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In this paper, we rigorously analyse an ordinary differential equation system that models fighting the HIV-1
virus with a genetically modified virus. We show that when the basic reproduction ratio R0 < 1, then the
infection-free equilibrium E0 is globally asymptotically stable; when R0 > 1, E0 loses its stability and
there is the single-infection equilibrium Es. If R0 ∈ (1, 1 + δ) where δ is a positive constant explicitly
depending on system parameters, then the single-infection equilibrium Es that is globally asymptotically
stable, while when R0 > 1 + δ, Es becomes unstable and the double-infection equilibrium Ed comes into
existence. When R0 is slightly larger than 1 + δ, Ed is stable and it loses its stability via Hopf bifurcation
when R0 is further increased in some ways. Through a numerical example and by applying a normal form
theory, we demonstrate how to determine the bifurcation direction and stability, as well as the estimates of
the amplitudes and the periods of the bifurcated periodic solutions. We also perform numerical simulations
which agree with the theoretical results. The approaches we use here are a combination of analysis of
characteristic equations, fluctuation lemma, Lyapunov function and normal form theory.

Keywords: HIV-1 dynamics; recombinant virus; stability; Lyapunov function; LaSalle invariance
principle; fluctuation lemma

AMS Subject Classification: 34K25; 34K60; 92B05; 92D30

1. Introduction

In recent years, mathematical modelling has contributed greatly to the understanding of HIV-1
infection in host and has provided valuable insight into HIV-1 pathogenesis. Among various
models is the class by differential equations, which quantitatively describe the dynamics of the
HIV-1 virus, healthy and infected cells and even possibly the immune responses. By studying
these models, researchers have gained much knowledge about the mechanism of the interactions
of these components within a host, and have thereby enhanced the progress in understanding the
HIV-1 infection (see, e.g. [14–17]). Such understanding in turn may offer guidance for developing
new drugs and for designing optimal combination of existing therapies (see, e.g. [6,10,18] and
the references therein).
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388 X. Jiang et al.

A standard and classic differential equation model for HIV infection is the following system
of ordinary differential equations (ODEs) (see, e.g. [10,14,16]):

ẋ = λ − dx − βxv,

ẏ = βxv − ay,

v̇ = ky − pv,

(1)

where x(t), y(t) and v(t) are the densities of uninfected target cells, infected target cells and the
free virus, respectively, at time t . Here a mass action infection mechanism is adopted, with an
infection rate constant β. The healthy cell is assumed to be produced at a constant rate λ. It is also
assumed that once cells are infected, they may die at rate a either due to the action of the virus
or the immune system, and in the mean time, they each produces HIV-1 virus particles at a rate k

during their life which on average has length 1/a.
It is known that the HIV-1 virus load is a crucial measurement of the severity of an HIV-1

carrier. When the load exceeds certain level after a clinically latent phase, the CD+ T-cell count
declines drastically, indicating a transition from HIV to AIDS (see, e.g. [5,20]). Most of the
existing therapies for HIV and/or AIDS employ inhibitors of the enzymes required for replica-
tion of HIV-1 virus to reduce the load (see, e.g. [3,8]). Recent progress in genetic engineering
has offered an alternative approach: modification of a viral genome can produce recombinants
capable of controlling infections by other virus. Indeed, this method had been used to modify
rhabdovirus, including the rabies and the vesicular stomatitis, making them capable of infecting
and killing cells previously attacked by HIV-1 (for details, see, e.g. [9,13,19,22]). To understand
this approach of fighting a virus with a genetically modified virus, Revilla and Garcia-Ramos [18]
proposed a mathematical model which is a result of incorporating into Equation (1) two more vari-
ables: the density w of the recombinant (genetically modified) virus and the density z of doubly
infected cells.

ẋ = λ − dx − βxv,

ẏ = βxv − ay − αwy,

ż = αwy − bz,

v̇ = ky − pv,

ẇ = cz − qw.

(2)

Here it is assumed that (i) recombinant infects cells previously infected by the pathogen, turning
them at rate αwy into doubly infected cells, and in the mean time, recombinants are removed at a
rate qw and (ii) the doubly infected cells die at a rate of bz and release recombinants at a rate cz.

In [18], the authors only analysed the structure of the equilibria of the system (2) and performed
some numerical simulations. System (2) has a dimension higher than 2, and it is well known that
for systems with higher dimensions, equilibria cannot determine solutions’ long-term behaviours,
and complicated dynamics (periodic solutions and even chaos) may occur which would make the
system unpredictable. Therefore, theoretically determining the global dynamics of Equation (2)
is an important yet challenging problem, and this constitutes the purpose of this paper. In Section
2, we will justify the well-posedness of the model by showing the positivity and boundedness of
solutions of Equation (2) and review the existence result on equilibria and the basic reproduction
number R0. In Section 3, we show that when R0 < 1, the disease-free equilibrium is globally
asymptotically stable, and when R0 > 1 it is unstable. In Section 4, we prove that there is a δ > 0
depending on all parameters except for λ, such that if 1 < R0 < 1 + δ, then the single-infection
equilibrium exists and is globally asymptotically stable, and when R0 > 1 + δ, this equilibrium
loses its stability. Note that R0 > 1 + δ is also the condition for the existence of double-infection
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Journal of Biological Dynamics 389

equilibrium. In Section 5, we analyse the stability of the double-infection equilibrium Ed and
prove that when R0 is slightly larger than 1 + δ, solutions of the model converge to the Ed; but
when R0 is further increased in some way, Ed loses its stability via Hopf bifurcation, giving rise to
stable periodic solutions. This theoretical result confirms what we stated earlier: equilibria cannot
fully determine the solution dynamics, and stability analysis is important and indeed necessary.
Through a numerical example, we illustrate in Section 6 how to obtain more information about
the Hopf bifurcation, including the bifurcation direction, the stability, amplitude and frequency
of the bifurcated periodic solution. Such information is crucial for giving good estimates of the
virus load and healthy cells’ density in the case that these quantities are periodic in time variable t

(i.e. sustained fluctuations), based on which, a therapy is usually determined. It may also provide
guidance for designing a optimal clinical sampling strategy, such as the best time intervals of
sampling. The approaches we used here are a combination of analysis of characteristic equations,
fluctuation lemma, Lyapunov function and normal form theory. Our numerical simulations agree
with the theoretical results. In the last section, we summarize the main results and discuss possible
modifications of the model.

