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PERIODIC SOLUTIONS OF SECOND ORDER SELF-ADJOINT
DIFFERENCE EQUATIONS

JIANSHE YU, ZHIMING GUO and XINGFU ZOU

Abstract

Using critical point theory, some sufficient conditions are obtained for the existence of nonconstant
T -periodic solutions of a class of second order self-adjoint difference equations.

1. Introduction

The problem of periodic solutions for differential equations has been the subject of
many investigations. By using various methods and techniques, such as fixed point
theory, the Kaplan–Yorke method, critical point theory, coincidence degree theory,
bifurcation theory and dynamical system theory etc., a series of existence results
for periodic solutions have been obtained in the literature, we refer to [6, 7, 17,
18, 23, 26–29, 33]. However, there are few techniques for studying the existence
of periodic solutions of difference equations, and thus, the results in the field are
very rare (see [2, 14–16, 30]). On the other hand, difference equations occur widely
in numerous settings and forms, both in mathematics itself and in its applications
to statistics, computing, electrical circuit analysis, dynamical systems, economics,
biology and other fields, see for example [1, 22]. At the same time, we also find that
difference equations are closely related to differential equations in the sense that
(i) a differential equation model is usually derived from a difference equation, and
(ii) numerical solutions of a differential equation have to be obtained by discretizing
the differential equation (thus resulting in difference equations). Therefore, it is
worthwhile to explore this topic.

In this paper, we consider the second order difference equation

�[p(t) � u(t − 1)] + q(t)u(t) = f(t, u(t)) (1.1)

where p, q : Z −→ R, f : Z × R −→ R is continuous in the second variable,
� is the forward difference operator defined by �u(t) = u(t + 1) − u(t) and p(t)
is nonzero for each t ∈ Z. Here and hereafter, Z and R denote the set of all
integers and real numbers respectively. For a, b ∈ Z, denote Z(a) = {a, a + 1, . . .},
Z(a, b) = {a, a + 1, . . . , b} when a � b.

When f(t, x) ≡ 0 for (t, x) ∈ Z × R, equation (1.1) becomes the second order
linear self-adjoint difference equation

Lu(t) ≡ �[p(t) � u(t − 1)] + q(t)u(t) = 0. (1.2)
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Equation (1.2) may arise from various fields such as electrical circuit analysis,
matrix theory, control theory and discrete variational theory etc. Many authors have
extensively studied its disconjugacy, disfocality, boundary value problem, oscillation
and asymptotic behaviour, for example see [3–5, 8–13, 19, 20, 24, 25, 31, 32, 34].

When p(t) ≡ 1, equation(1.1) was discussed in two recent papers [15, 16].
Equation (1.1) can be considered as a discrete analogue of the following second

order differential equation

(p(t)y′)′ + q(t)y = f(t, y) (1.3)

which has also been investigated by many authors, for example see [6, 17, 23, 28,
29] and the references therein.

Our aim in this paper is to use critical point theory to establish the existence of
periodic solutions of (1.1). The main idea is to transfer the existence of periodic
solutions of (1.1) into the existence of critical points of some functional, which is
called the variational framework of (1.1). To this end, we shall recall some basic
notations and known results from critical point theory.

Let H be a real Hilbert space,J ∈C1(H,R) , which means that J is a continuously
Frećhet-differentiable functional defined on H. J is said to satisfy the Palais–Smale
condition if any sequence {xn} ⊂ H for which {J(xn)} is bounded and {J ′(xn)} → 0
as n → ∞ possesses a convergent subsequence in H.

Let Br be the open ball in H with radius r and centered at 0 and let ∂Br denote
its boundary. The following lemmas were taken from [33], and will be useful in the
proofs of our main results.

Lemma 1.1 (mountain pass lemma). Let H be a real Hilbert space, and
assume that J ∈ C1(H,R) satisfies the Palais–Smale condition and the following
conditions.

(J1) There exist constants ρ > 0 and a > 0 such that J(x) � a, for all x ∈ ∂Bρ,
where Bρ = {x ∈ H : ‖x‖H < ρ}.

(J2) J(0) � 0 and there exists x0 /∈ Bρ such that J(x0) � 0.

