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1. Introduction1

The Sterile Insect Release Method (SIRM) is biological control method, which was2

first proposed by Knipling [17]. The idea is to release the insects of the same type3

that are sterilized and let them compete with the wild fertile insects for mating, so4

that the productive capacity of the target species is reduced by the competition.5

The method would be effective if the releasing can result in a population crash,6

controlling and even eradicating the insects. Due to its non-polluting nature and7

its effectiveness in certain situations, SIRM has become a well respected and very8

useful technique for pest control. This method was first implemented against screw-9

worm fly (Callitroga hominivorax) in Curacao [5, 18, 21]. After that many species10

were successfully controlled via SIRM, such as the melon fly [13, 14], the codling11

moth [30], and the bollworm [11].12

To guide the implementation of the SIRM or evaluate the effectiveness of the13

SIRM, mathematical models are useful. Barclay considered several SIRM mod-14

els with effects of various factors. For example, he considered a model on SIRM15

with inter-specific competition in [1], and another model on SIRM with periodic16

release of parasitoids [2]. Barclay and Mackauer considered an SIRM model with17

the effect of predation or parasitism [4]. For the effect of predation on SIRM, one18

can also see [12]. The effect of the immigration of already inseminated females19

insect was considered for SIRM in [9, 29]. Readers can refer to other papers (e.g.20

[3, 6, 24, 28, 31]) for more information on certain aspects of SIRM. When the SIRM21

is applied in a large field, the diffusion of the species can not be ignored. Realizing22

the significance of spatial factor in pest control, [19, 23, 27] proposed partial differ-23

ential equation (PDE) models with the diffusion terms accounting for mobility of24

the insects. Such models have revealed new phenomena that cannot be observed in25

ordinary differential equation models.26

In [19], the authors considered an SIRM model given by the following system
of reaction diffusion equations


ut = d1∆u+ u

(
a1u

u+ n
− a2

)
− 2δu(u+ n),

nt = d2∆n+ r − a2n− 2δn(u+ n),

t ≥ 0, x ∈ R. (1.1)

Here u(t, x) and n(t, x) denote the densities of fertile and sterile females respectively,27

a1 is the birth rate of the fertile insects, a2 is the density-independent death rate28

which is smaller than a1, and biologically realistic values for a2/a1 lie in the range29

[0, 0.3]. δ is the density-dependent death rate (given by 2δ = (a1 − a2)/carrying30

capacity). The constants d1 and d2 are the diffusion coefficients of fertile insects31

and sterile insects respectively, and r is the constant release rate of sterile insects.32

For details on the biological assumptions under which this model was proposed,33

see [19, 27]. By exploring existence of bistable traveling wave front solutions to34

(1.1), theoretically and numerically, some results were obtained on how the spatial35

diffusion together with other parameters affect the consequence of SIRM.36
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In the real world, a habit for a species of insects is bounded. This suggests that
one should consider the PDE system in (1.1) in a bounded domain. In the one-
dimensional case, a typical bounded domain is an interval. In this paper, we will
consider the following initial-boundary value problem



ut = d1uxx + u

(
a1u

u+ n
− a2

)
− 2δu(u+ n), x ∈ Ω,

nt = d2nxx + r − a2n− 2δn(u+ n), x ∈ Ω,

∂u

∂ν

∣∣∣∣
∂Ω

=
∂n

∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x) > 0, n(x, 0) = n0(x) ≥ 0, x ∈ Ω,

(1.2)

where the meanings of the variables and parameters remain the same as in (1.1). For1

convenience yet without loss of generality, we choose the interval [0, �] where � > 0,2

and consider a closed habitat reflected by the homogeneous Neumann boundary3

condition where ∂
∂ν is the derivative along the outward normal direction. We are4

concerned with the dynamics of the model (1.2), in particular, under what condi-5

tions the population of the fertile species approaches zero, accounting for the success6

of the SIRM; and under what conditions, there will be a stable co-persistence steady7

state corresponding to the possibility of failure of the SIRM.8

For convenience of analysis, we non-dimensionalize (1.2) by the following change
of variables and parameters:

x∗ = x

√
a1

d1
, t∗ = ta1, u∗ = u

δ

a1
, n∗ = n

δ

a1
,

A =
a2

a1
, d =

d2

d1
, R =

δ

a2
1

r, L = �

√
a1

d1
.