2. Well-posedness, equilibria and basic reproduction numbers

Since the variables are densities which cannot be negative, one expects that starting from non-
negative initial values, the corresponding solution remains non-negative. This can be easily
confirmed as below. First, from the first equation of Equation (2), we have

x(t) = e− ∫ t

0 (d+βv(s)) dsx(0) + λ

∫ t

0
e− ∫ t

s (d+βv(ξ)) dξ ds,

implying x(t) > 0 for t > 0 provided that x(0) ≥ 0. In a similar way, one can establish non-
negativity of the other four variables y(t), z(t), v(t), w(t) for t > 0 provided that y(0) ≥ 0,
z(0) ≥ 0, v(0) ≥ 0 and w(0) ≥ 0. Moreover, if in addition, y(0) > 0 (or z(0) > 0 or v(0) > 0 or
w(0) > 0), then y(t) > 0 (or z(t) > 0 or v(t) > 0 or w(t) > 0) for t > 0.

Solutions to Equation (2) also remain bounded. To see this, let (x(t), y(t), z(t), v(t), w(t)) be
a non-negative solution. Choose ε1 ∈ (0, a/k) and ε2 ∈ (0, b/c), and let

g(t) = x(t) + y(t) + z(t) + ε1v(t) + ε2w(t).

Then

g′(t) = λ − dx − (a − ε1k)y − (b − ε2c)z − ε1pv − ε2qw

=
{

< 0 for dx + (a − ε1k)y + (b − ε2c)z + ε1pv + ε2qw > λ,

> 0 for dx + (a − ε1k)y + (b − ε2c)z + ε1pv + ε2qw < λ.

This implies that every component of (x, y, z, v, w) must be bounded. By the extension theory
of ODEs, the boundedness of a solution also implies that it exists for all t ≥ 0.

Model system (2) always has the infection-free equilibrium E0 : (λ/d, 0, 0, 0, 0). The other
two possible biologically meaningful equilibria are

Es =
(

ap

βk
,
λ

a
− dp

βk
, 0,

λk

ap
− d

β
, 0

)
,

Ed =
(

λαcp

dαcp + βbkq
,
bq

αc
,
q(αβλck − βabkq − αacdp)

αc(βbkq + αcdp)
,
bkq

αcp
,
αβλck − βabkq − αacdp

α(βbkq + αcdp)

)
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390 X. Jiang et al.

with the former being the singly infected equilibrium and the latter being the doubly infected
equilibrium. From the biological meaning of the basic reproduction numbers, Revilla and Garcia-
Ramos [18] identified R0 as

R0 = βλk

apd
.

Applying the general mathematical theory of basic reproduction numbers for disease model
described by ODEs (see, e.g. [21]), we can easily confirm the above formula. It turns out that the
value of R0 determines the existence of the single-infection equilibrium: Es exists if and only if
R0 > 1.

The double-infection equilibrium exists (biologically meaningful) if and only if Q > 0 where

Q = αβλck − βabkq − αacdp.

Introducing the second basic reproduction number

Rd = cλα

abq

(
1 − 1

R0

)

for the doubly infected cells, one can easily verify that

Q = aβbkq(Rd − 1)

and hence

Rd > 1 ⇐⇒ Q > 0.

For convenience, we denote

D = βbkq + αcdp.

With the above identities, Es and Ed can be expressed by the following simpler formulas:

Es =
(

ap

βk
,
λ

α

(
1 − 1

R0

)
, 0,

d

β
(R0 − 1), 0

)
,

Ed =
(

λαcp

D
,
bq

αc
,

qQ

αcD
,
bkq

αcp
,

Q

αD

)
.

In order to analyse local stability of Equation (2) at an equilibrium E, we need to calculate the
the Jacobian matrix of Equation (2) at E = (x̂, ŷ, ẑ, v̂, ŵ) as below:

J (E) =

⎛
⎜⎜⎜⎜⎝

−(d + βv̂) 0 0 −βx̂ 0
βv̂ −αŵ − a 0 βx̂ −αŷ

0 αŵ −b 0 αŷ

0 k 0 −p 0
0 0 c 0 −q

⎞
⎟⎟⎟⎟⎠ . (3)

The characteristic equation of Equation (2) at E is det(λI − J (E)) = 0, whose roots determine
the local stability of E.
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3. Stability of the infection-free equilibrium

For the infection-free equilibrium E = E0, some fundamental calculations give the corresponding
characteristic equation

(ξ + d)(ξ + b)(ξ + q)

(
ξ 2 + (p + a)ξ +

(
ap − βλk

d

))
= 0. (4)

The stability of E0 is determined by the sign of real parts of the roots of Equation (4): if all roots
of Equation (4) have negative real parts, then E0 is asymptotically stable; if there is at least one
root of Equation (4) has positive real part, then E0 is unstable. Obviously, it suffices to consider
the quadratic equation

ξ 2 + (p + a)ξ + ap − βλk

d
= 0. (5)

Using the Decarte’s rule of sign, we know that whether or not the two roots of Equation (5) have
negative real part is determined by the sign of ap − βλk/d: the negativity (positivity) of the real
parts of the two root of Equation (5) is equivalent to ap − βλk/d > 0 (ap − βλk/d < 0), that is,
R0 < 1 (R0 > 1).

Indeed, by employing the fluctuation lemma (see, e.g. [4]), we can prove the global asymptotic
stability of the infection-free equilibrium E0 under the condition R0 < 1. For this purpose, we
first introduce some basic notations. For a continuous and bounded function f : [0, ∞) → R, let

f∞ = lim inf
t→∞ f (t), f ∞ = lim sup

t→∞
f (t).

In Section 2, we have shown that for any initial values x0 ≥ 0, y0 ≥ 0, z0 ≥ 0, v0 ≥ 0, w0 ≥ 0,
the corresponding solution (x(t), y(t), z(t), v(t), z(t)) remains non-negative and is bounded from
above. Therefore, the lim inf t→∞ and lim supt→∞ exist for all these five component functions. By
the fluctuation lemma (see, e.g. [4]), there exists a sequence tn with tn → ∞ as n → ∞ such that

lim
n→∞ x(tn) = x∞, lim

n→∞ ẋ(tn) = 0 as n → ∞. (6)

From the first equation of Equation (2), we obtain

ẋ(tn) + dx(tn) + βx(tn)v(tn) = λ.

Letting n → ∞ in the above equation leads to the following estimate

dx∞ ≤ (d + βv∞)x∞ ≤ λ. (7)

Similar treatment to the rest of the equations in Equation (2) gives

ay∞ ≤ (a + αw∞)y∞ ≤ βx∞v∞, (8)

bz∞ ≤ αw∞y∞, (9)

pv∞ ≤ ky∞, (10)

qw∞ ≤ cz∞. (11)

We claim that y∞ = 0. Otherwise, v∞ > 0 by Equation (8). From Equations (7), (8) and (10), it
follows that

pv∞ ≤ ky∞ ≤ kβ

a
x∞v∞ ≤ kλβ

ad
v∞
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392 X. Jiang et al.

leading to

p ≤ kλβ

ad
.

