{2}-\left(a_{1} a_{4}-a_{5}\right)\right], \\
& \Delta_{5}=a_{5} \Delta_{4}
\end{align*}
$$

It is easy to see that $a_{i}>0, i=1,2, \ldots, 5$, since $R_{1}>1$ and we have assumed $\mathcal{R}_{0}>R_{1}$. Now, we need to check the signs of $\Delta_{i}, i=2,3,4$. First, a straightforward calculation shows that

$$
\begin{align*}
\Delta_{2}= & \left(a \frac{\mathcal{R}_{0}}{R_{1}}+b+p+q\right)\left[(b+q) p+q a \frac{\mathcal{R}_{0}}{R_{1}}\right]+a b\left(a \frac{\mathcal{R}_{0}}{R_{1}}+b+p\right) \frac{\mathcal{R}_{0}}{R_{1}} \\
& +\left[\left(a \frac{\mathcal{R}_{0}}{R_{1}}+b+d R_{1}+q\right)\left(b+q+p+a \frac{\mathcal{R}_{0}}{R_{1}}\right)+p(b+p+q)\right] d R_{1}+a b q+\frac{1}{R_{1}} \tag{30}
\end{align*}
$$

indicating that $\Delta_{2}>0$ for all positive parameter values.
For Δ_{3} and Δ_{4}, the signs are not easy to determine for general \mathcal{R}_{0}, and hence we use a continuity argument below. At $\mathcal{R}_{0}=R_{1}$, using Equation (27) and by direct calculations, we have

$$
\begin{align*}
\left.\Delta_{4}\right|_{R_{0}=R_{1}}= & \frac{b q(b+q)}{a^{2} d^{2} c R_{1}^{2}}\left[1+a^{2} d+a^{2} d R_{1}+a d^{2}\left(1+a^{3}\right) R_{1}^{2}+a^{3} d^{3} R_{1}^{3}\right] \\
& \times\left\{(b+q)^{2}+\left[a d(b+q)^{3}+a^{2} d(b+q)^{2}+d(b+q)+\frac{a^{2} b d q}{c}\right] R_{1}\right. \\
& \left.\quad+a d^{2}(b+q)(a+b+q) R_{1}^{2}\right\}>0 \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\Delta_{3}\right|_{\mathcal{R}_{0}=R_{1}}=\frac{c}{a b q(b+q)},\left.\quad \Delta_{4}\right|_{\mathcal{R}_{0}=R_{1}}>0 . \tag{32}
\end{equation*}
$$

Note that Δ_{3}, Δ_{4} and Δ_{5} depend continuously on \mathcal{R}_{0}. From Equations (27), (29)-(32) and the continuity, we know $R_{2}>R_{1}$ such that Equation (28) holds when $\mathcal{R}_{0} \in\left(R_{1}, R_{2}\right)$, leading to the following conclusion.

Theorem 5.1 There is an $R_{2}>R_{1}$ such that when $\mathcal{R}_{0} \in\left(R_{1}, R_{2}\right)$, the double-infection equilibrium E_{d} is asymptotically stable.

When \mathcal{R}_{0} is further increased, Δ_{1} and Δ_{2} remain positive, but Δ_{3} and Δ_{4} may become negative (so may Δ_{5} by Equation (29) and $a_{5}>0$ as $\mathcal{R}_{0}>R_{1}$). The following lemma identifies the order of possible sign switches for Δ_{3} and Δ_{4}.

Lemma 5.1 If Δ_{3} and Δ_{4} can change signs from positive to negative as \mathcal{R}_{0} is further increased after the value R_{2} in Theorem 5.1, then Δ_{4} will change before Δ_{3} does.

Proof Assume, for the sake of contradiction, that Δ_{3} will change sign no later than Δ_{4} does. Then there exists an $R_{3}>R_{2}$ such that

$$
\Delta_{3}=\left\{\begin{array}{ll}
>0 & \text { when } \mathcal{R}_{0} \in\left(R_{1}, R_{3}\right), \tag{33}\\
=0 & \text { when } \mathcal{R}_{0}=R_{3},
\end{array} \quad \Delta_{4}= \begin{cases}>0 & \text { when } \mathcal{R}_{0} \in\left(R_{1}, R_{3}\right) \\
\geq 0 & \text { when } \mathcal{R}_{0}=R_{3}\end{cases}\right.
$$

Then, at $\mathcal{R}_{0}=R_{3}$,

$$
a_{3} \Delta_{2}-a_{1}\left(a_{1} a_{4}-a_{5}\right)=0
$$

from which we obtain

$$
a_{1} a_{4}-a_{5}=\frac{a_{3}}{a_{1}} \Delta_{2}
$$

Thus,

$$
\Delta_{4}=-a_{5}\left[a_{2} \Delta_{2}-\frac{a_{3}}{a_{1}} \Delta_{2}\right]=-\frac{a_{5}}{a_{1}} \Delta_{2}^{2}<0
$$

leading to a contradiction to $\Delta_{4} \geq 0$. This completes the proof.