Then c = infh∈Γ sups∈[0,1] J(h(s)) is a positive critical value of J , where

Γ = {h ∈ C([0, 1],H) |h(0) = 0, h(1) = x0}.

Lemma 1.2 (linking theorem). Let H be a real Hilbert space, H = H1 ⊕ H2,
where H1 is a finite dimensional subspace of H. Assume that J ∈ C1(H,R) satisfies
the Palais–Smale condition and the following hold.

(J3) There exist constants a > 0 and ρ > 0 such that J |∂Bρ∩H2 � a.
(J4) There is an e ∈ ∂B1 ∩ H2 and a constant R0 > ρ such that J |∂Q � 0 and

Q
�
= (B̄R0 ∩ H1) ⊕ {re | 0 < r < R0}.

Then J possesses a critical value c � a, where

c = inf
h∈Γ

max
x∈Q

J(h(x)),

and Γ = {h ∈ C(Q̄,H)|h|∂Q = id}, where id denotes the identity operator.

Lemma 1.3 (saddle point theorem). Let H be a real Hilbert space, H = H1 ⊕
H2, where H1 
= {0} and is finite dimensional. Suppose that J ∈ C1(H,R), satisfies
the Palais–Smale condition and the following hold.
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(J5) There exist constants σ, ρ > 0 such that I|∂Bρ∩H1 � σ.
(J6) There is e ∈ Bρ ∩ H1 and a constant ω > σ such that J |e+H2 � ω.

Then J possesses a critical value c � ω and

c = inf
h∈Γ

max
u∈Bρ∩H1

J(h(u)),

where Γ = {h ∈ C(B̄ρ ∩ H1,H)|h|∂Bρ∩H1 = id}.

Throughout this paper, we shall assume that (1.1) is a T -periodic system, that
is, there exists a positive integer T such that for each t ∈ Z, p(t + T )= p(t),
q(t + T ) = q(t) and for any (t, x) ∈ Z × R, f(t + T, x) = f(t, x). In Section 2, we
will first establish the variational framework of (1.1) and transfer the existence of
periodic solutions of (1.1) into the existence of critical points of the corresponding
functional. In Section 3, we will obtain sufficient conditions for the existence of
T -periodic solutions of (1.1) when f is unbounded. In Section 4, we will consider
the case when f is bounded. As a special case of bounded f , that is when f is
independent of the second variable, a necessary and sufficient condition for (1.1)
to have a unique T -periodic solution will be obtained. Finally, in Section 5, as
an example, we show how the problem considered in this paper is related to the
study of equilibria of discrete reaction-diffusion equations, and apply one of the
main results to conclude the existence and uniqueness of periodic equilibrium for a
special equation arising from population dynamics on a lattice.

2. Variational framework for equation (1.1)

In this section, we are going to establish the corresponding variational framework
for (1.1).

Let S be the vector space of all real sequences of the form

u = {u(t)}t∈Z = (. . . , u(−t), u(−t + 1), . . . , u(−1), u(0), u(1), . . . , u(t), . . .),

namely
S = {u = {u(t)}|u(t) ∈ R, t ∈ Z}.

Define the subset E of S as

E = {u = {u(t)} ∈ S | u(t + T ) = u(t), ∀ t ∈ Z}.
Clearly, E is isomorphic to RT . E can be equipped with the inner product

〈u, v〉E =
T∑

t=1

u(t)v(t) for any u, v ∈ E, (2.1)

by which the norm ‖ · ‖E can be induced by

‖u‖E =
√

〈u, u〉E =

(
T∑

t=1

u2(t)

)1/2

, u ∈ E. (2.2)

It is obvious that E with the inner product (2.1) is a finite dimensional Hilbert
space and is linearly homeomorphic to RT .

Now define the functional I on E as

I(u) =
T∑

t=1

[
1
2p(t)(∆u(t − 1))2 − 1

2q(t)u2(t) + F (t, u(t))
]
, u ∈ E, (2.3)
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where F (t, x) =
∫x

0
f(t, s)ds. Then I ∈ C1(E,R), and for any u ∈ E, by using

u(0) = u(T ), u(1) = u(T + 1) and (2.3), we can compute the Frechet derivative as

∂I(u)
∂u(t)

= −∆[p(t)∆u(t − 1)] − q(t)u(t) + f(t, u(t)), t ∈ Z(1, T ).