This contradicts to the condition R0 < 1. Hence, y∞ = 0 which also implies z∞ = 0, v∞ =
0, w∞ = 0 by Equations (7)–(9). Now, by the relation 0 ≤ y∞ ≤ y∞, we then conclude that
y(t) → 0 as t → ∞. Similarly, z(t), v(t) and w(t) all approach 0 as t → ∞. Finally, with
v(t) → 0, the first equation in Equation (2) becomes an asymptotically autonomous equation
with the limiting equation being ẋ = λ − dx. By the theory for the asymptotically autonomous
systems (see, e.g. [1]), we know that the function x(t) → λ/d as t → ∞. The local stability of E0

established in Section 2 under the assumption R0 < 1 and the global attractivity of E0 established
above give the global asymptotical stability of E0.

Summarizing the above results, we have proved the following theorem.

Theorem 3.1 When R0 < 1, the infection-free equilibrium E0 is globally asymptotically stable
implying the virus cannot invade regardless of initial load; when R0 > 1, E0 becomes unstable
implying that virus may persist.

4. Stability of the single-infection equilibrium

From Section 3, we know that when R0 increases to pass the value 1, the disease-free equilibrium
loses its stability and the single-infection equilibrium Es comes into existence. In this section, we
study the stability of Es.

For the local stability of Es, the characteristic equation of the linearized system of the model
(2) at Es is given by

ξ 5 + a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 = 0, (12)

where

a1 = a + b + q + p + βλk

ap
,

a2 = ab + aq + bq + bp + qp + βλk

a
+ βλk

p
+ βλkq

ap
+ βλbk

ap
− αλc

a
+ αcdp

βk
,

a3 = abp + bqp + abq − adp − αλc + βλbk

a
+ βλkq

a
− αλcp

a
+ αλcd

a

+ βλbkq

ap
− αβλ2ck

a2p
+ αacdp

βk
+ αcdp2

βk
+ βλbk

p
+ βλkq

p
,

a4 = −abdp − adqp + βλbk + βλkq + αλcd + βλbkq

a
+ αλcdp

a
− αβλ2ck

a2

− αβλ2ck

ap
+ βλbkq

p
,

a5 = −abdqp + βλbqk + 2αλcdp − αβλ2cd

a
− αacd2p2

βk
.
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Equation (12) may be rewritten as

[
ξ 2 + (b + q)ξ + bq − αλc

a
+ αcdp

βk

]

×
[
ξ 3 + (a + p + βλk

ap
)ξ 2 + (βλk + βkp

a
+ βλk

p
)ξ + βλk − adp

]
= 0.

Thus, the eigenvalues of Equation (12) are determined by the following two equations:

ξ 2 + (b + q)ξ + bq − αλc

a
+ αcdp

βk
= 0 (13)

and

ξ 3 +
(

a + p + βλk

ap

)
ξ 2 +

(
βλk + βkp

a
+ βλk

p

)
ξ + βλk − adp = 0. (14)

Equation (14) is a cubic equation of the form

ξ 3 + b2ξ
2 + b1ξ + b0 = 0.

The Routh–Hurwitz theorem (see [2]) for this equation states that all roots have negative real parts
if and only if b2 > 0, b0 > 0 and b1b2 − b0 > 0. Now, for Equation (14),

b2 = a + p + βλk

ap
> 0,

b0 = βλk − adp > 0 (because R0 > 1).

It is also easy to verify that b1b2 − b0 > 0. Hence, all roots of the cubic equation (14) have negative
real parts.

For the quadratic equation (13), by a similar argument to that for Equation (5), we know that
the two roots of Equation (13) have negative real parts if and only if

b + q > 0 and bq − αλc

a
+ αcdp

βk
> 0.

The first inequality holds automatically (since b > 0 and q > 0) and the second one is equivalent
to Rd < 1 (or Q < 0). Consequently, the single-infected equilibrium Es exists if and only if
R0 > 1, and is locally stable if and only if Rd < 1 (or Q < 0).

Indeed, by constructing a Lyapunov function and applying the LaSalle’s invariance principle,
we can show that when R0 > 1 and Rd < 1, Es is globally asymptotically stable. To this end
and for convenience for notation, denote by xs, ys and vs the three positive components of the
single-infection equilibrium Es, that is, xs = ap/βk, ys = λ/a − dp/βk and vs = λk/ap − d/β.
Define

V =
(

x − xs − xs ln
x

xs

)
+

(
y − ys − ys ln

y

ys

)
+ z + a

k

(
v − vs − vs ln

v

vs

)
+ b

c
w (15)

for x > 0, y > 0, z ≥ 0, v > 0, w ≥ 0. By calculus of multi-variable functions, it can be easily
seen that V (x, y, z, v, w) has a global minimum attained at Es and thus, V (x, y, z, v, w) ≥ 0 and
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V (x, y, z, v, w) = 0 if and only (x, y, z, v, w) = Es. Making use of the equilibrium equation at
Es, the derivative of V along positive solutions of Equation (2) can be estimated as

V ′ = x ′ − xs

x
x ′ + y ′ − ys

y
y ′ + z′ + a

k

(
v′ − vs

v
v′

)
+ b

c
w′

= λ − dx − βxv − λ

x
xs + dxs + βxsv + βxv − ay − αwy − βxvys

y
+ ays + αwys

+ αwy − bz + ay − ap

k
v − ayvs

v
+ ap

k
vs + bz − bq

c
w

= dxs

(
2 − xs

x
− x

xs

)
+ βxsvs − βxs

2vs

x
+ βxsv − βxvys

y
+ ays

+ αwys − ap

k
v − ayvs

v
+ ap

k
vs − bq

c
w

= βxsvs − βxs
2vs

x
+ βxsv − βxvys

y
+ βxsvs + αwys − ap

k
v − ayvs

v
+ ap

k
vs − bq

c
w

= βxsvs − βxs
2vs

x
− βxvys

y
+ βxsvs + αwys − ayvs

v
+ βxsvs − bq

c
w

= 3βxsvs − βxs
2vs

x
− βxvys

y
− ayvs

v
+

(
αys − bq

c

)
w

= βxsvs

(
3 − xs

x
− xvys

xsvsy
− ay

βxsv

)
+

(
αys − bq

c

)
w

= βxsvs

(
3 − xs

x
− xvys

xsvsy
− ay

βxsv

)
+

(
αβxsvs

a
− bq

c

)
w

≤ 3βxsvs

(
1 − 3

√
xs

x

xvys

xsvsy

ay

βxsv

)
+

(
pdα

kβ
(R0 − 1) − bq

c

)
w

= 3βxsvs

(
1 − 3

√
ays

βxsvs

)
+ pdα

kβ

(
R0 − 1 − kbqβ

cpdα

)
w = pdα

kβ

(
R0 − 1 − kbqβ

cpdα

)
w.