The following lemma tells that when Δ_{4} crosses zero, Δ_{3} must remain positive.
Lemma 5.2 For any $\mathcal{R}_{0}>R_{1}$, if $\Delta_{4}=0$, then $\Delta_{3}>0$.
Proof Suppose $\Delta_{4}=0$ at $\mathcal{R}_{0}=R_{4}>R_{1}$. Then,

$$
a_{4} \Delta_{3}-a_{5}\left[a_{2} \Delta_{2}-\left(a_{1} a_{4}-a_{5}\right)\right]=0
$$

and hence

$$
\begin{equation*}
a_{1} a_{4} \Delta_{3}=a_{1} a_{5}\left[a_{2} \Delta_{2}-\left(a_{1} a_{4}-a_{5}\right)\right] \tag{34}
\end{equation*}
$$

On the other hand, the third equation in Equation (29) leads to

$$
\begin{equation*}
a_{5} \Delta_{3}=a_{3} a_{5} \Delta_{2}-a_{1} a_{5}\left(a_{1} a_{4}-a_{5}\right) \tag{35}
\end{equation*}
$$

Subtracting Equation (35) from Equation (34) results in

$$
\begin{equation*}
\Delta_{3}=\frac{a_{5}\left(a_{1} a_{2}-a_{3}\right) \Delta_{2}}{a_{1} a_{4}-a_{5}}=\frac{a_{5} \Delta_{2}^{2}}{a_{1} a_{4}-a_{5}} \tag{36}
\end{equation*}
$$

Note that $a_{5}>0$ and $\Delta_{2}>0$. Also, a careful calculation gives

$$
\begin{align*}
a_{1} a_{4}-a_{5}= & (b+q)\left(a \frac{\mathcal{R}_{0}}{R_{1}}+b+d R_{1}+p+q\right)\left(\frac{R_{1}-1}{R_{1}}\right) \\
& +a b q\left[\left(a \frac{\mathcal{R}_{0}}{R_{1}}+b+d R_{1}+q\right)\left(p+d R_{1}\right)+p^{2}\right]\left(\frac{\mathcal{R}_{0}-R_{1}}{R_{1}}\right) \tag{37}
\end{align*}
$$

which clearly shows that $a_{1} a_{4}-a_{5}>0$ when $\mathcal{R}_{0}>R_{1}$. This together with Equation (36) confirms $\Delta_{3}>0$, completing the proof.

The above discussion and the results in Yu [24] imply that there are no static bifurcation, Hopfzero bifurcation, double Hopf bifurcation and double-zero Hopf bifurcation, emerging from the equilibrium solution E_{d}; and the only possibility for E_{d} to lose stability is occurrence of Hopf bifurcation when Δ_{4} crosses zero from positive to negative as \mathcal{R}_{0} further increases from R_{2} (see Theorem 5.1).

In order to show that Hopf bifurcation can occur, we need to show that Δ_{4} can change sign from positive to negative as \mathcal{R}_{0} further increases after R_{1}. To this end, we notice that $\mathcal{R}_{0}=1 / a d p$ and $R_{1}=1+b q / c d p$, implying that as $a \rightarrow \infty, \mathcal{R}_{0} \rightarrow+\infty$ while $\mathcal{R}_{0}>R_{1}$ remains valid (actually, as long as $1 / a>d p+b q / c)$. The above observation suggests considering small values of a and large values of c. Indeed, by Equations (27), (29) and tedious but straightforward expansion, we may obtain

$$
\begin{equation*}
\Delta_{4}=\frac{-b q}{(c d p+b q)^{4}}\left[c_{4} c^{4}+c_{3} c^{3}+c_{2} c^{2}+c_{1} c+c_{0}+c_{-1} c^{-1}+c_{-2} c^{-2}+c_{-3} c^{-3}\right]+\mathrm{O}(a) \tag{38}
\end{equation*}
$$

where

$$
c_{4}=\left[p d q+p b d^{3}(d+p)+d(d+q)\left(p d^{3}+p^{2} d^{2}+b+d\right)\right] f(d)
$$

in which

$$
\begin{equation*}
f(d)=p^{4}(b+p+q) d^{2}-p\left(b^{2}+b q+q^{2}-2 p^{2}\right) d-b+p-q . \tag{39}
\end{equation*}
$$

Thus, for small a and large c, the sign of Δ_{4} is determined by the leading coefficient c_{4}, i.e. the sign of $f(d)$. In order to have $c_{4}>0$, we need $f(d)>0$, which holds for appropriate values of d.

For example, $f(d)>0$ when $d<d_{1}$ or $d>d_{2}$ where d_{1} and d_{2} are the two roots of $f(d)=$ as a quadratic function of d :

$$
\begin{align*}
& d_{1}=\frac{\left(b^{2}+b q+q^{2}-2 p^{2}\right)-\sqrt{\left(b^{2}+q^{2}\right)(b+q)^{2}+b q\left(b q+4 p^{2}\right)}}{2 p^{3}(b+p+q)} \tag{40}\\
& d_{2}=\frac{\left(b^{2}+b q+q^{2}-2 p^{2}\right)+\sqrt{\left(b^{2}+q^{2}\right)(b+q)^{2}+b q\left(b q+4 p^{2}\right)}}{2 p^{3}(b+p+q)}
\end{align*}
$$

Combining the above and the results in Yu [24], we have proved the following theorem.
Theorem 5.2 For some large values of c and small values of a, together with $d<d_{1}$ or $d>$ $d_{2}\left(d_{1}, d_{2}\right.$ as given in Equation (40))(hence $\left.\mathcal{R}_{0} \gg R_{1}\right)$, the double-infection equilibrium E_{d} loses its stability through Hopf bifurcation, giving rise to a family of periodic solutions.