Thus, u is a critical point of I on E (that is, I ′(u) = 0 ) if and only if

∆[p(t)∆u(t − 1)] + q(t)u(t) = f(t, u(t)), ∀ t ∈ Z(1, T ),

which is precisely equation (1.1). Therefore, we have reduced the existence of the
periodic solution of (1.1) to the existence of a critical point of I on E. In other
words, the functional I is just the variational framework of (1.1). For convenience,
we identify u ∈ E with u = (u(1), u(2), . . . , u(T ))T , and rewrite I(u) as

I(u) = 1
2 ((P + Q)u, u) +

T∑
t=1

F (t, u(t) (2.4)

where u = (u(1), u(2), . . . , u(T ))T ∈ RT and P,Q are T × T matrices:

P =




p(1) + p(2) −p(2) 0 . . . 0 −p(1)

−p(2) p(2) + p(3) −p(3) . . . 0 0

0 −p(3) p(3) + p(4) . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . p(T − 1) + p(T ) −p(T )

−p(1) 0 0 . . . −p(T ) p(T ) + p(1)




Q =




−q(1) 0 0 . . . 0 0

0 −q(2) 0 . . . 0 0

0 0 −q(3) . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . −q(T − 1) 0

0 0 0 . . . 0 −q(T )




.

3. Unbounded f(t, x)

In this section, we will study the case when f is unbounded. We need the following
assumptions.

(A1) For each t ∈ Z,

lim
x→0

f(t, x)
x

= 0. (3.1)

(A2) There exist constants a1 > 0, a2 > 0 and β > 2 such that∫x

0

f(t, s)ds � −a1|x|β + a2, ∀x ∈ R. (3.2)

By (A2),

lim
|x|→+∞

f(t, x)
x

= −∞.
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Hence (A1) together with (A2) implies that f(t, x) grows superlinearly both at
infinity and at zero.

Lemma 3.1. Suppose that f ∈ C(Z × R) satisfies (A2); then I satisfies the
Palais–Smale condition.

Proof. Suppose that the eigenvalues of P +Q are λ1, λ2, . . . , λT . Since p(t) 
= 0,
max{|λ1|, |λ2|, . . . , |λT |} > 0 and we denote it by |λmax|. For any sequence {un} ⊂
E, with I(un) bounded and I ′(un) → 0 as n → +∞, there exists a positive constant
M such that |I(un)| � M . Thus by (A2),

−M � I(un) = 1
2 ((P + Q)un, un) +

T∑
t=1

F (t, un(t))

� 1
2 |λmax|‖un‖2

E − a1

T∑
t=1

|un(t)|β + a2T.

By
T∑

t=1

|un(t)|2 � T (β−2)/β

[
T∑

t=1

|un(t)|β
]2/β

,

we know that
T∑

t=1

|un(t)|β � T (2−β)/2‖un‖β
E .

Then we have

−M � I(un) � 1
2 |λmax|‖un‖2

E − a1T
(2−β)/2‖un‖β

E + a2T. (3.3)

Therefore, for any n ∈ N,

a1T
(2−β)/2‖un‖β

E − 1
2 |λmax|‖un‖2

E � M + a2T.

Since β > 2, the above inequality implies that {un} is a bounded sequence in E.
Thus {un} possesses a convergent subsequence.

Theorem 3.1. Suppose that f satisfies (A1) and (A2). In addition, assume
that the following hold.

(p) p(t) > 0 for all t ∈ Z(1, T ).
(q) q(t) � 0 for all t ∈ Z(1, T ) and there exists at least one t0 ∈ Z(1, T ) such

that q(t0) < 0.

Then there exist at least two nontrivial T -periodic solutions for (1.1).