(16)

It is straightforward to verify that the condition Rd < 1 (or Q < 0) is equivalent to

R0 < 1 + kbqβ

cpdα
=: R1. (17)

Thus, when R0 ∈ (1, R1), V ′ ≤ 0 and V ′ = 0 if and only if (x, y, z, v, w) = Es. By the LaSalle’s
invariance principle [7], we conclude that Es is indeed globally asymptotically stable.

Summarizing the above analysis, we have established the following theorem.

Theorem 4.1 When R0 > 1 and Rd < 1 (equivalently Q < 0 or Equation (17) holds) hold, then
the single-infection equilibrium Es is globally asymptotically stable implying that the recombinant
virus cannot survive but the pathogen virus can; when Rd > 1, Es becomes unstable implying
that recombinant virus may persist.
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5. Stability of the double-infection equilibrium Ed and Hopf bifurcation from Ed

When Rd > 1 (equivalently Q > 0 or R0 > R1), the single-infection equilibrium becomes unsta-
ble and there occurs the double-infection equilibrium Ed. Unlike for E0 and Es at which
the characteristic equations can be factored into product of lower degree polynomials, we are
unable to factor the characteristic equation at Ed, and thus cannot determine the stability of Ed by
the same way as in Sections 3 and 4. On the other hand, our preliminary simulations show that for
certain parameter values satisfying Rd > 1, solutions of Equation (2) converge to Ed, while for
other parameter values the solutions of Equation (2) do not converge to Ed; instead they converge
to a periodic solution. This observation shows the necessity and importance of some theoretical
analyses on the stability of Ed as well as on possible Hopf bifurcation.

For convenience in the following analysis, we first do the following rescalings to reduce the
number of parameters:

x −→ μ1x, y −→ μ2y, z −→ μ3z, v −→ μ4v, w −→ μ5w, τ = νt (18)

d

ν
−→ d,

a

ν
−→ a,

b

ν
−→ b,

p

ν
−→ p,

q

ν
−→ q,

αc

kβ
−→ c, (19)

where

ν = (λ k β)1/3, μ1 = μ2 = μ3 = ν2

k β
, μ4 = ν

β
, μ5 = ν

α
. (20)

By the above, system (2) is transformed to

dx

dτ
= 1 − dx − xv,

dy

dτ
= −ay + xv − yw,

dz

dτ
= −bz + yw,

dv

dτ
= −pv + y,

dw

dτ
= −qw + cz.

(21)

Under Equations (18)–(20), the basic reproduction number R0 now becomes

R0 = 1

a d p
, (22)

and the critical value of R0 for the double-infection equilibrium Ed of Equation (2) to exist
becomes

R1 := 1 + bq

cdp
. (23)

In the rest of this section, we assume R0 > R1. Thus, the double-infection equilibrium Ed for
Equation (21) exists and is now (by Equations (18)–(20)) given by

Ed = (xd, yd, zd, vd, wd) =
(

cp

bq + cdp
,
bq

c
,

q

bq + cdp
− a

c
,
bq

cp
,

c

bq + cdp
− a

)
. (24)
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In order to examine the stability of Ed for Equation (21), we compute the Jacobian matrix of
system (21) as

J =

⎡
⎢⎢⎢⎢⎢⎣

−d − v 0 0 −x 0

v −a − w 0 x −y

0 w −b 0 y

0 1 0 −p 0

0 0 c 0 −q

⎤
⎥⎥⎥⎥⎥⎦ . (25)

By straightforward but tedious computations, the characteristic polynomial of J at Ed is obtained
as follows:

Pd(ξ) = ξ 2(ξ + dR1)(ξ + b + q)

(
ξ + p + a

R0

R1

)

+ ξ(ξ + b + q)

(
R1 − 1

R1

)
+ abq(ξ + dR1)(ξ + p)

(R0 − R1

R1

)

≡ ξ 5 + a1ξ
4 + a2ξ

3 + a3ξ
2 + a4ξ + a5, (26)

where

a1 = a
R0

R1
+ b + d R1 + p + q,

a2 = (b + q)

(
p + a

R0

R1

)
+

(
b + q + p + a

R0

R1

)
dR1,

a3 = (b + q)

(
p + a

R0

R1

)
dR1 + R1 − 1

R1
+ adq

(R0 − R1

R1

)
,

a4 = (b + q)

(
R1 − 1

R1

)
+ abq(p + dR1)

(R0 − R1

R1

)
,

a5 = b q

R0
(R0 − R1).

(27)

It is obvious that a1 > 0 and a2 > 0 for any positive parameter values. Here we apply the
Routh–Hurwitz criterion to find the stability of the equilibrium solution Ed. The necessary and
sufficient conditions for Ed to be stable are given by


i > 0, i = 1, 2, . . . , 5, (28)

where


1 = a1,


2 = a1a2 − a3,


3 = a3
2 − a1(a1a4 − a5),


4 = a4
3 − a5[a2
2 − (a1a4 − a5)],

5 = a5
4.

(29)
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It is easy to see that ai > 0, i = 1, 2, . . . , 5, since R1 > 1 and we have assumed R0 > R1. Now,
we need to check the signs of 
i, i = 2, 3, 4. First, a straightforward calculation shows that


2 =
(

a
R0

R1
+ b + p + q

) [
(b + q)p + qa

R0

R1

]
+ ab

(
a
R0

R1
+ b + p

) R0

R1

+
[(

a
R0

R1
+ b + d R1 + q

) (
b + q + p + a

R0

R1

)
+ p(b + p + q)

]
dR1 + abq + 1

R1
,

(30)

indicating that 
2 > 0 for all positive parameter values.
For 
3 and 
4, the signs are not easy to determine for general R0, and hence we use a continuity

argument below. At R0 = R1, using Equation (27) and by direct calculations, we have


4|R0=R1 = bq(b + q)

a2d2cR2
1

[
1 + a2d + a2dR1 + ad2(1 + a3)R2

1 + a3d3R3
1

]

×
{
(b + q)2 +

[
ad(b + q)3 + a2d(b + q)2 + d(b + q) + a2bdq

c

]
R1

+ ad2(b + q)(a + b + q)R2
1

}
> 0 (31)

and


3|R0=R1 = c

abq(b + q)
, 
4|R0=R1 > 0. (32)

Note that 
3, 
4 and 
5 depend continuously on R0. From Equations (27), (29)–(32) and the
continuity, we know R2 > R1 such that Equation (28) holds when R0 ∈ (R1, R2), leading to the
following conclusion.