By the above theorem, E_{d} can lose its stability through Hopf bifurcation when \mathcal{R}_{0} is further increased from R_{1} in some way. It should be pointed out that the conditions obtained above for Δ_{4} to change sign (i.e. for large values of c and small values of a) are only sufficient conditions for the requirement $\Delta_{4}<0$, which may be quite conservative. There may be many other choices of the parameters that can satisfy this requirement. For some special choice, we may even find the critical value R_{h} for \mathcal{R}_{0} precisely at which Hopf bifurcation occurs. This will be illustrated numerically in the following section.

6. Numerical illustrations

In this section, we use a numerical example and some simulations to demonstrate the theoretical results obtained in the previous sections. Due to the larger number of parameters, there are many choices for this purpose. For convenience, we will work on the scaled model (21) instead of the original model (2). Throughout this section, we fix

$$
\begin{equation*}
c=40, \quad a=\frac{93}{100}, \quad b=p=q=\frac{28}{5} \tag{41}
\end{equation*}
$$

but choose d as the bifurcation parameter. Then,

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{1}{a d p}=\frac{125}{651 d} \quad \text { and } \quad R_{1}=1+\frac{b q}{c d p}=1+\frac{7}{50 d} \tag{42}
\end{equation*}
$$

The infection-free equilibrium becomes

$$
E_{0}=\left(\frac{1}{d}, 0,0,0,0\right)
$$

which is stable when $d>\frac{125}{651}$ (i.e. $\mathcal{R}_{0}<1$). When d decreases to pass the critical value $\frac{125}{651}, \mathcal{R}_{0}$ increases to pass the threshold value 1 , and E_{0} becomes unstable and there occurs the singleinfection equilibrium

$$
E_{\mathrm{s}}=\left(\frac{651}{125}, \frac{100}{93}-\frac{28}{5} d, 0, \frac{125}{651}-d, 0\right)
$$

which is stable for $\frac{1693}{32550}<d<\frac{125}{651}$ (corresponding to $1<\mathcal{R}_{0}<R_{1}$). When d further decreases to pass the critical value $\frac{1693}{32550}, \mathcal{R}_{0}$ increases to pass R_{1} and E_{S} loses its stability to the double-infection
equilibrium

$$
E_{\mathrm{d}}=\left(1+\frac{7}{50} d, \frac{98}{125}, \frac{1693-32550 d}{125(50 d+7)}, \frac{7}{50}, \frac{1693-32550 d}{700(50 d+7)}\right),
$$

which is stable when

$$
1+\frac{7}{50 d}<\mathcal{R}_{0}<R_{\mathrm{h}} \quad \text { or } \quad d_{\mathrm{h}}<d<\frac{1693}{32550}=0.05201228879
$$

where d_{h} or R_{h} is determined as follows.
For the given parameter values, the coefficients of the characteristic polynomial for E_{d} become

$$
\begin{align*}
& a_{1}=\frac{2}{175(50 d+7)}\left(4375 d^{2}+74725 d+11157\right), \\
& a_{2}=\frac{1}{3500(50 d+7)}\left(2940000 d^{2}+11830450 d+1948639\right), \\
& a_{3}=\frac{1}{125(50 d+7)}\left(392000 d^{2}-60020 d+19789\right), \tag{43}\\
& a_{4}=\frac{14}{15625(50 d+7)}\left(573391-9257200 d-1627500 d^{2}\right), \\
& a_{5}=\frac{392}{78125}(1693-32550 d)
\end{align*}
$$

and thus

$$
\begin{align*}
\Delta_{2}= & \frac{1}{306250(50 d+7)^{2}}\left(12862500000 d^{4}+223429718750 d^{3}+925986901875 d^{2}\right. \\
& +276209570425 d+21401583973) \\
\Delta_{3}= & \frac{1}{957031250(50 d+7)^{3}}\left(129541453125000000 d^{6}+2289800686250000000 d^{5}\right. \\
& +10119907671671875000 d^{4}+7454450134607656250 d^{3}+1626985083652346875 d^{2} \\
& +126603254586394425 d+2644699936366537), \\
\Delta_{4}= & \frac{2}{1068115234375(50 d+7)^{4}}\left(48448475332031250000000 d^{8}\right. \\
& +858348826387500000000000 d^{7}+3702167716066818359375000 d^{6} \\
& +924933147865351132812500 d^{5}-7333134508375382355468750 d^{4} \\
& -775567429833863418890625 d^{3}+175027848868353875686250 d^{2} \\
& +15328850593840359524200 d-462890586754471441699) . \tag{44}
\end{align*}
$$