Proof. We will use Lemma 1.1 to prove Theorem 3.1. We need to verify that all
the assumptions of the mountain pass theorem hold. The Palais–Smale condition is
verified in Lemma 3.1. Next, we will check assumptions (J1) and (J2) of Lemma 1.1.
By matrix theory, it can be easily checked that P +Q is positive definite. We denote
its eigenvalues by λ1, λ2, . . . , λT with 0 < λ1 � λ2 � . . . � λT . By (A1), there exists
ρ > 0 such that for any |x| < ρ and t ∈ Z(1, T ), F (t, x) � 1

4λ1x
2. Thus, for any

u ∈ E, ‖u‖ � ρ, |u(t)| � ρ, for all t ∈ Z(1, T ), and

I(u) � 1
2λ1‖u‖2 − 1

4λ1‖u‖2 = 1
4λ1‖u‖2.
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Taking a = 1
4λ1ρ

2 > 0, we have

I(u)|∂Bρ
� a

and assumption (J1) is verified.
Clearly, I(0) = 0. For any given w ∈ E with ‖w‖ = 1 and a constant α > 0,

I(αw) = 1
2 ((P + Q)αw,αw) +

T∑
t=1

F (t, αw(t))

� 1
2α2λT − a1α

β
T∑

t=1

|w(t)|β + a2T

� 1
2α2λT − a1T

(2−β)/2αβ + a2T → −∞ as α → +∞.

Thus we can easily choose a sufficiently large α such that α > ρ and for u0 =
αw ∈ E, I(u0) < 0. Therefore, by Lemma 1.1, there exists at least one critical
value c � a > 0. We suppose that ū is a critical point corresponding to c, that is,
I(ū) = c, and I ′(ū) = 0. By a similar argument to the proof of Lemma 3.1,

I(u) � 1
2 |λmax|‖u‖2

E − a1T
(2−β)/2‖u‖β

E + a2T, ∀u ∈ E. (3.4)

Thus I is bounded from above. We denote by cmax the supremum of {I(u), u ∈ E}.
Since (3.4) implies that

lim
‖u‖→+∞

I(u) = −∞,

−I is coercive and I attains its maximum at some point ũ, that is, I(ũ) = cmax.
Clearly, ũ 
= 0. If ū 
= ũ, then the proof of Theorem 3.1 is complete; otherwise,
ū = ũ and c = cmax. By Lemma 1.1,

c = inf
h∈Γ

sup
s∈[0,1]

I(h(s)),

where

Γ = {h ∈ C([0, 1], E) |h(0) = 0, h(1) = u0}.

Then for any h ∈ Γ, cmax = maxs∈[0,1] I(h(s)). The continuity of I(h(s)) in s, I(0) �
0 and I(u0) < 0 show that there exists some s0 ∈ (0, 1), such that I(h(s0)) = cmax. If
we choose h1, h2 ∈ Γ such that the intersection {h1(s)|s ∈ (0, 1)}∩{h2(s)|s ∈ (0, 1)}
is empty, then there exist s1, s2 ∈ (0, 1) such that I(h1(s1)) = I(h2(s2)) = cmax.
Thus, we obtain two different critical points u1 = h1(s1), u2 = h2(s2) of I in E.
In this case, in fact we may obtain infinitely many nontrivial critical points which
correspond to the critical value cmax. The proof of Theorem 3.1 is complete.

Remark 3.1. The periodic solutions we have obtained in Theorem 3.1 are
nontrivial, but they may be nonzero constant. If we want to obtain nonconstant
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periodic solutions, we only need to exclude nonzero constant solutions. Thus, we
immediately have the following corollary.

Corollary 3.1. Suppose that f satisfies (A1), (A2), (p) and (q) and
(A3) f(t, x) = 0 for all t ∈ Z(1, T ) if and only if x = 0.

Then there exist at least two nonconstant T -periodic solutions for (1.1).

In Theorem 3.1 and Corollary 3.1, (q) requires q(t) 
≡ 0. We will see below that
when q(t) ≡ 0, the same conclusion remains true, but the proof needs a different
treatment since in this case the matrix P +Q becomes P which is, instead of positive
definite, only positive semi-definite.

Theorem 3.2. Suppose that f satisfies (A1), (A2) and (p) and
(q′) q(t) = 0 for all t ∈ Z(1, T ).

Then there exist at least two nonconstant T -periodic solutions for (1.1).