Theorem 5.1 There is an R2 > R1 such that when R0 ∈ (R1, R2), the double-infection
equilibrium Ed is asymptotically stable.

When R0 is further increased, 
1 and 
2 remain positive, but 
3 and 
4 may become negative
(so may 
5 by Equation (29) and a5 > 0 as R0 > R1). The following lemma identifies the order
of possible sign switches for 
3 and 
4.

Lemma 5.1 If 
3 and 
4 can change signs from positive to negative as R0 is further increased
after the value R2 in Theorem 5.1, then 
4 will change before 
3 does.

Proof Assume, for the sake of contradiction, that 
3 will change sign no later than 
4 does.
Then there exists an R3 > R2 such that


3 =
{

> 0 when R0 ∈ (R1, R3),

= 0 when R0 = R3,

4 =

{
> 0 when R0 ∈ (R1, R3),

≥ 0 when R0 = R3.
(33)

Then, at R0 = R3,

a3
2 − a1(a1 a4 − a5) = 0,

from which we obtain

a1a4 − a5 = a3

a1

2.

Thus,


4 = −a5

[
a2
2 − a3

a1

2

]
= −a5

a1

2

2 < 0,

leading to a contradiction to 
4 ≥ 0. This completes the proof. �
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The following lemma tells that when 
4 crosses zero, 
3 must remain positive.

Lemma 5.2 For any R0 > R1, if 
4 = 0, then 
3 > 0.

Proof Suppose 
4 = 0 at R0 = R4 > R1. Then,

a4
3 − a5[a2
2 − (a1a4 − a5)] = 0

and hence

a1a4
3 = a1a5[a2
2 − (a1a4 − a5)]. (34)

On the other hand, the third equation in Equation (29) leads to

a5
3 = a3a5
2 − a1a5(a1a4 − a5). (35)

Subtracting Equation (35) from Equation (34) results in


3 = a5(a1a2 − a3)
2

a1a4 − a5
= a5


2
2

a1a4 − a5
. (36)

Note that a5 > 0 and 
2 > 0. Also, a careful calculation gives

a1a4 − a5 = (b + q)

(
a
R0

R1
+ b + dR1 + p + q

) (
R1 − 1

R1

)

+ abq

[(
a
R0

R1
+ b + dR1 + q

)
(p + dR1) + p2

] (R0 − R1

R1

)
, (37)

which clearly shows that a1a4 − a5 > 0 when R0 > R1. This together with Equation (36) confirms

3 > 0, completing the proof. �

The above discussion and the results inYu [24] imply that there are no static bifurcation, Hopf-
zero bifurcation, double Hopf bifurcation and double-zero Hopf bifurcation, emerging from the
equilibrium solution Ed; and the only possibility for Ed to lose stability is occurrence of Hopf
bifurcation when 
4 crosses zero from positive to negative as R0 further increases from R2 (see
Theorem 5.1).

In order to show that Hopf bifurcation can occur, we need to show that 
4 can change sign from
positive to negative as R0 further increases after R1. To this end, we notice that R0 = 1/adp and
R1 = 1 + bq/cdp, implying that as a → ∞, R0 → +∞ while R0 > R1 remains valid (actually,
as long as 1/a > dp + bq/c). The above observation suggests considering small values of a and
large values of c. Indeed, by Equations (27), (29) and tedious but straightforward expansion, we
may obtain


4 = −bq

(cdp + bq)4
[c4c

4 + c3c
3 + c2c

2 + c1c + c0 + c−1c
−1 + c−2c

−2 + c−3c
−3] + O(a),

(38)
where

c4 = [pdq + pbd3(d + p) + d(d + q)(pd3 + p2d2 + b + d)]f (d),

in which

f (d) = p4(b + p + q)d2 − p(b2 + bq + q2 − 2p2)d − b + p − q. (39)

Thus, for small a and large c, the sign of 
4 is determined by the leading coefficient c4, i.e. the
sign of f (d). In order to have c4 > 0, we need f (d) > 0, which holds for appropriate values of d.
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For example, f (d) > 0 when d < d1 or d > d2 where d1 and d2 are the two roots of f (d) = as
a quadratic function of d:

d1 = (b2 + bq + q2 − 2p2) − √
(b2 + q2)(b + q)2 + bq(bq + 4p2)

2p3(b + p + q)
,

d2 = (b2 + bq + q2 − 2p2) + √
(b2 + q2)(b + q)2 + bq(bq + 4p2)

2p3(b + p + q)
.

(40)

Combining the above and the results in Yu [24], we have proved the following theorem.

Theorem 5.2 For some large values of c and small values of a, together with d < d1 or d >

d2(d1, d2 as given in Equation (40))(hence R0 � R1), the double-infection equilibrium Ed loses
its stability through Hopf bifurcation, giving rise to a family of periodic solutions.

By the above theorem, Ed can lose its stability through Hopf bifurcation when R0 is further
increased from R1 in some way. It should be pointed out that the conditions obtained above for

4 to change sign (i.e. for large values of c and small values of a) are only sufficient conditions
for the requirement 
4 < 0, which may be quite conservative. There may be many other choices
of the parameters that can satisfy this requirement. For some special choice, we may even find
the critical value Rh for R0 precisely at which Hopf bifurcation occurs. This will be illustrated
numerically in the following section.

6. Numerical illustrations

In this section, we use a numerical example and some simulations to demonstrate the theoretical
results obtained in the previous sections. Due to the larger number of parameters, there are many
choices for this purpose. For convenience, we will work on the scaled model (21) instead of the
original model (2). Throughout this section, we fix

c = 40, a = 93

100
, b = p = q = 28

5
, (41)

but choose d as the bifurcation parameter. Then,

R0 = 1

adp
= 125

651d
and R1 = 1 + bq

cdp
= 1 + 7

50d
. (42)

The infection-free equilibrium becomes

E0 =
(

1

d
, 0, 0, 0, 0

)
,

which is stable when d > 125
651 (i.e. R0 < 1). When d decreases to pass the critical value 125

651 , R0

increases to pass the threshold value 1, and E0 becomes unstable and there occurs the single-
infection equilibrium

Es =
(

651

125
,

100

93
− 28

5
d, 0,

125

651
− d, 0

)

which is stable for 1693
32550 < d < 125

651 (corresponding to 1 < R0 < R1). When d further decreases to
pass the critical value 1693