A numerical scheme for solving the roots of polynomial can be applied here to find three positive real solutions of $\Delta_{4}=0$, given by

$$
d=0.02433284924,0.1439442394,1.1875365473 .
$$

It is seen that only the first solution satisfies the requirement, and thus

$$
d_{\mathrm{h}}=0.02433284924,
$$

giving a corresponding value

$$
R_{\mathrm{h}}=7.8910729629
$$

for \mathcal{R}_{0} by the formula of \mathcal{R}_{0} in Equation (42) in terms of d. Hence, when

$$
0.02433284924<d<0.05201228879 \text { or } 3.6916715889<\mathcal{R}_{0}<7.8910729629
$$

the equilibrium solution E_{d} is stable. At the critical point, $d=d_{\mathrm{h}}\left(\mathcal{R}_{0}=R_{h}\right)$, the equilibrium solution E_{d} becomes unstable and a Hopf bifurcation occurs, leading to a family of periodic solutions. In fact, at the critical point $\mathcal{R}_{0}=R_{h}$, other Routh-Hurwitz conditions are satisfied as

$$
\begin{aligned}
& a_{1}=18.0509776034, \quad a_{2}=77.8297845427, \quad a_{3}=18.0712652830, \\
& a_{4}=37.8582007260, \quad a_{5}=4.5206857827, \\
& \Delta_{2}=1386.8324323768, \quad \Delta_{3}=12807.7870360972, \\
& \Delta_{4}
\end{aligned}=0.1478893257 \times 10^{-11} .
$$

Indeed, with these given parameter values, one can numerically find the eigenvalues of the characteristic polynomial $P_{\mathrm{d}}(\xi)$ which include a pair of pure imaginary roots and three negative real roots:

$$
\xi= \pm 0.6996439883 \mathrm{i},-0.1229130660,-6.6799164524,-11.2481480850
$$

where i is the imaginary unit, $\mathrm{i}^{2}=-1$.
In what follows, we show, via this numerical example, how to obtain more information about the Hopf bifurcation, such as bifurcation direction and stability, magnitudes and periods of the bifurcated period solutions. To this end, we apply the normal form theory and the program using computer algebra system Maple developed by Yu [23], and Yu and Huseyin [25] to analyse the Hopf bifurcation of system (21) from the critical point $d=d_{\mathrm{h}}\left(\mathcal{R}_{0}=R_{\mathrm{h}}\right)$ (with other parameters given by Equation (41)).

The general normal form can be written in polar coordinates as

$$
\begin{align*}
& \frac{\mathrm{d} r}{\mathrm{~d} \tau}=r\left(v_{0} \mu+v_{1} r^{2}\right)+\cdots, \tag{45}\\
& \frac{\mathrm{d} \theta}{\mathrm{~d} \tau}=\omega_{0}+\tau_{0} \mu+\tau_{1} r^{2}+\cdots,
\end{align*}
$$

where r and θ represent the amplitude and phase of periodic motion (limit cycle), respectively. The constant $\omega_{0}=0.6996439883$ corresponds to the pair of the pure imaginary roots of $P_{\mathrm{d}}(\xi), v_{0}, v_{1}, \tau_{0}, \tau_{1}$ are constants, depending on the original system parameters, with v_{0} and v_{1} being called focus values (or Lyapunov coefficients). When $v_{1}<0$ ($v_{1}>0$), the Hopf bifurcation is supercritical (subcritival), giving stable (unstable) limit cycles, and the periodic solutions can be approximated in terms of the steady-state solution of Equation (45) (see [23] for details). v_{0} and τ_{0} can be found from linear analysis, while v_{1} and τ_{1} must be determined by using nonlinear analysis. We show how to find these constants below for this numerical example.

Let $d=d_{\mathrm{h}}-\mu$, where μ is small perturbation (bifurcation) parameter, and
$T=\left[\begin{array}{rrrrr}-0.9807311131 & 1.2289461236 & 7.7132047383 & -0.5738621607 & 0.0099614719 \\ 0.8839099286 & 0.5629856374 & -0.2875522037 & 0.6635527506 & -0.1024809760 \\ 2.7770485106 & -3.8165262586 & 7.2480063486 & 0.1487044501 & 6.6967660754 \\ 0.1677823774 & 0.0795710189 & -0.5250093840 & -0.6144482281 & 0.0181441729 \\ 0.4044415553 & -0.7320520288 & 1.3233323546 & -0.1376999580 & -1.1856569578\end{array}\right]$.

By the linear transformation

$$
\left(\begin{array}{l}
x \tag{46}\\
y \\
z \\
v \\
w
\end{array}\right)=\left(\begin{array}{l}
6.0852106234 \\
0.7840000000 \\
0.8772106234 \\
0.1400000000 \\
0.1566447542
\end{array}\right)+T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right),
$$

system (21) is transformed to

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} \tau}=F_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; \mu\right), \quad i=1,2, \ldots, 5 \tag{47}
\end{equation*}
$$