Proof. In this case, Q = 0 and

I(u) = 1
2 (Pu, u) +

T∑
t=1

F (t, u(t)). (3.5)

It is easy to see that P is positive semi-definite, and rank(P ) = T − 1. We denote
its eigenvalues by λ1, λ2, . . . , λT and assume they are ordered as 0 = λ1 < λ2 �
λ3 � . . . � λT . Set E1 = {(v, v, . . . , v)T ∈ E|v ∈ R}, E2 = (E1)⊥. Then E has the
following decomposition of direct sum

E = E1 ⊕ E2,

where E1 and E2 are invariant subspaces of E with respect to P . Also we have

Pu = 0, ∀u ∈ E1,

λ2‖u‖2
E � (Pu, u) � λT ‖u‖2

E , ∀u ∈ E2.

In view of Lemma 3.1, I satisfies the Palais–Smale condition. Next, we will prove
that conditions (J3) and (J4) hold. In fact, by (A1), there exists a constant ρ > 0
such that F (t, x) � 1

4λ2x
2, for t ∈ Z(1, T ), x ∈ {x ∈ R||x| < ρ} �

= Bρ. Therefore,
for any u ∈ Bρ ∩ E2, t ∈ Z(1, T ), we have

I(u) = 1
2 (Pu, u) +

T∑
t=1

F (t, u(t))

� 1
2λ2‖u‖2 − 1

4λ2‖u‖2 = 1
4λ2‖u‖2 = 1

4λ2ρ
2

which shows that (J3) is satisfied.
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Take e ∈ ∂B1 ∩ E2. For any w ∈ E1 and r ∈ R, let u = re + w. Then

I(u) = 1
2 (P (re + w), re + w) +

T∑
t=1

F (t, u(t))

= 1
2 (Pre, re) +

T∑
t=1

F (t, re(t) + w(t))

� 1
2λT r2 − a1

T∑
t=1

|re(t) + w(t)|β + a2T

� 1
2λT r2 − a1T

(2−β)/2

(
T∑

t=1

|re(t) + w(t)|2
)β/2

+ a2T

= 1
2λT r2 − a1T

(2−β)/2

(
T∑

t=1

(r2e2(t) + w2(t))

)β/2

+ a2T

= 1
2λT r2 − a1T

(2−β)/2
(
r2 + ‖w‖2

2

)β/2 + a2T

� 1
2λT r2 − a1T

(2−β)/2rβ − a1T
(2−β)/2‖w‖β

2 + a2T.

Set
g1(r) = 1

2λT r2 − a1T
(2−β)/2rβ , g2(τ) = −a1T

(2−β)/2τβ + a2T.

Then, limr→+∞ g1(r)=−∞, limτ→+∞ g2(τ)=−∞. Furthermore, g1(r) and g2(τ)
are bounded from above. Accordingly, there is some R0 > ρ, such that for any
u ∈ ∂K, I(u) � 0, where K

�
= (B̄R0 ∩E1)⊕{re | 0 < r < R0} and ρ is chosen as in

the proof of Theorem 3.1. This verifies (J4). By the linking theorem, I possesses a
critical value c � a > 0, where

c = inf
h∈Γ

max
u∈Q

I(h(u))

and Γ = {h ∈ C(K̄, E)|h|∂K = id}.
Let ū ∈ E be a critical point associated to the critical value c of I, that is,

I(ū) = c. If ū 
= ũ, then the conclusion of Theorem 3.2 holds. Otherwise, ū = ũ, then
cmax = I(ū)= I(ũ)= c, that is, supu∈E I(u)= infh∈Γ supu∈K I(h(u)). Choosing h =
id, we have supu∈K I(u) = cmax. Since the choice of e ∈ ∂B1 ∩ E2 is arbitrary, we
can take −e ∈ ∂B1 ∩E2. By a similar argument, there exists R1 > ρ, such that for
any u ∈ ∂K1, I(u) � 0, where K1

�
= (B̄R1 ∩ E1) ⊕ {−re | 0 < r < R1}. Again by

the linking theorem, I possesses a critical value c′ � a > 0, and

c′ = inf
h∈Γ1

max
u∈K1

I(h(u)),

where Γ1 = {h ∈ C(K̄1, E)|h|∂K1 = id}.
Similarly, by (3.4) we find that I is bounded from above and lim‖u‖→∞ I(u) =

−∞. Thus, I may take the supremum of I on E at some point ũ ∈ E. That is,

I(ũ) = cmax = sup
u∈E

I(u).