32550 , R0 increases to passR1 andEs loses its stability to the double-infection
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equilibrium

Ed =
(

1 + 7

50
d,

98

125
,

1693 − 32550d

125(50d + 7)
,

7

50
,

1693 − 32550d

700(50d + 7)

)
,

which is stable when

1 + 7

50d
< R0 < Rh or dh < d <

1693

32550
= 0.05201228879,

where dh or Rh is determined as follows.
For the given parameter values, the coefficients of the characteristic polynomial for Ed become

a1 = 2

175(50d + 7)
(4375d2 + 74725d + 11157),

a2 = 1

3500(50d + 7)
(2940000d2 + 11830450d + 1948639),

a3 = 1

125(50d + 7)
(392000d2 − 60020d + 19789),

a4 = 14

15625(50d + 7)
(573391 − 9257200d − 1627500d2),

a5 = 392

78125
(1693 − 32550d)

(43)

and thus


2 = 1

306250(50d + 7)2
(12862500000d4 + 223429718750d3 + 925986901875d2

+ 276209570425d + 21401583973),


3 = 1

957031250(50d + 7)3
(129541453125000000d6 + 2289800686250000000d5

+ 10119907671671875000d4 + 7454450134607656250d3 + 1626985083652346875d2

+ 126603254586394425d + 2644699936366537),


4 = 2

1068115234375(50d + 7)4
(48448475332031250000000d8

+ 858348826387500000000000d7 + 3702167716066818359375000d6

+ 924933147865351132812500d5 − 7333134508375382355468750d4

− 775567429833863418890625d3 + 175027848868353875686250d2

+ 15328850593840359524200d − 462890586754471441699).

(44)

A numerical scheme for solving the roots of polynomial can be applied here to find three positive
real solutions of 
4 = 0, given by

d = 0.02433284924, 0.1439442394, 1.1875365473.

It is seen that only the first solution satisfies the requirement, and thus

dh = 0.02433284924,
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giving a corresponding value

Rh = 7.8910729629

for R0 by the formula of R0 in Equation (42) in terms of d. Hence, when

0.02433284924 < d < 0.05201228879 or 3.6916715889 < R0 < 7.8910729629,

the equilibrium solution Ed is stable. At the critical point, d = dh(R0 = Rh), the equilibrium
solution Ed becomes unstable and a Hopf bifurcation occurs, leading to a family of periodic
solutions. In fact, at the critical point R0 = Rh, other Routh–Hurwitz conditions are satisfied as

a1 = 18.0509776034, a2 = 77.8297845427, a3 = 18.0712652830,

a4 = 37.8582007260, a5 = 4.5206857827,


2 = 1386.8324323768, 
3 = 12807.7870360972,


4 = 0.1478893257 × 10−11.

Indeed, with these given parameter values, one can numerically find the eigenvalues of the char-
acteristic polynomial Pd(ξ) which include a pair of pure imaginary roots and three negative real
roots:

ξ = ±0.6996439883i, −0.1229130660, −6.6799164524, −11.2481480850,

where i is the imaginary unit, i2 = −1.
In what follows, we show, via this numerical example, how to obtain more information about

the Hopf bifurcation, such as bifurcation direction and stability, magnitudes and periods of the
bifurcated period solutions. To this end, we apply the normal form theory and the program using
computer algebra system Maple developed by Yu [23], and Yu and Huseyin [25] to analyse the
Hopf bifurcation of system (21) from the critical point d = dh(R0 = Rh) (with other parameters
given by Equation (41)).

The general normal form can be written in polar coordinates as

dr

dτ
= r(v0μ + v1r

2) + · · · ,

dθ

dτ
= ω0 + τ0μ + τ1r

2 + · · · ,

(45)

where r and θ represent the amplitude and phase of periodic motion (limit cycle), respec-
tively. The constant ω0 = 0.6996439883 corresponds to the pair of the pure imaginary roots
of Pd(ξ), v0, v1, τ0, τ1 are constants, depending on the original system parameters, with v0 and v1

being called focus values (or Lyapunov coefficients). When v1 < 0(v1 > 0), the Hopf bifurcation
is supercritical (subcritival), giving stable (unstable) limit cycles, and the periodic solutions can
be approximated in terms of the steady-state solution of Equation (45) (see [23] for details). v0

and τ0 can be found from linear analysis, while v1 and τ1 must be determined by using nonlinear
analysis. We show how to find these constants below for this numerical example.

Let d = dh − μ, where μ is small perturbation (bifurcation) parameter, and

T =

⎡
⎢⎢⎢⎢⎣

−0.9807311131 1.2289461236 7.7132047383 −0.5738621607 0.0099614719
0.8839099286 0.5629856374 −0.2875522037 0.6635527506 −0.1024809760
2.7770485106 −3.8165262586 7.2480063486 0.1487044501 6.6967660754
0.1677823774 0.0795710189 −0.5250093840 −0.6144482281 0.0181441729
0.4044415553 −0.7320520288 1.3233323546 −0.1376999580 −1.1856569578

⎤
⎥⎥⎥⎥⎦.
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By the linear transformation

⎛
⎜⎜⎜⎜⎝

x

y

z

v

w

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

6.0852106234
0.7840000000
0.8772106234
0.1400000000
0.1566447542

⎞
⎟⎟⎟⎟⎠ + T

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ , (46)

system (21) is transformed to

dxi

dτ
= Fi(x1, x2, x3, x4, x5; μ), i = 1, 2, . . . , 5, (47)

in which

F1 = 0.6996439883x2 + (12.3096075793x1 + 7.0040169156x2 − 4.3728592211x3

− 10.5713612773x4 − 0.4156611553x5)μ + o(μ)

+ 0.3561346924x2
1 − 0.4769602403x2

2 − 0.7980855956x2
3 + 0.1332821303x2

4

+ 0.1615737524x2
5 − 0.4646425311x1x2 + 2.3715629953x1x3 + 0.5605661618x1x4

− 1.4591815204x1x5 + 1.6662710988x2x3 − 1.3268086927x2x4 − 0.7705413442x2x5

− 2.1821003938x3x4 + 0.3735112628x3x5 − 1.0385184254x4x5,

F2 = −0.6996439883x1 + (−15.7111809897x1 − 10.0506358184x2 + 6.2186196979x3

− 20.3255688833x4 + 2.2407734339x5)μ + o(μ)