(1.3)

For simplicity in later calculations, we let x̃ = π
Lx

∗ and C1 = ( π
L)2, C2 = d( π

L)2,
so that the spatial domain is transformed into Ω∗ = (0, π). Dropping asterisks and
tildes for notational simplicity, (1.2) is then transformed into




ut = C1uxx + u

(
u

u+ n
−A− 2(u+ n)

)
, x ∈ Ω,

nt = C2nxx +R−An− 2n(u+ n), x ∈ Ω,

∂u

∂ν

∣∣∣∣
∂Ω

=
∂n

∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x) > 0, n(x, 0) = n0(x) ≥ 0, x ∈ Ω,

(1.4)

where Ω = (0, π). We will point out later that system (1.4) is a competitive system.9

To study this kind of system, we can apply the theory and method introduced
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in [33]. For the work describing biological process with competitive system, one can1

see, for example, [7, 20, 22, 34].2

The rest of the paper is organized as follows. We first address the well-posedness3

of the model (1.4) in Sec. 2. In Sec. 3, we show the existence of the fertile-free4

steady state for (1.4) and investigate its stability. In Sec. 4, we derive conditions5

for existence of co-persistence steady state for (1.4) and the global stability of6

the unique fertile-free steady state. We conclude the paper by Sec. 5 where we7

summarize our results and discuss their biological implications, as well as possible8

future works on the SIRM.9

2. Well-Posedness of Model10

In this section, we show that the model (1.4) is well-posed in the sense that for any11

pair of positive initial functions (u0(x), n0(x)), (1.4) has a unique solution which12

remains positive and bounded, and hence exists globally. To this end, we need some13

preparation.14

For notational convenience, we denote by f(u, n) and g(u, n) the two nonlinear
functions on the right-hand side of (1.4), that is,

f(u, n) � u

(
u

u+ n
−A− 2(u+ n)

)
,

g(u, n) � R−An− 2n(u+ n).

It is easy to see that g(u, n) is decreasing with respect to both u and n, and15

g(u, 0) > 0, for all u ∈ R+. The form of f(u, n) with respect to u is shown in Fig. 1,16

and f(u, n) = 0 has two positive solutions u−, u+ if and only if n < nc � (1−A)2/817

(see Fig. 1 for an illustration).18

In order to consider classic solutions of (1.4), we introduce the space X =
(C2(Ω,R2) ∩ C1(Ω̄,R2)). According to the biological meanings of the variables u
and n, we only need to consider the following subset X+ in X :

X+ � {(u, n) ∈ X |u ≥ 0, n ≥ 0, x ∈ Ω̄}.
The following theorem confirms the well-posedness of (1.4), including existence,19

uniqueness, positivity and boundedness of a solution to (1.4).20

Theorem 2.1. For each (u0, n0) ∈ X+, there exists a unique solution (u(t, x, u0),21

n(t, x, n0)) of system (1.4) and this solution remains in X+. This solution is22

bounded, and hence, exists globally. Moreover, if u0 �≡ 0 and n0 �≡ 0, then23

u(t, x, u0) > 0 and n(t, x, n0) > 0 for all t > 0 and x ∈ Ω̄.24

Proof. Let (u, n) ∈ R2
+. It is easy to see that when u = 0, then f(0, n) = 0 ≥ 0;25

and when n = 0, then g(u, 0) = R > 0. By [33, Theorem 7.3.1 and Corollary 7.3.2],26

for each (u0, n0) ∈ X+, there is a unique solution (u(t, x, u0), n(t, x, n0)) of system27

(1.4) and this solution remains in X+ on a maximal time interval [0, σ).28

1450030-4
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Fig. 1. Curves of f as a function of u when A = 0.2. Thus nc = 0.08. Curves are shown for
n = 0.06 (upper), n = 0.08, and n = 0.1 (lower).