Clearly, ũ is a nonzero critical point of I.
If c′ 
= cmax, then the proof is complete; otherwise, c′ = cmax, then for

any h∈Γ1, maxu∈K1 I(h(u))= cmax. In particular, letting h = id, we have
maxu∈K1 I(u) = cmax. Due to the fact that I|∂K � 0 and I|∂K1 � 0, I attains
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its maximum at some points in the interior of the set K and K1. On the other
hand, K ∩ K1 ⊂ E1 and for any u ∈ E1, I(u) � 0. This shows that there must be
a point û ∈ E, û 
= ũ and I(û) = c′ = cmax.

The above argument implies that, if c < cmax, equation (1.1) possesses at
least two nontrivial periodic solutions with period T ; and if c = cmax, equation
(1.1) possesses infinitely many nontrivial T -periodic solutions. This completes the
proof.

Parallel to Corollary 3.1, we have the following.

Corollary 3.2. Suppose that f satisfies (A1)–(A3), (p) and (q); then there
exist at least two nonconstant T -periodic solutions for (1.1).

Combining Corollary 3.1 and Corollary 3.2, we obtain the following.

Corollary 3.3. Suppose that f satisfies (A1)–(A3) and (p) and
(q′′) q(t) � 0, for all t ∈ Z(1, T ).

Then there exist at least two nonconstant T -periodic solutions for (1.1).

Generally, p(t) and q(t) may not satisfy (p) and/or (q′′). In this case, we have
the following.

Theorem 3.3. Suppose that f satisfies (A1)–(A3) and (A4); then at least one
of the eigenvalues of P +Q is positive. Then (1.1) possesses at least two nonconstant
T -periodic solutions.

Proof. Suppose that 0 < λ1 � λ2 � . . . � λl and 0 > −µ1 � −µ2 � . . . � −µk

are the positive and negative eigenvalues of P + Q, We also suppose that ηi, 1 �
i � l and ξj , 1 � j � k are the eigenvectors of P + Q corresponding to eigenvalues
λi, 1 � i � l and µj , 1 � j � k satisfying

(ηi, ηj) =

{
1 for i = j

0 for i 
= j,
(ξi, ξj) =

{
1 for i = j

0 for i 
= j,

and

(ηi, ξj) = 0 for any 1 � i � l, 1 � j � k.

Then E has the direct sum decomposition

E = E− ⊕ E0 ⊕ E+,

where

E+ = span{ηi, 1 � i � l}, E− = span{ξj , 1 � j � k} (3.6)

and

E0 = (E+ ⊕ E−)⊥.

For any u ∈ E, u can be decomposed as

u = u+ + u0 + u−,
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where u+ ∈ E+, u− ∈ E− and u0 ∈ E0. Clearly,

λ1‖u+‖2 � ((P + Q)u+, u+) � λl‖u+‖2,

−µk‖u−‖2 � ((P + Q)u−, u−) � −µ1‖u−‖2.

Thus
1
2 ((P + Q)u, u) � 1

2 (λl‖u+‖2 − µ1‖u−‖2).

Let H1 =E−⊕E0,H2 = E+; then E = H1⊕H2. We still need to apply Lemma 1.2
to find the critical points of I. Verification of assumption (J3) is similar to that in
the proof of Theorem 3.2. In what follows, we only verify assumption (J4) for the
linking theorem.

Take e ∈ ∂B1∩H2. For any w ∈ H1 and r ∈ R, let u = re+w. Since w = w0+w−,
where w0 ∈ E0, w− ∈ E−, then

I(u) = 1
2 ((P + Q)(re + w), re + w) +

T∑
t=1

F (t, u(t))

= 1
2 ((P + Q)re, re) + 1

2 ((P + Q)w−, w−) +
T∑

t=1

F (t, re(t) + w(t))

� 1
2λlr

2 − 1
2µ1‖w−‖2 − a1

T∑
t=1

|re(t) + w(t)|β + a2T

� 1
2λlr

2 − a1T
(2−β)/2rβ − a1T

(2−β)/2‖w‖β
2 + a2T.