− 1.1220803000x2
1 + 1.2649183711x2

2 + 1.0133784444x2
3 + 0.3836952899x2

4

− 0.3638760837x2
5 + 1.2960748880x1x2 − 2.7352377073x1x3 − 0.2812613892x1x4

+ 3.2580692528x1x5 − 2.6905502101x2x3 + 1.4372320702x2x4 + 1.7817905444x2x5

− 4.2180683514x3x4 − 0.5714642311x3x5 + 2.3089964765x4x5,

F3 = −0.1229130660x3 + (3.2296425652x1 + 2.3100610142x2 − 0.3267210453x3

+ 4.3446396524x4 − 0.4813686500x5)μ + o(μ)

+ 0.2412724663x2
1 − 0.2717692264x2

2 − 0.2165318633x2
3 − 0.0832350520x2

4

+ 0.0781092847x2
5 − 0.2785323025x1x2 + 0.5838231750x1x3 + 0.0591250445x1x4

− 0.6993381369x1x5 + 0.5761976189x2x3 − 0.3065386940x2x4 − 0.3825366370x2x5

+ 0.9170831803x3x4 + 0.1223262778x3x5 − 0.4956089251x4x5,

F4 = −6.6799164524x4 + (1.5622567928x1 + 0.7409792295x2 − 0.5272185195x3

− 5.4639965627x4 + 0.1563670175x5)μ + o(μ)

− 0.0365555512x2
1 + 0.0198967355x2

2 − 0.1014961739x2
3 + 0.0845086223x2

4

+ 0.0011557773x2
5 + 0.0271810123x1x2 + 0.3353347962x1x3 + 0.1238921958x1x4

− 0.0138731493x1x5 + 0.1416788965x2x3 − 0.1989762704x2x4 + 0.0001664596x2x5

− 1.1314177813x3x4 + 0.0356257344x3x5 − 0.0110727609x4x5,
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F5 = −11.2481480850x5 + (17.3226213739x1 + 11.0868910462x2 − 5.6345823041x3

+ 14.4271665998x4 − 2.0807163549x5)μ + o(μ)

+ 1.0878139578x2
1 − 1.2493237453x2

2 − 1.1278070934x2
3 − 0.2941530028x2

4

+ 0.3668251220x2
5 − 1.2727531528x1x2 + 3.1104371502x1x3 + 0.4164748934x1x4

− 3.2882835763x1x5 + 2.8562424959x2x3 − 1.6589948369x2x4 − 1.7899345495x2x5

+ 3.0149660230x3x4 + 0.6126373064x3x5 − 2.3317504708x4x5. (48)

Here o(μ) denotes a term containing only higher orders of μ. Now, the Jacobian of system
(47) evaluated at the trivial equilibrium solution xi = 0, i = 1, 2, . . . , 5 (corresponding to Ed for
Equation (21)) is in the Jordan canonical form:

J =

⎡
⎢⎢⎢⎢⎣

0 0.6996439883 0 0 0
−0.6996439883 0 0 0 0

0 0 −0.1229130660 0 0
0 0 0 −6.6799164524 0
0 0 0 0 −11.2481480850

⎤
⎥⎥⎥⎥⎦ .

By Yu and Huseyin [25], the coefficients v0 and τ0 are given by

v0 = 1

2

(
∂2F1

∂x1 ∂μ
+ ∂2F2

∂x2 ∂μ

)∣∣∣∣
μ=0

= 1.1294858805,

τ0 = 1

2

(
∂2F1

∂x2∂μ
− ∂2F2

∂x1∂μ

)∣∣∣∣
μ=0

= 11.3575989526.

(49)

Applying the Maple program developed in Yu [24] to system (47) (setting μ = 0) results in

v1 = −0.0607814981, τ1 = −1.0336310494. (50)

Figure 1. Simulated time history of system (21) for d = 0.21, a = 0.93, c = 40, b = p = q = 5.6 with the initial
condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0, converging to the stable equilibrium solution E0.
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Therefore, the third-order normal form Equation (45) becomes

dr

dτ
= r(1.1294858805μ − 0.0607814981r2),

dθ

dτ
= 0.6996439883 + 11.3575989526μ − 1.0336310494r2.

(51)

The steady-state solutions of Equation (51) are determined by setting dr/dτ = dθ/dτ = 0,
yielding

r̄ = 0 and r̄2 = 18.5827252624μ. (52)

Figure 2. Simulated time history of system (21) for d = 0.10, a = 0.93, c = 40, b = p = q = 5.6 with the initial
condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0, converging to the stable equilibrium solution Es.

Figure 3. Simulated time history of system (21) for d = 0.04, a = 0.93, c = 40, b = p = q = 5.6 with the initial
condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0, converging to the stable equilibrium solution Ed.
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The solution r̄ = 0 actually corresponds to the equilibrium solution Ed of Equation (21). A simple
linearization of the first equation of Equation (51) indicates that r̄ = 0(Ed) is stable for μ < 0,
as expected. When μ increases from negative to cross zero, a Hopf bifurcation occurs and the
amplitude of the bifurcation periodic solutions is given by the non-zero steady-state solution

r̄ = 4.3107685234
√

μ (μ > 0). (53)

Since v1 < 0, the Hopf bifurcation is supercritical and the bifurcating limit cycle is stable. The
amplitude of the bifurcating limit cycle is given by Equation (53), and the frequency is determined
from the following equation:

ω = 0.6996439883 + 6.9018547601μ. (54)

Figure 4. Simulation results of system (21) for d = 0.022, a = 0.93, c = 40, b = p = q = 5.6 with the initial con-
dition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0: (a) time history showing convergence to a stable
periodic solution and (b) phase portrait projected on x − y plane indicating a stable limit cycle.
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We have performed some numerical simulations for Equation (21) by using a fourth-order
Runge–Kutta method. We take the parameter values given in Equation (41), giving dh =
0.02433284924 and Rh = 7.8910729629. We choose four different values for d (and so for R0):

d = 0.21 leading to R0 = 0.9143442323 < 1 by Equation (42);
d = 0.10 leading to R0 = 1.9201228879) ∈ (1, 2.4) = (1, R1) by Equation (42);
d = 0.04 leading to R0 = 4.8003072197 ∈ (4.50000000, 7.8910729629)

= (R1, Rh) by Equation (42);
d = 0.022 leading to R0 = 8.7278313085 > 7.8910729629 = Rh by Equation (42). (55)

Figure 5. Simulation results of system (21) for d = 0.012, a = 0.93, c = 40, b = p = q = 5.6 with the initial con-
dition, x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0: (a) time history showing convergence to a stable
periodic solution and (b) phase portrait projected on x − y plane indicating a stable limit cycle.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
4
:
5
7
 
1
 
A
u
g
u
s
t
 
2
0
0
9



Journal of Biological Dynamics 407

According to the above theoretical analysis, the simulation results are expected to have the stable
equilibrium solution E0 for d = 0.21, the stable equilibrium solution Es for d = 0.10, the stable
equilibrium solution Ed for d = 0.04 and a stable limit cycle for d = 0.022 (for which μ =
0.0023328492), with approximate amplitude for the periodic motion, r̄ = 0.2082083010.