in which

$$
\begin{aligned}
F_{1}= & 0.6996439883 x_{2}+\left(12.3096075793 x_{1}+7.0040169156 x_{2}-4.3728592211 x_{3}\right. \\
& \left.-10.5713612773 x_{4}-0.4156611553 x_{5}\right) \mu+o(\mu) \\
& +0.3561346924 x_{1}^{2}-0.4769602403 x_{2}^{2}-0.7980855956 x_{3}^{2}+0.1332821303 x_{4}^{2} \\
& +0.1615737524 x_{5}^{2}-0.4646425311 x_{1} x_{2}+2.3715629953 x_{1} x_{3}+0.5605661618 x_{1} x_{4} \\
& -1.4591815204 x_{1} x_{5}+1.6662710988 x_{2} x_{3}-1.3268086927 x_{2} x_{4}-0.7705413442 x_{2} x_{5} \\
& -2.1821003938 x_{3} x_{4}+0.3735112628 x_{3} x_{5}-1.0385184254 x_{4} x_{5}, \\
F_{2}= & -0.6996439883 x_{1}+\left(-15.7111809897 x_{1}-10.0506358184 x_{2}+6.2186196979 x_{3}\right. \\
& \left.-20.3255688833 x_{4}+2.2407734339 x_{5}\right) \mu+o(\mu) \\
& -1.1220803000 x_{1}^{2}+1.2649183711 x_{2}^{2}+1.0133784444 x_{3}^{2}+0.3836952899 x_{4}^{2} \\
& -0.3638760837 x_{5}^{2}+1.2960748880 x_{1} x_{2}-2.7352377073 x_{1} x_{3}-0.2812613892 x_{1} x_{4} \\
& +3.2580692528 x_{1} x_{5}-2.6905502101 x_{2} x_{3}+1.4372320702 x_{2} x_{4}+1.7817905444 x_{2} x_{5} \\
& -4.2180683514 x_{3} x_{4}-0.5714642311 x_{3} x_{5}+2.3089964765 x_{4} x_{5}, \\
F_{3}= & -0.1229130660 x_{3}+\left(3.2296425652 x_{1}+2.3100610142 x_{2}-0.3267210453 x_{3}\right. \\
& \left.+4.3446396524 x_{4}-0.4813686500 x_{5}\right) \mu+o(\mu) \\
& +0.2412724663 x_{1}^{2}-0.2717692264 x_{2}^{2}-0.2165318633 x_{3}^{2}-0.0832350520 x_{4}^{2} \\
& +0.0781092847 x_{5}^{2}-0.2785323025 x_{1} x_{2}+0.5838231750 x_{1} x_{3}+0.0591250445 x_{1} x_{4} \\
& -0.6993381369 x_{1} x_{5}+0.5761976189 x_{2} x_{3}-0.3065386940 x_{2} x_{4}-0.3825366370 x_{2} x_{5} \\
& +0.9170831803 x_{3} x_{4}+0.1223262778 x_{3} x_{5}-0.4956089251 x_{4} x_{5}, \\
F_{4}= & -6.6799164524 x_{4}+\left(1.5622567928 x_{1}+0.7409792295 x_{2}-0.5272185195 x_{3}\right. \\
& \left.-5.4639965627 x_{4}+0.1563670175 x_{5}\right) \mu+o(\mu) \\
& -0.0365555512 x_{1}^{2}+0.0198967355 x_{2}^{2}-0.1014961739 x_{3}^{2}+0.0845086223 x_{4}^{2} \\
& +0.0011557773 x_{5}^{2}+0.0271810123 x_{1} x_{2}+0.3353347962 x_{1} x_{3}+0.1238921958 x_{1} x_{4} \\
& -0.0138731493 x_{1} x_{5}+0.1416788965 x_{2} x_{3}-0.1989762704 x_{2} x_{4}+0.0001664596 x_{2} x_{5} \\
& -1.1314177813 x_{3} x_{4}+0.0356257344 x_{3} x_{5}-0.0110727609 x_{4} x_{5}, \\
& 0.0
\end{aligned}
$$

$$
\begin{align*}
F_{5}= & -11.2481480850 x_{5}+\left(17.3226213739 x_{1}+11.0868910462 x_{2}-5.6345823041 x_{3}\right. \\
& \left.+14.4271665998 x_{4}-2.0807163549 x_{5}\right) \mu+o(\mu) \\
& +1.0878139578 x_{1}^{2}-1.2493237453 x_{2}^{2}-1.1278070934 x_{3}^{2}-0.2941530028 x_{4}^{2} \\
& +0.3668251220 x_{5}^{2}-1.2727531528 x_{1} x_{2}+3.1104371502 x_{1} x_{3}+0.4164748934 x_{1} x_{4} \\
& -3.2882835763 x_{1} x_{5}+2.8562424959 x_{2} x_{3}-1.6589948369 x_{2} x_{4}-1.7899345495 x_{2} x_{5} \\
& +3.0149660230 x_{3} x_{4}+0.6126373064 x_{3} x_{5}-2.3317504708 x_{4} x_{5} . \tag{48}
\end{align*}
$$

Here $\mathrm{o}(\mu)$ denotes a term containing only higher orders of μ. Now, the Jacobian of system (47) evaluated at the trivial equilibrium solution $x_{i}=0, i=1,2, \ldots, 5$ (corresponding to E_{d} for Equation (21)) is in the Jordan canonical form:

$$
J=\left[\begin{array}{ccccc}
0 & 0.6996439883 & 0 & 0 & 0 \\
-0.6996439883 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.1229130660 & 0 & 0 \\
0 & 0 & 0 & -6.6799164524 & 0 \\
0 & 0 & 0 & 0 & -11.2481480850
\end{array}\right]
$$

By Yu and Huseyin [25], the coefficients v_{0} and τ_{0} are given by

$$
\begin{align*}
v_{0} & =\left.\frac{1}{2}\left(\frac{\partial^{2} F_{1}}{\partial x_{1} \partial \mu}+\frac{\partial^{2} F_{2}}{\partial x_{2} \partial \mu}\right)\right|_{\mu=0}=1.1294858805 \\
\tau_{0} & =\left.\frac{1}{2}\left(\frac{\partial^{2} F_{1}}{\partial x_{2} \partial \mu}-\frac{\partial^{2} F_{2}}{\partial x_{1} \partial \mu}\right)\right|_{\mu=0}=11.3575989526 . \tag{49}
\end{align*}
$$

Applying the Maple program developed in Yu [24] to system (47) (setting $\mu=0$) results in

$$
\begin{equation*}
v_{1}=-0.0607814981, \quad \tau_{1}=-1.0336310494 \tag{50}
\end{equation*}
$$

Figure 1. Simulated time history of system (21) for $d=0.21, a=0.93, c=40, b=p=q=5.6$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution E_{0}.