Thus by a similar argument as in the proof of Theorem 3.2, we can conclude that
Theorem 3.3 holds.

Remark 3.2. When (A4) does not hold, then P + Q is negative semi-definite
(or negative definite). If we further assume that

(A5) xf(t, x) < 0, for all x 
= 0;

then there exist no nontrivial T -periodic solutions of (1.1). In fact, {u(t)} is a T -
periodic solution of (1.1) if and only if u = {u(t)} ∈ E is a critical point of I,
namely,

(P + Q)u + f(u) = 0,

where f(u) = (f(1, u(1)), f(2, u(2)), . . . , f(T, u(T )))T . Thus

((P + Q)u, u) +
T∑

t=1

u(t)f(t, u(t)) = 0.

On the other hand, ((P + Q)u, u) � 0 and by (A5), u(t)f(t, u(t))� 0, for all t ∈
Z(1, T ). Then, u(t) ≡ 0, for all t ∈ Z(1, T ).

4. Bounded f(t, x)

In this section, we study the case when f is bounded. In this case, we have the
following theorem.
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Theorem 4.1. Suppose that f, P,Q satisfy the following assumptions.

(A6) f is bounded, that is there exists a positive constant M > 0 such that for
any (t, x) ∈ Z(0, T ) × R, |f(t, x)| � M .

(A7) The matrix P + Q is non-singular.

Then there exists at least one T -periodic solution of (1.1).

Proof. We will apply Lemma 1.3, the saddle point theorem, to prove our
theorem. Consider the functional

I(u) = 1
2 ((P + Q)u, u) +

T∑
t=1

F (t, u(t)), u ∈ E,

where P, Q, F and E are defined in Section 2. We only need to find a critical point
of the functional I on E.

Firstly, we claim that, under assumptions (A6) and (A7), the functional I satisfies
the Palais–Smale condition on E. In fact, for any sequence {un} ⊂ E, with I(un)
bounded and I ′(un) → 0 as n → +∞, there is a positive constant M1 > 0 such
that for any n ∈ N, ‖I ′(un)‖ � M1. Since I ′(un) = (P + Q)un + f(un), where
f(u) = (f(1, u(1)), f(2, u(2)), . . . ,f(T, u(T )))T , we have

‖(P + Q)un‖ � M1 + ‖f(un)‖.

By assumption (A6),

‖f(un)‖ =
√

f2(1, un(1)) + f2(2, un(2)) + . . . + f2(T, un(T )) �
√

TM.

Thus, for any n ∈ N,

‖(P + Q)un‖ � M2,

where M2 = M1 + M
√

T .
On the other hand, by (A7), any eigenvalue of P + Q is not zero. Thus we can

suppose that 0 < λ1 � λ2 � . . . � λl and 0 > −µ1 � −µ2 � . . . � −µk are
the positive and negative eigenvalues of P + Q respectively and l + k = T . Denote
λ = min{|λ1|, |µ1|}. Then E has the direct sum decomposition

E = E− ⊕ E+,

where E+ and E− are defined as in (3.6). For any u ∈ E, u can be decomposed as

u = u+ + u−,

where u+ ∈ E+, u− ∈ E−. Then

‖(P + Q)u‖ = ‖(P + Q)u+‖ + ‖(P + Q)u−‖ � λ1‖u+‖ − µ1‖u−‖ � λ‖u‖.

Therefore, for any n ∈ N,

λ‖un‖ � ‖(P + Q)un‖ � M2

and then

‖un‖ � 1
λ

M2.

It follows that {un} is a bounded sequence of E, and thus, possesses a convergent
subsequence, so the Palais–Smale condition is verified.
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Next we will verify the assumptions of the saddle point theorem. By (A6), for
any u ∈ E+,∣∣∣∣∣

T∑
t=1

F (t, u(t))

∣∣∣∣∣ �
T∑

t=1

|F (t, u(t))| � M

T∑
t=1

|u(t)| � M
√

T‖u‖,

so

I(u) � 1
2λ1‖u‖2 − M

√
T‖u‖.

By minimizing the right side of the above inequality, we have

I(u) � −M2T

2λ1
.