In order to show the global existence of solutions of (1.4) (i.e. σ = ∞), we only
need to show that solutions are bounded. Noticing that

f(u, n) ≤ u(1 −A− 2u) = f(u, 0), for (u, n) ∈ X+,

we may consider the following upper comparison equation for the variable u(t, x):


ut = C1uxx + f(u, 0), x ∈ Ω,

∂u

∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

(2.1)

Since every positive solution of (2.1) converges to the positive equilibrium b1 :=
(1 − A)/2, by comparison theorem, we conclude that the u component of solution
of (1.4) in X+ remains bounded from above. Similarly,

g(u, n) ≤ R−An− 2n2 = g(0, n), for (u, n) ∈ X+,

suggesting that we consider the following upper comparison equation for the n

component: 


nt = C2uxx + g(0, n), x ∈ Ω,

∂n

∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

n(x, 0) = n0(x) ≥ 0, x ∈ Ω.

(2.2)

1450030-5
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Again, by standard result on scalar reaction–diffusion equation with the Neumann1

boundary condition, we know that every positive solution of (2.2) approaches a2

positive constant steady state b2 := (
√
A2 + 8R−A)/4. By the comparison theorem,3

we conclude that the n component of any solution of (1.4) in X+ remains bounded.4

Therefore, any solution of (1.4) in X+ is bounded and hence exists globally.5

The last part of the theorem on the strict positivity of solutions is a consequence6

of the Maximal Principle (see, e.g. [33, Corollary 7.2.3]). The proof is completed.7

8

Remark 2.2. By the proof of the above theorem and the [33, Corollary 7.3.3], we
actually know that the set

X+
b = {φ ∈ X+ : φ(x) ∈ [0, b1] × [0, b2]}

is not only positively invariant but also attractive for (1.4).9

3. Boundary Steady State: Eradication of Fertile Insects10

Steady states play an important role in the dynamical properties of the system.11

Note that the results in [15, 16] imply that a cooperative system in a convex domain12

under the homogeneous Neumann boundary condition has no stable non-constant13

steady state. Thus, we only need to concentrate on constant steady states and their14

stability. To this end, we consider the points (u, n) such that f(u, n) = g(u, n) = 0.15

For f(u, n) = 0, we have either u = 0, or

u−A(u + n) − 2(u+ n)2 = 0. (3.1)

Equation (3.1) has two positive real roots for u if and only if n < nc, given by

u±(n) =
1
4

[
(1 −A) ±

√
(1 −A)2 − 8n

]
− n > 0. (3.2)

Or, equivalently, solving (3.1) for n in terms of u yields

n = nf (u) � 1
4

(√
A2 − 8u−A− 4u

)
. (3.3)

For g(u, n) = 0, we have

u = ug(n) � R−An

2n
− n. (3.4)

Combining u = 0 and (3.4), we have n = b2 = 1
4 (
√
A2 + 8R − A). So we obtain a16

constant steady state E0 = (0, b2), which will be called a fertile-free steady state at17

which, the fertile species becomes extinct.18

Theorem 3.1. The fertile-free steady state E0 is always locally asymptotically19

stable.20

1450030-6
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Proof. The stability of E0 is determined by the following eigenvalue problem


−C1φxx − fuφ− fnψ = λφ,

−C2ψxx − guφ− gnψ = λψ,

∂φ

∂ν

∣∣∣∣
∂Ω

=
∂ψ

∂ν

∣∣∣∣
∂Ω

= 0,

(3.5)

where all the partial derivatives are evaluated at E0 = (0, b2), that is,

fu = −A− 2b2, fn = 0,

gu = −2b2, gn = −A.
E0 is locally asymptotically stable if and only if all the eigenvalues of (3.5) have
positive real parts. Since the first equation of (3.5) is decoupled from the second
one, the set of eigenvalues of (3.5) is a subset of the eigenvalues of the problem


−C1φxx − fuφ = λφ,

∂φ

∂ν

∣∣∣∣
∂Ω

= 0.
(3.6)

Because −fu = A + 2b2 > 0 on Ω̄, problem (3.6) has a simple principal eigenvalue1

λ1 which is real and positive (see [10, Theorem 2.4]). Thus, all eigenvalues of (3.5)2

have positive real parts, confirming that E0 is locally asymptotically stable. The3

proof is completed.4

The biological implication of this theorem is that applying the SIRM when the5

fertile species is at a lower density can always successfully eradicate the fertile6

species. However, when the fertile population is at a higher level, the success of the7