Therefore, the third-order normal form Equation (45) becomes

$$
\begin{align*}
& \frac{\mathrm{d} r}{\mathrm{~d} \tau}=r\left(1.1294858805 \mu-0.0607814981 r^{2}\right) \\
& \frac{\mathrm{d} \theta}{\mathrm{~d} \tau}=0.6996439883+11.3575989526 \mu-1.0336310494 r^{2} \tag{51}
\end{align*}
$$

The steady-state solutions of Equation (51) are determined by setting $\mathrm{d} r / \mathrm{d} \tau=\mathrm{d} \theta / d \tau=0$, yielding

$$
\begin{equation*}
\bar{r}=0 \quad \text { and } \quad \bar{r}^{2}=18.5827252624 \mu . \tag{52}
\end{equation*}
$$

Figure 2. Simulated time history of system (21) for $d=0.10, a=0.93, c=40, b=p=q=5.6$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution E_{s}.

Figure 3. Simulated time history of system (21) for $d=0.04, a=0.93, c=40, b=p=q=5.6$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution E_{d}.

The solution $\bar{r}=0$ actually corresponds to the equilibrium solution E_{d} of Equation (21). A simple linearization of the first equation of Equation (51) indicates that $\bar{r}=0\left(E_{\mathrm{d}}\right)$ is stable for $\mu<0$, as expected. When μ increases from negative to cross zero, a Hopf bifurcation occurs and the amplitude of the bifurcation periodic solutions is given by the non-zero steady-state solution

$$
\begin{equation*}
\bar{r}=4.3107685234 \sqrt{\mu} \quad(\mu>0) . \tag{53}
\end{equation*}
$$

Since $v_{1}<0$, the Hopf bifurcation is supercritical and the bifurcating limit cycle is stable. The amplitude of the bifurcating limit cycle is given by Equation (53), and the frequency is determined from the following equation:

$$
\begin{equation*}
\omega=0.6996439883+6.9018547601 \mu . \tag{54}
\end{equation*}
$$

Figure 4. Simulation results of system (21) for $d=0.022, a=0.93, c=40, b=p=q=5.6$ with the initial condition, $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$: (a) time history showing convergence to a stable periodic solution and (b) phase portrait projected on $x-y$ plane indicating a stable limit cycle.

We have performed some numerical simulations for Equation (21) by using a fourth-order Runge-Kutta method. We take the parameter values given in Equation (41), giving $d_{\mathrm{h}}=$ 0.02433284924 and $R_{\mathrm{h}}=7.8910729629$. We choose four different values for d (and so for \mathcal{R}_{0}):
$d=0.21$ leading to $\mathcal{R}_{0}=0.9143442323<1$ by Equation (42);
$d=0.10$ leading to $\left.\mathcal{R}_{0}=1.9201228879\right) \in(1,2.4)=\left(1, R_{1}\right)$ by Equation (42);
$d=0.04$ leading to $\mathcal{R}_{0}=4.8003072197 \in(4.50000000,7.8910729629)$
$=\left(R_{1}, R_{h}\right)$ by Equation (42);
$d=0.022$ leading to $\mathcal{R}_{0}=8.7278313085>7.8910729629=R_{h}$ by Equation (42).

Figure 5. Simulation results of system (21) for $d=0.012, a=0.93, c=40, b=p=q=5.6$ with the initial condition, $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$: (a) time history showing convergence to a stable periodic solution and (b) phase portrait projected on $x-y$ plane indicating a stable limit cycle.

According to the above theoretical analysis, the simulation results are expected to have the stable equilibrium solution E_{0} for $d=0.21$, the stable equilibrium solution E_{s} for $d=0.10$, the stable equilibrium solution E_{d} for $d=0.04$ and a stable limit cycle for $d=0.022$ (for which $\mu=$ 0.0023328492), with approximate amplitude for the periodic motion, $\bar{r}=0.2082083010$.

The simulated time history and phase portraits for the above four cases are shown in Figures 1-4, respectively, where the initial conditions are taken as

$$
\begin{equation*}
x(0)=5.0, \quad y(0)=1.0, \quad z(0)=2.0, \quad v(0)=0.5, \quad w(0)=4.0 \tag{56}
\end{equation*}
$$

It can be seen from these figures that the numerical simulation results agree with the analytical predictions. The solutions for the first three cases converge to the equilibrium points, E_{0}, E_{s} and E_{d}, respectively. For the last case, the simulated amplitude of the limit cycle (see Figure 4) is close to the predicted value, $\bar{r}=0.2082$, showing a good agreement, not only qualitatively, but also quantitatively, between the theoretical prediction and numerical simulation. Also, it is seen that the period of motion, $T=2 \pi / \omega$ (ω is given in Equation (54)), decreases as μ increases. In other words, T decreases as d decreases. However, since μ is quite small, the change of the period due to μ is not significant (hardly observed, see Figures 4 and 5). Nevertheless, a small change in μ can cause large variation of the amplitude. The simulation results shown in Figure 5 uses $d=0.012$, which gives $\mu=0.0123328492$ and thus the approximation of the amplitude of periodic motion is $\bar{r}=0.4787253380$, which is almost 2.3 times of that when $d=0.022$. This can be observed from Figures 4b and 5b.