Let ω = −M2T/2λ1, then for any u ∈ E+, I(u) � ω. On the other hand, for any
u ∈ E−,

I(u) � 1
2µ1‖u‖2 + M

√
T‖u‖.

In view of µ1 < 0, we have

I(u) → −∞ as ‖u‖ → +∞.

This implies that we can choose constants σ < ω, and ρ > 0 such that I|∂Bρ∩E− � σ.
Consequently, by the saddle point theorem, there exists at least one critical point
of I on E. This completes the proof of Theorem 4.1.

In the case when f(t, x) is independent of the second variable x, equation (1.1)
reduces to the following second-order linear difference equation

�[p(t) � u(t − 1)] + q(t)u(t) = f(t). (4.1)

Thus the critical points of I are just the solutions of the linear algebraic system

(P + Q)u = f (4.2)

where f = (f(1), f(2), . . . , f(T ))T . Clearly (A7) becomes necessary and sufficient
for (4.2) to have a unique solution, that is, we have the following result.

Corollary 4.1. A necessary and sufficient condition for the linear equation
(4.1) to have a unique T -periodic solution is that the matrix P +Q is non-singular.

Remark 4.1. When (A7) is not satisfied, that is when P +Q is singular, one
still can expect the existence of T -periodic solutions of (4.1) (and (1.1) with bounded
f). Unfortunately, we cannot carry out the details of such an analysis at present,
and thus have to leave it as future work.

5. An example

There have been extensive and intensive studies on infinite dimensional systems
of the form

ut(n, t) = d[u(n + 1, t) − 2u(n, t) + u(n − 1, t)] + g(u(n, t)), n ∈ Z. (5.1)
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Such a system is a result of discretizing the spatial variable of the reaction-diffusion
equation

∂w(x, t)
∂t

= D
∂2w(x, t)

∂x2
+ g(w(x, t)), x ∈ R, (5.2)

and is referred to as discrete reaction-diffusion equation, or lattice-differential
equation. Here u(n, t)= w(nh, t) for n∈Z, and h is the step size of the
discretization. Recall that (5.2) is derived by applying the conservation law and by
assuming that the flux φ of w is negatively proportional to the gradient of w with
a constant proportional constant α (that is φ = −αwx), thus giving the diffusion
term φx = −αwxx as in (5.2). The more general situation is that the proportional
constant α depends on the spatial variable x, reflecting the heterogeneity of the
environment. In such a case, (5.2) should be rewritten as

∂w(x, t)
∂t

= (α(x)wx(x, t))x + g(w(x, t)), x ∈ R, (5.3)

and therefore, the corresponding discretization would read

ut(n, t) = ∆n(α(n)∆nu(n − 1, t)) + g(u(n, t)), n ∈ Z. (5.4)

Noting that (5.1) could demonstrate very rich equilibrium structure (see, for
example, Keener [21], and Chow and Mallet-Paret [11, 12]), it becomes an
interesting and challenging problem to study the equilibria of the more general
system (5.4), that is, the solutions of the second order difference equation

∆(α(n)∆u(n − 1)) = −g(u(n, t)), n ∈ Z. (5.5)

In what follows, we consider a periodic environment by assuming that α(n) is
periodic with period T > 0 (for example, a ring environment). Then, a periodic
solution of (5.5) gives an equilibrium of (5.4) with a spatially periodic pattern.

When (5.1)–(5.4) are used to describe the population growth in a patch
environment, g(u) usually takes the form g(u) = −du + b(u) where −du (with d > 0)
is the death term while b(u) is the birth function. Biologically, b(u) is assumed to
be continuous, non-negative and bounded. The following birth functions have been
widely adopted in the literature.

b(u) =

{
βue−δu u � 0

0 u < 0,
b(u) =




βu

u + δ
u � 0

0 u < 0.

Now, applying Theorem 4.1 to the corresponding population model system on the
lattice (patch environment)

ut(n, t) = ∆n(α(n)∆nu(n − 1, t)) − d u(n, t) + b(u(n, t)), n ∈ Z, (5.6)

one immediately knows that this system admits at least one periodic equilibrium,
provided that α(n) is periodic in n. Moreover, if d > 0 is sufficiently large (so
that the corresponding P + Q is nonsingular), then this periodic equilibrium is
unique.
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