SIRM depends on the strength of the release rate R, and insufficient release may8

lead to co-existence of both fertile and sterile species, implying failure of the SIRM.9

We will explore this in the next section.10

4. Co-Persistence Steady State: Failure of SIRM11

We now consider possibility of co-persistence steady states. Substituting (3.4) into
(3.3), we obtain

0 = H(n) � nf (ug(n)) − n

=
1
4

(√
A2 +

4(R−An)
n

− 8n−A− 2(R−An)
n

+ n

)
− n. (4.1)

This equation can be transformed to cubit equation, which has exactly one negative
real root, with the other two being either real positive or a conjugate pair of complex

1450030-7
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numbers. The existence of two positive real roots requires that R < R̃, where R̃ is
determined by solving the following two tangential equations:

H(n) = H ′(n) = 0 (4.2)

for some real n > 0.1

Eliminating n from the two equations in (4.2), we can obtain

108R2 + ÃR−A2(1 −A)2 = 0, (4.3)

where Ã = 4(1 + A)[A − 2(1 − A)2]. This quadratic equation has a positive root
(denoting it by R̃) which is given by

R̃ =
1

216

(√
Ã2 + 432A2(1 −A)2 − Ã

)
. (4.4)

Corresponding to R = R̃, we can obtain the n value of the positive solution of (4.2):

ñ =
1
6

(√
A2 + 6R̃(1 +A) −A

)
. (4.5)

Based on the above, we conclude that when R > R̃, (4.1) has no positive root,2

which implies that there is no positive constant steady state of (1.4). When R = R̃,
3

there is exactly one positive constant steady state, denoted by Ẽ = (u+(ñ), ñ).4

where u+(ñ) is defined by (3.2). When R < R̃, (4.1) has exactly two positive roots5

denoted by n− and n+ satisfying n− < n+. See Fig. 2 for a demonstration of the6

above summary.7

0 0.04 0.08 0.12 0.16
0

0.1

0.2

0.3

0.4

0.5

n

u

n
c

U
+

U
−

N
3

N
2

N
1

Fig. 2. The nullclines f(u, n) = 0 and g(u, n) = 0 on n−u plane. Here A = 0.1, thus nc ≈ 0.101,

R̃ = 0.0634 and Rc = 0, 0557. U+ and U− are the curve described by (3.2); N1, N2, and N3 are
the curves described by (3.4) for R = R̃, R = Rc and R = 0.029 < Rc, respectively.
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It is easy to see that when R < R̃, the n components of the two positive steady
states, n+ and n−, may locate either on the same branch (U+) or on different
branches (U+ and U−). Obviously, there is another critical value Rc ∈ (0, R̃), given
by Rc = (1 + A)(1 − A)2/16, that distinguishes these two cases (see Fig. 2). That
is, for R ∈ (Rc, R̃), the two positive constant steady states are given by

E1 = (u+(n−), n−), E2 = (u+(n+), n+),

while for R ∈ (0, Rc), they are given by

E1 = (u+(n−), n−), E2 = (u−(n+), n+).

Basing on the discussion above, we have following theorem.1

Theorem 4.1. For given parameters A and d, the following results for (1.4) hold.2

(i) When R > R̃, there is no positive constant steady state for (1.4). Moreover,3

the unique constant steady state E0 is globally asymptotically stable.4

(ii) When R = R̃, there is exactly one positive constant steady state Ẽ =5

(u+(ñ), ñ). Moreover, system (1.4) undergoes a saddle-node bifurcation at6

point Ẽ.7

(iii) When Rc < R < R̃, there are exactly two positive constant steady states for8

(1.4), given by E1 = (u+(n−), n−) and E2 = (u+(n+), n+). Moreover, E1 is9

locally asymptotically stable and E2 is unstable.10

(iv) When 0 < R ≤ Rc, there are exactly two positive constant steady states for11