The simulated time history and phase portraits for the above four cases are shown in Figures 1– 4,
respectively, where the initial conditions are taken as

x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, w(0) = 4.0. (56)

It can be seen from these figures that the numerical simulation results agree with the analytical
predictions. The solutions for the first three cases converge to the equilibrium points, E0, Es and
Ed, respectively. For the last case, the simulated amplitude of the limit cycle (see Figure 4) is
close to the predicted value, r̄ = 0.2082, showing a good agreement, not only qualitatively, but
also quantitatively, between the theoretical prediction and numerical simulation. Also, it is seen
that the period of motion, T = 2π/ω (ω is given in Equation (54)), decreases as μ increases.
In other words, T decreases as d decreases. However, since μ is quite small, the change of the
period due to μ is not significant (hardly observed, see Figures 4 and 5). Nevertheless, a small
change in μ can cause large variation of the amplitude. The simulation results shown in Figure 5
uses d = 0.012, which gives μ = 0.0123328492 and thus the approximation of the amplitude of
periodic motion is r̄ = 0.4787253380, which is almost 2.3 times of that when d = 0.022. This
can be observed from Figures 4b and 5b.

7. Conclusion and discussion

Revilla and Garcia-Ramos [18] proposed a model to describe the interaction of HIV-1 virus, a
genetically modified virus, healthy T-cells and infected T-cells, and in terms of theory, they only
analysed the structure of the equilibria of the model. As we emphasized in Section 1, for a higher-
dimensional system, its dynamics cannot be fully determined by the structure of equilibria, and
stability analysis is crucial and necessary. In this paper, we have fully analysed the stability of
the infection-free equilibrium E0, the single-infection equilibrium Es and the double-infection
equilibrium Ed and theoretically proved following:

(1) when R0 < 1, the disease-free equilibrium E0 is globally asymptotically stable;
(2) when R0 > 1, E0 becomes unstable and there occurs the single-infection equilibrium Es.
(3) when R0 ∈ (1, 1 + kbqβ/cpdα), Es is globally asymptotically stable;
(4) when R0 > 1 + kbqβ/cpdα (equivalently Rd > 1), Es becomes unstable, and there is the

double-infection equilibrium Ed;
(5) there is a R2 > 1 + kbqβ/cpdα, such that Ed is asymptotically stable when R0 ∈ (1 +

kbqβ/cpdα, R2);
(6) when R0 is further increased in some appropriate ways, Ed loses it stability, giving rise to

some stable periodic solution via Hopf bifurcation.

The above descriptions reveal the role that each parameter plays in determining the global dynam-
ics of the model and give some quantitative criteria in terms of the parameters for controlling the
infection.

Note that Equation (2) is a result of incorporating the variables z and w (recombinant related)
into Equation (1). It can be easily seen that both Equations (1) and (2) share the same basic
reproduction number R0, and hence the parameters in z and w equations have no impact on R0.
In this sense, introducing the recombinant into to the host does not help completely eliminate
the HIV virus. However, by comparing the healthy CD4+ T-cell populations and the wild HIV
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virus loads in the single-infection equilibrium Es = (xs, ys, 0, vs, 0) and the double-infection
equilibrium Ed = (xd, yd, zd, vd, wd), we can see that the recombinant can increase the healthy
cell populations and reduce the virus load. To see this, assumeR0 > 1. Then large c and small k will
guarantee that R0 is slightly large than 1 + kbqβ/cpdα, so that the double-infection equilibrium is
asymptotically stable. Now simple calculations show the condition R0 > 1 + kbqβ/cpdα implies
(is indeed equivalent to)

xd = λαcp

dαcp + βbkq
> xs = ap

βk
and vd = bkq

αcp
< vs = λk

ap
− d

β
. (57)

There have been various models for HIV drug therapies. Comparing the model (2) for the
generic therapy with existing models for drug therapies, one finds that the latter is much simpler,
because they are usually the result of replacing a parameter by another one reflecting the drug
efficacy. For example, in considering the effectiveness of a reverse transcriptase inhibitor, the
usual way is to replace the parameter β in Equation (1) by (1 − ηrt )β (see, e.g. [16]), leading to

ẋ = λ − dx − (1 − ηrt )βxv,

ẏ = (1 − ηrt )βxv − ay,

v̇ = ky − pv,

(58)

where η accounts for the drug efficacy. Clearly, Equation (58) has the same structure as
Equation (1), and hence, demonstrate the same threshold dynamics as Equation (1), but now
in terms of the new basic reproduction number R0 = (1 − ηrt )βλk/apd . Obviously, positive ηrt

reduces R0, implying that an effective drug may help eliminate the HIV virus. This is in contrast
to the generic therapy that Equation (2) models (see the above paragraph).

We point out that [18] only numerically explored solution behaviour of model (2). Now after
some rigorous analysis, we have obtained conditions in terms of the model parameters on the
stability of the equilibria E0, Es and Ed, given by the descriptions (1)–(5) above. Moreover,
the description (4) above (or Theorem 5.2) identifies an important class of solutions: periodic
solutions. Considering the fact that the sustained fluctuation of the virus load and/or the healthy
cells’ population in vivo will make the clinic measurements of these two quantities less reliable,
this finding is of particular theoretical and practical significance. For example, without excluding
the period dynamics, a very lower load of virus in the clinic sampling may right be the value of a
periodic solution at the lowest moment and hence does not imply that virus is dying out. In order
to avoid misleading and to make good use of clinical data in such a periodic situation, information
about the frequencies and magnitudes of the oscillating densities is necessary. Through a numerical
example, we have demonstrated how to obtain such information. Knowledge on the periods of
oscillation of solutions may help design optimal clinical sampling strategy, e.g. the time interval
for sampling.

The interaction of HIV virus and T-cells is a complicated process, which involves cell pro-
duction, virus attachment to the cells and penetration into the cells, virus replication inside cells
and release from cells. Now with a recombinant virus added in, the process becomes more com-
plicated. The model we consider here is just a simple one, and there is more room to improve
and expand the model. For example, one may consider the situation when there is an external
source of recombinant virus. One may also consider the situation when the recombinant virus
also infects susceptible cells but at a lower rate (this may occur due to possible mutation of the
recombinant virus). One may also incorporate the infection latent into the model, as in [11,12],
that leads to models of delay differential equations. Such modifications should more precisely
describe the reality and give us more insights into the infection process, but would lead to much
more challenging mathematical problems.
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