7. Conclusion and discussion

Revilla and Garcia-Ramos [18] proposed a model to describe the interaction of HIV-1 virus, a genetically modified virus, healthy T-cells and infected T-cells, and in terms of theory, they only analysed the structure of the equilibria of the model. As we emphasized in Section 1, for a higherdimensional system, its dynamics cannot be fully determined by the structure of equilibria, and stability analysis is crucial and necessary. In this paper, we have fully analysed the stability of the infection-free equilibrium E_{0}, the single-infection equilibrium E_{s} and the double-infection equilibrium E_{d} and theoretically proved following:
(1) when $\mathcal{R}_{0}<1$, the disease-free equilibrium E_{0} is globally asymptotically stable;
(2) when $\mathcal{R}_{0}>1, E_{0}$ becomes unstable and there occurs the single-infection equilibrium E_{s}.
(3) when $\mathcal{R}_{0} \in(1,1+k b q \beta / c p d \alpha), E_{\mathrm{S}}$ is globally asymptotically stable;
(4) when $\mathcal{R}_{0}>1+k b q \beta / c p d \alpha$ (equivalently $\mathcal{R}_{\mathrm{d}}>1$), E_{s} becomes unstable, and there is the double-infection equilibrium E_{d};
(5) there is a $R_{2}>1+k b q \beta / c p d \alpha$, such that E_{d} is asymptotically stable when $\mathcal{R}_{0} \in(1+$ $k b q \beta / c p d \alpha, R_{2}$);
(6) when \mathcal{R}_{0} is further increased in some appropriate ways, E_{d} loses it stability, giving rise to some stable periodic solution via Hopf bifurcation.

The above descriptions reveal the role that each parameter plays in determining the global dynamics of the model and give some quantitative criteria in terms of the parameters for controlling the infection.

Note that Equation (2) is a result of incorporating the variables z and w (recombinant related) into Equation (1). It can be easily seen that both Equations (1) and (2) share the same basic reproduction number \mathcal{R}_{0}, and hence the parameters in z and w equations have no impact on \mathcal{R}_{0}. In this sense, introducing the recombinant into to the host does not help completely eliminate the HIV virus. However, by comparing the healthy CD4 ${ }^{+}$T-cell populations and the wild HIV
virus loads in the single-infection equilibrium $E_{\mathrm{s}}=\left(x_{\mathrm{s}}, y_{\mathrm{s}}, 0, v_{\mathrm{s}}, 0\right)$ and the double-infection equilibrium $E_{\mathrm{d}}=\left(x_{\mathrm{d}}, y_{\mathrm{d}}, z_{\mathrm{d}}, v_{\mathrm{d}}, w_{\mathrm{d}}\right)$, we can see that the recombinant can increase the healthy cell populations and reduce the virus load. To see this, assume $\mathcal{R}_{0}>1$. Then large c and small k will guarantee that \mathcal{R}_{0} is slightly large than $1+k b q \beta / c p d \alpha$, so that the double-infection equilibrium is asymptotically stable. Now simple calculations show the condition $\mathcal{R}_{0}>1+k b q \beta / c p d \alpha$ implies (is indeed equivalent to)

$$
\begin{equation*}
x_{\mathrm{d}}=\frac{\lambda \alpha c p}{d \alpha c p+\beta b k q}>x_{\mathrm{s}}=\frac{a p}{\beta k} \quad \text { and } \quad v_{\mathrm{d}}=\frac{b k q}{\alpha c p}<v_{\mathrm{s}}=\frac{\lambda k}{a p}-\frac{d}{\beta} . \tag{57}
\end{equation*}
$$

There have been various models for HIV drug therapies. Comparing the model (2) for the generic therapy with existing models for drug therapies, one finds that the latter is much simpler, because they are usually the result of replacing a parameter by another one reflecting the drug efficacy. For example, in considering the effectiveness of a reverse transcriptase inhibitor, the usual way is to replace the parameter β in Equation (1) by $\left(1-\eta_{r t}\right) \beta$ (see, e.g. [16]), leading to

$$
\begin{align*}
& \dot{x}=\lambda-d x-\left(1-\eta_{r t}\right) \beta x v, \\
& \dot{y}=\left(1-\eta_{r t}\right) \beta x v-a y, \tag{58}\\
& \dot{v}=k y-p v,
\end{align*}
$$

where η accounts for the drug efficacy. Clearly, Equation (58) has the same structure as Equation (1), and hence, demonstrate the same threshold dynamics as Equation (1), but now in terms of the new basic reproduction number $\mathcal{R}_{0}=\left(1-\eta_{r t}\right) \beta \lambda k /$ apd . Obviously, positive $\eta_{r t}$ reduces \mathcal{R}_{0}, implying that an effective drug may help eliminate the HIV virus. This is in contrast to the generic therapy that Equation (2) models (see the above paragraph).