(1.4), given by E1 = (u+(n−), n−) and E2 = (u−(n+), n+). Moreover, E1 is12

locally asymptotically stable and E2 is unstable.13

Before giving the proof of Theorem 4.1, for readers’ convenience, we present the14

well known Saddle-Node Bifurcation Theorem by Crandall and Rabinowitz in [8].15

Theorem 4.2. Let X, Y be Banach spaces and F : R×X → Y . Assume that there16

is (λ0, U0) ∈ R×X such that F (λ0, U0) = 0 and F is a continuously differentiable17

in an open neighborhood of (λ0, U0). Suppose the following conditions hold :18

(H1) dimN (FU (λ0, U0)) = codimR(FU (λ0, U0)) = 1 and N (FU (λ0, U0)) =19

span{Φ0};20

(H2) Fλ(λ0, U0) /∈ R(FU (λ0, U0)).21

Let Z be the complement of span{Φ0} in X. Then the solutions of F (λ, U) = 022

near (λ0, U0) form a curve (λ(s), U(s)) = (λ0 + τ(s), U0 + sΦ0 + sz(s)), where s→23

(τ(s), z(s)) ∈ R × Z is a continuously differentiable function near s = 0 satisfying24

τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0. Furthermore, if F is k-times continuously25

differentiable, so are τ(s) and z(s).26

For work on studies and applications of saddle-node bifurcation, one can see,27

for example, [25]. For some extended results for Theorem 4.2, one can see [32].28

Now we give the proof of Theorem 4.1.29

1450030-9
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Proof of Theorem 4.1. The assertions on existence/non-existence of positive1

constant steady states have already been discussed above. Now we confirm the2

conclusions on stability/instability of the steady states, as well as on the saddle-3

note bifurcation.4

We know that the operator φ 
→ −φ′′ on (0, π) with boundary condition φ′(0) =
φ′(π) = 0 has eigenvalues

µ0 = 0, µk = k2, k = 1, 2, 3, . . . ,

with the associated normalized eigenfunctions

φ0(x) =

√
1
π
, φk(x) =

√
2
π

cos(kx), k = 1, 2, 3, . . . ,

respectively. The linearized system of (1.4) at one steady state has the form:(
ut

nt

)
= L

(
u

n

)
� C

(
uxx

nxx

)
+ J

(
u

n

)
, (4.6)

where

C �
(
C1 0
0 C2

)
,

and J is the Jacobian matrix defined by

J �
(
fu fn

gu gn

)
.

Here all derivatives will be evaluated at the steady state under consideration. Obvi-5

ously, L is a linear operator with domain DL = XC � X̃⊕ iX̃ = {v1 + iv2 |v1,v2 ∈6

X̃}, where X̃ � {(u, n) ∈ X |u′(0) = u′(π) = n′(0) = n′(π) = 0} is a real-valued7

Sobolev space.8

Consider the following characteristic equation of the operator L:

L

(
φ

ψ

)
= µ

(
φ

ψ

)
. (4.7)

The steady state is locally asymptotically stable if and only if all the eigenval-
ues of (4.7) have negative real parts. Let (φ(x), ψ(x))� be an eigenfunction of L
corresponding to the eigenvalue µ, which can be expressed as(

φ

ψ

)
=

∞∑
k=0

(
ak

bk

)
cos(kx),

where ak, bk ∈ C are coefficients. Plugging the above into (4.7) gives

−C
∞∑

k=0

k2

(
ak

bk

)
cos kx+ J

∞∑
k=0

(
ak

bk

)
cos kx = µ

∞∑
k=0

(
ak

bk

)
cos kx,

1450030-10
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which leads to

(J − k2C)

(
ak

bk

)
= µ

(
ak

bk

)
, k = 0, 1, 2, . . . .

Set

Jk � J − k2D =

(
fu − k2C1 fn

gu gn − k2C2

)
, k = 0, 1, 2, . . . .

It is clear that the eigenvalues of L are given by the eigenvalues of Jk for k =
0, 1, 2, . . . . The characteristic equation of Jk is

(Q)k : µ2 − Tkµ+Dk = 0, k = 0, 1, 2, . . . ,

where

Tk � trJk = fu + gn − k2(C1 + C2),

Dk � detJk = C1C2k
4 − (C2fu + C1gn)k2 + fugn − fngu.

Then all the eigenvalues of (4.7) are given by the roots of (Q)k, k = 0, 1, 2, . . . . We1

can determine the sign of the real parts of the eigenvalues of (Q)k by analyzing the2

corresponding Tk and Dk.3

At the point Ẽ, fu < 0, fn < 0, gu < 0 and gn < 0, implying that Dk is
increasing in k for k ≥ 0 and hence, Dk > D0 for all k = 1, 2, . . . . On the other
hand, from (4.1) and (4.2), we obtain

0 = H ′(ñ) =
dnf (u)
du

· dug(ñ)
dn

− 1

=
(
−fu(u+(ñ), ñ)
fn(u+(ñ), ñ)

)
·
(
−gn(u+(ñ), ñ)
gu(u+(ñ), ñ)

)
− 1.

Hence D0 = fugn − fngu = 0 at Ẽ. Since Tk < T0 = fu + gn < 0, k = 0, 1, 2, . . . ,4

so (Q)0 has a negative real root and a zero root; for k = 1, 2, . . . all roots of (Q)k5

have negative real parts.6

To prove that system (1.4) undergoes saddle-node bifurcation at Ẽ when R = R̃,
we only need to verify conditions (H1) and (H2) in Theorem 4.2. For similar process,
one can see [25, Proof of Theorem 2.2]. Corresponding to the notations in Theorem
4.2, for our model, we chose the mapping F : R+ ×XC → Cα(Ω) as

F (R, (u, n)) =

(
C1uxx + f(u, n)

C2nxx + g(u, n)

)
.

It is clear that F (R̃, Ẽ) = 0 and the derivative FR(R̃, Ẽ) = (0, 1). We can also
easily calculate the derivative of F with respect to E at (R̃, Ẽ) as

FE(R̃, Ẽ)[(φ, ψ)] =

(
C1φxx + fuφ+ fnψ

C2ψxx + guφ+ gnψ

)
, (φ, ψ) ∈ XC.

To find the null space of FE(R̃, Ẽ), we need to solve FE(R̃, Ẽ)[(φ, ψ)] = 0 for
non-trivial solutions. We can regard this question as an eigenvalue problem with
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eigenvalue λ = 0. Let φ(x) =
∑∞

k=0 ak cos kx, ψ(x) =
∑∞

k=0 bk cos kx, ak, bk ∈ C.
Substituting (φ(x),ψ(x)) into FE(R̃, Ẽ)[(φ, ψ)] = 0, we can obtain


ak =

fn

C1k2 − fu
bk,

[
C1C2k

2 − (C2fu + C1gn)
]
k2bk = 0,

k = 0, 1, 2, . . . .

By fn < 0 and fu < 0 (hence C1k
2−fu > 0 and C2fu+C1gn < 0), we conclude that1

bk = 0, for all k = 1, 2, . . . and a0 = − fn

fu
b0 where b0 �= 0 and hence, ψ(x) ≡ b0 and2

φ(x) ≡ a0 = − fn

fu
b0. This implies that dimN (FE(R̃, Ẽ)) = 1 and N (FE(R̃, Ẽ)) =3

span{(− fn

fu
, 1)}.4

For each (w, z) ∈ R(FE(R̃, Ẽ)), there exists (φ, ψ) ∈ XC such that

C1φxx + fuφ+ fnψ = w, (4.8)

C1φxx + guφ+ gnψ = z. (4.9)

Multiplying (4.8) by gn and (4.9) by −fn, and then subtracting the two resulting
equations lead to

C1gnφxx − C2fnψxx = (gnw − fnz) = (w, z)(gn,−fn)�.

Here we have made use of the relation fugn−gufn = D0 = 0. Integrating the above
equation and using the Neumann boundary condition, we obtain

0 =
∫

Ω

(gnC1φxx − fnC2ψxx)dx =
∫

Ω

(gnw − fnz)dx =
∫

Ω

(w, z)(gn,−fn)�dx.