We point out that [18] only numerically explored solution behaviour of model (2). Now after some rigorous analysis, we have obtained conditions in terms of the model parameters on the stability of the equilibria E_{0}, E_{s} and E_{d}, given by the descriptions (1)-(5) above. Moreover, the description (4) above (or Theorem 5.2) identifies an important class of solutions: periodic solutions. Considering the fact that the sustained fluctuation of the virus load and/or the healthy cells' population in vivo will make the clinic measurements of these two quantities less reliable, this finding is of particular theoretical and practical significance. For example, without excluding the period dynamics, a very lower load of virus in the clinic sampling may right be the value of a periodic solution at the lowest moment and hence does not imply that virus is dying out. In order to avoid misleading and to make good use of clinical data in such a periodic situation, information about the frequencies and magnitudes of the oscillating densities is necessary. Through a numerical example, we have demonstrated how to obtain such information. Knowledge on the periods of oscillation of solutions may help design optimal clinical sampling strategy, e.g. the time interval for sampling.

The interaction of HIV virus and T-cells is a complicated process, which involves cell production, virus attachment to the cells and penetration into the cells, virus replication inside cells and release from cells. Now with a recombinant virus added in, the process becomes more complicated. The model we consider here is just a simple one, and there is more room to improve and expand the model. For example, one may consider the situation when there is an external source of recombinant virus. One may also consider the situation when the recombinant virus also infects susceptible cells but at a lower rate (this may occur due to possible mutation of the recombinant virus). One may also incorporate the infection latent into the model, as in [11,12], that leads to models of delay differential equations. Such modifications should more precisely describe the reality and give us more insights into the infection process, but would lead to much more challenging mathematical problems.

Acknowledgements

This research was supported by NSERC of Canada, PREA of Ontario and by China Scholarship Council.

References

[1] C. Castillo-Chavez and H.R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics, O. Arino, et al., eds., Wuerz, Winnipeg, Canada, 1995, pp. 33-50.
[2] F.R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
[3] A.T. Haase, Population biology of HIV-1 infection: virus and $C D_{4}^{+} T$ cell demography and dynamics in lymphatic tissues, Ann. Rev. Immunol. 17 (1999), pp. 625-656.
[4] W.M. Hirsch, H. Hanisch, and J.-P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behaviour, Comm. Pure Appl. Math. 38 (1985), pp. 733-753.
[5] C. Janeway and P. Travers, Immunobiology: The Immune System in health and Disease, Garland, New York, 2005.
[6] T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci. USA 95 (1998), pp. 11514-11519.
[7] J.P. LaSalle, The Stability of Dynamics Systems, SIAM, Philadelphia, 1976.
[8] J. Levy, HIV and the Pathogenesis of AIDS, AMS, Washington, DC, 1998.
[9] T. Mebatsion, S. Finke, F. Weiland, and K. Conzelmann, A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells, Cell 90 (1997), pp. 841-847.
[10] P. Nelson, J. Mittler, and A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters, J. Acquir. Immune. Defic. Syndr. 26 (2001), pp. 405-412.
[11] P. Nelson, J. Murray, and A. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), pp. 201-215.
[12] P. Nelson and A. Perelson, Mathematical analysis of delay differential equations for HIV, Math. Biosci. 179 (2002), pp. 73-94
[13] G.P. Nolan, Harnessing viral devices as pharmaceuticals: fighting HIV-1s fire with fire, Cell 90 (1997), pp. 821-824.
[14] M. Nowak and R. May, Virus Dynamics, Oxford University, Oxford, 2000.
[15] A. Perelson, D. Kirschner, and R. De Boer, Dynamics of HIV infection of C $D_{4}^{+} T$ cells, Math. Biosci. 114 (1993), pp. 81-125.
[16] A. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev. 41 (1999), pp. 3-44.
[17] A. Perelson, A. Neumann, M. Markowitz, J. Leonard, and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), pp. 1582-1586.
[18] T. Revilla and G. Garcia-Ramos, Fighting a virus with a virus: a dynamic model for HIV-1 therapy, Math. Biosci. 185 (2003), pp. 191-203
[19] M.J. Schnell, E. Johnson, L. Buonocore, and J. K. Rose, Construction of a novel virus that targets HIV-1 infected cells and control HIV-1 infection, Cell 90 (1997), pp. 849-857.
[20] N.I. Stilianakis and D. Schenzle, On the intra-host dynamics of HIV-1 infections, Math. Biosci. 199 (2006), pp. 1-25.
[21] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-48
[22] E.K. Wagner and M.J. Hewlett, Basic Virology, Blackwell, New York, 1999.
[23] P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib. 211 (1988), pp. 19-38.
[24] P. Yu, Closed-form conditions of bifurcation points for general differential equations, Int. J. Bifurcation Chaos Appl. Sci. Eng. 15 (2005), pp. 1467-1483.
[25] P. Yu and K. Huseyin, A perturbation analysis of interactive static and dynamic bifurcations, IEEE Trans. Automat. Control 33 (1988), pp. 28-41.

[^0]: *Corresponding author. Email: xzou@uwo.ca
 ISSN 1751-3758 print/ISSN 1751-3766 online
 © 2009 Taylor \& Francis
 DOI: 10.1080/17513750802485007
 http://www.informaworld.com