(4.10)

On the other hand, by the Fredholm’s theorem, if
∫
Ω(w, z)(gn,−fn)�dx = 0 holds5

for (w, z) ∈ Cα(Ω), then there exists a (φ, ψ) ∈ XC satisfying (4.8)–(4.9). Thus,
6

R(FE(R̃, Ẽ)) = {(w, z) ∈ Cα(Ω) :
∫
Ω
(w, z)(gn,−fn)�dx = 0}, which shows7

codimR(FE(R̃, Ẽ)) = 1. Thus F satisfies (H1).8

Now we show that FR = (0, 1) �∈ R(FE(R̃, Ẽ)). If this is not true, then there
exists a (φ, ψ) ∈ XC such that

C1φxx + fuφ+ fnψ = 0, (4.11)

C1ψxx + guφ+ gnψ = 1. (4.12)

From (4.11), we have φ = −(C1φxx + fnψ)/fu. Substituting this into (4.12), inte-
grating the resulting equation and making use of the fact gn − gufn/fu = 0 at
(R̃, Ẽ), we are led to

0 =
∫

Ω

(
C2ψxx − gu

fu
C1φxx

)
dx =

∫
Ω

1dx > 0,

a contradiction. Thus, F satisfies (H2). By Theorem 4.2, system (1.4) undergoes a9

saddle-node bifurcation at point Ẽ when R = R̃.10
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Now we consider the stability of E1 and E2 when R ∈ (Rc, R̃). We first show
that D0 defined in (Q)0 is decreasing with respect to n on the curve n = nf (u). In
fact, for a steady state on the curve n = nf (u)

D0 = fugn − fngu

= u

(
n

(u+ n)2
− 2
)
· (−2u− 4n) − u

(
u

(u + n)2
+ 2
)
· 2n

= −4u
(

n

u+ n
− (u+ n)

)

and

∂D0

∂n
= −4u

(
u− (u + n)2

(u+ n)2

)
. (4.13)

On the curve n = nf(u), (u, n) satisfies u − A(u + n) − 2(u + n)2 = 0, so u >1

(u + n)2, which implies that ∂D0
∂n |n=nf (u) < 0. Note that when R ∈ (Rc, R̃), E1 =2

(u+(n−), n−) and E2 = (u+(n+), n+) with n− < ñ < n+. This together with the3

fact that D0|Ẽ = 0 implies that D0|E1 > 0 and D0|E2 < 0. Therefore, E1 is locally4

asymptotically stable since Tk|E1 < T0|E1 = fu + gn < 0 and Dk|E1 > D0|E1 > 0,5

and E2 is unstable since D0|E2 < 0.6

When R ∈ (0, Rc), E1 is still given by E1 = (u+(n−), n−) with n− < ñ. So E17

is still locally asymptotically stable in this case. For E2 = (u−(n+), n+), we also8

have D0|E2 < 0 since fu > 0, fn < 0, gu < 0 and gn < 0. This implies that there is9

at least one positive real eigenvalue of (4.7). Thus E2 is unstable.10

Next we prove the global stability of E0 when R > R̃. Noticing that system (1.4)
is a two-dimensional competitive system, it can be viewed as a monotone dynamical
system with respect to the partial ordering ≤K induced by the second quadrant
cone:

K = {(u, n) ∈ X : u ≤ 0, n ≥ 0},
that is,

(u1, n1) ≤K (u2, n2) ⇔ u1 ≥ u2 and n1 ≤ n2.

Alternatively, by the change of variables v = −u, (1.4) is transformed into a coop-
erative system



vt = C1vxx − v

(
v

n− v
+A+ 2(n− v)

)
, x ∈ Ω,

nt = C2nxx +R−An− 2n(n− v), x ∈ Ω,

∂v

∂ν

∣∣∣∣
∂Ω

=
∂n

∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

v(x, 0) = v0(x) < 0, n(x, 0) = n0(x) ≥ 0, x ∈ Ω,

(4.14)
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with a unique constant steady state E′
0 = (0, b2) when R > R̃. The invariant set

X+ for (1.4) is obviously transformed to the invariant set X ′ for (4.14) where

X ′ � {(v, n) ∈ X : v ≤ 0, n ≥ 0, ∀x ∈ Ω̄},
with the natural partial order �, that is (v1, n1) � (v2, n2) ⇔ v1 ≤ v2, n1 ≤n2.
Associate to (4.14) is the following cooperative system of ordinary differential equa-
tions 


dv

dt
= −v

(
v

n− v
−A+ 2(n− v)

)
,

dn

dt
= R−An− 2n(n− v),

(4.15)

By similar arguments to that in the proof of Theorem 2.1, we know that the solu-
tions of (4.15) are eventually bounded, and the rectangular domain

Λ′ �
{

(v, n) ∈ R
2 :

1 −A

2
≤ v ≤ 0, 0 ≤ n ≤ b2

}

is an invariant set and attracts all the solutions starting in the second quadrant1

(see also Remark 2.2). When R > R̃, E′
0 is the unique equilibrium for (4.15) in Λ′.2

System (4.15) has no periodic orbit since it is a planar and cooperative system. By3

Poincaré–Bendixson theorem, E′
0 is globally stable for (4.15).4

For any given (v0(x), n0(x)) ∈ X ′, let Ψ(t, v0, n0) is the solution of (4.14) with
initial value (u0(x), n0(x)). Let

v̄0 = sup
x∈Ω̄

v0(x), v0 = inf
x∈Ω̄

v0(x),

n̄0 = sup
x∈Ω̄

n0(x), n0 = inf
x∈Ω̄

n0(x),

and denote by Φ(t, v̄0, n̄0), Φ(t, v0, n0) the solutions of (4.15) with initial values
(v̄0, n̄0) and (v0, n0), respectively. Note that Φ(t, v̄0, n̄0) and Φ(t, v0, n0) also satisfy
the PDEs with the Neumann boundary condition in (4.14). Then, by the comparison
principle for cooperative parabolic systems, we then have

Φ(t, v0, n0) � Ψ(t, x, v0, n0) � Φ(t, v̄0, n̄0).

The convergence of Φ(t, v0, n0) and Φ(t, v̄0, n̄0) to E′
0 implies that Ψ(t, x, v0, n0) →5

E′
0, as t → +∞. That is, E′

0 is globally asymptotically stable for (4.14) in X ′.6

Translating this conclusion in terms of original system (1.4), we conclude that the7

fertile-free steady state E0 is globally asymptotically stable for (1.4), completing8

the proof.9

5. Conclusion and Discussion10

In this paper, we have considered a spatially diffusive SIRM model which release11

evenly a bounded habitat. The model is an alternation of the one considered in [19]12

in the sense that the unbounded domain (interval) is replaced by an bounded13
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domain (interval). We have confirmed the well-posedness of the model and investi-1

gated the dynamics of the model by analyzing all possible steady states and their2

stability. The results are described in terms of the unique artificial parameter R,3

the release strength. This seems to be a natural choice because what people can4

control in implementing the SIRM is the amount of release, while all other param-5

eters, such as birth rate, death rate, environment carrying capacity and diffusion6

rate are determined intrinsically by the environment and insect species itself. Our7

results show that when the fertile population is at low level, a small release rate R8

can eradicate the fertile population (local stability of E0 in Theorem 3.1); however,9

when the fertile population has grown up to a high level, insufficient release rate10

may fail to eradicate the fertile species resulting to co-existence of both the fertile11

and sterile species (stability of E1 in Theorem 4.1).12

The model (1.4) adopts the mechanism of evenly releasing domain-wise used
in [19]. Such a mechanism seems to be very hard and challenging, if not impossible,
to implement in practice. A more realistic mechanism would be releasing on the
boundary only. Replacing the evenly domain-wise releasing by a boundary releasing
will lead to the following alternation of (1.4):



ut = C1uxx + u

(
u

u+ n
−A− 2(u+ n)

)
, x ∈ Ω,

nt = C2nxx −An− 2n(u+ n), x ∈ Ω,

∂u

∂ν

∣∣∣∣
∂Ω

= 0,
∂n

∂ν

∣∣∣∣
∂Ω

= R, t > 0,

u(x, 0) = u0(x) > 0, n(x, 0) = n0(x) ≥ 0, x ∈ Ω.

(5.1)

In a forthcoming work, we will analyze this new model and investigate whether13

or not this new and easier releasing mechanism can still successfully eradicate the14

fertile insect species.15
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