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Abstract. The dynamics of a time delay single-species population over a
patch environment with Allee effect is considered in this paper. By construct-
ing a suitable Liapunov functional, we first establish the global asymptotical
stability for the positive homogenous equilibrium of the system of functional
differential equations. Then, using the symmetric Hopf bifurcation theory,
we are able to show that time delay can induce Hopf bifurcation of periodic
solutions including phase-lock oscillations and synchronous oscillations.
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1 Introduction

Single species population models have been extensively studied. When the
environment where the species inhabits is homogeneous, the growth of the
population is usually described by an ordinary differential equation

du

dt
= u f(u), (1.1)

where f is called the growth rate. A typical and frequently used rate function
is the so called logistic growth function

f(u) = r
(
1− u

K

)
, (1.2)

where the constant r > 0 is the intrinsic growth rate and K > 0 is the
carrying capacity. Equation (1.1) with a logistic growth function accounts
for, to some extent, the competitive aspect of the population.

On the other hand, it has been widely observed in ecology and biology
(e.g. Allee [1], Cushing [4], Sarukhan [12], Silvertown [13] and Watt [14] )
that for many species, increased population levels are advantageous at low
densities but disadvantageous at high densities. Such kind of effect is referred
as Allee effect in the literature, and is easily observable in those species of
small individual sizes. For example, it has been observed that in several
species of beetles ( Allee [1] ) and insects ( Watt [14] ) increased low level
densities result in increased fertility as well as enhanced survival. Concerning
the beneficial effects of crowding on survival rates, one immediately thinks of
the possible increased chance of survival of young as a result of increased care
and nurturing within groups of animals. Indeed, herding, flocking, schooling,
etc. can provide general protection to individual members from predators and
adverse environment events. Also, survival can be enhanced by more efficient
harvesting or hunting of prey resources by herds or packs. Studies showing
enhanced survival for plant species in the presence of increased low densities
are described by Sarukhan [12] for Ranunculus Bulbosa and by Silvertown
[13] for Pinus Ponderosa.

A simple way to take into account Allee effect in the model (1.1) is to
modify f in (1.2) as

g(u) = r
[
1 + α u− β u2

]
, (1.3)

where α > 0 and β > 0, for it is easily seen that when u > 0 is small the
growth function g is dominated by the term 1 + αu(t), and when u > 0 is
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large it is dominated by the second order term βu2. An ODE model with
such a growth function was discussed in Zou [17].

When the population of a species distributes over a continuous hetero-
geneous environment, spatial variables must be corporated into the model.
In such a situation, the growth of the population is often modeled by a
reaction-diffusion equation

∂u(t, x)

∂t
= h(u(t, x)) +4u(t, x) (1.4)

where 4 is the Laplacian with respect to the spatial variables. While the
nonlinear term h(u(t, x)) = u(t, x)f(u(t, x)) in (1.4) just decribes the reaction
term (local), 4u accounts for the natural diffusion of the population, based
on random walk.

Recently, Britton [3] proposed and analyzed a model of the form

∂u

∂t
= u [ 1 + α u− (1 + α) g ∗ u ] +4u (1.5)

to account for local aggregation and global intraspecies competition, where g
is a given function and g ∗u represents a convolution in the spatial-temporal
variables. The term αu with α > 0 represents an advantage (cooperative as-
pect) in local aggregation and the term −(1+α)g∗u with α > −1 explain the
disadvantage (competitive aspect) of high global population levels. It was
shown that various types of bifurcating spatial-temporal solutions includ-
ing steady spatial periodic structures, periodic standing wave solutions and
periodic traveling wave solutions can occur by varying certain parameters.

In the conclusion section of Britton [3], it was also suggested that Allee
effect should be included in the local interaction term. Later, Gourley and
Britton [7] studied the following modified model of (1.5)

∂u

∂t
= u [ 1 + a u− b u2 − (1 + a− b) g ∗ u ] +4u (1.6)

where a > 0, b > 0 and 1 + a − b > 0. The asymptotic stability of the
equilibrium u ≡ 1 was studied there.

In many circumstances, a species may live in a patchy environment which
is also heterogeneous. In such a case, the spatial variables belong to a dis-
crete set, and thus the growth of the population is described by a system
of ordinary/functional differential equations. In Madras, Wu and Zou [11],
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a single species population over a ring of n identical patches connected by
dispersion between adjacent patches was considered. They derived a model
of the following form

d ui(t)

dt
= r ui(t)

[
1 + αui(t)− (1 + α)

n∑
j=1

β|j−i|uj(t− τ)

]
+ d [ui+1(t) + ui−1(t)− 2ui(t)] , i = 1, . . . , n (mod n),(1.7)

where ui(t) is the population of the species in patch i at time t, r > 0 is the
intrinsic growth rate of the population in each patch, d ≥ 0 is the parameter
measuring the strength of dispersion of the populations between patches, and
τ ≥ 0 is the time delay. Note that the discrete Laplacian 4d defined by

(4du(t))i = ui+1(t) + ui−1(t)− 2ui(t)

is the discretization of the4u(t, x) along the one-dimensional spatial variable
x. So, (1.7) is actually a discrete version of (1.5). The basic assumptions for
(1.7) in [11] is

α > −1, βj ≥ 0, βn−j = βj, j = 1, . . . , n (mod n) and
n∑

j=1

βj = 1,

(1.8)
reflecting the ring structure of the inhibiting patches. While the term αui

and −(1 + α)β0ui(t− τ) exhibit the local effect in patch i, the terms −(1 +
α)β|j−i|uj(t−τ), j 6= i, stands for the nonlocal competitive effect from patch

j to patch i, and hence, −(1 + α)
∑n−1

j=0 β|j−i|uj(t− τ) reflects the global in-
traspecies competition. It was shown [11] that spatially heterogeneous steady
state solutions can bifurcate from a spatially homogeneous steady state so-
lution if the dispersion rate is large, and that Hopf bifurcations of periodic
solutions including phase-locked oscillations and synchronous oscillations can
occur when the delay in the global intraspecies competition reaches a critical
value.

In this paper, we modify (1.7), as a discrete analog of (1.6), to include
Allee effect in the model system. In other words, we consider the following
system

d ui(t)

dt
= ri ui(t)

[
1 + aiui(t)− biu

2
i (t)− (1 + ai − bi)

n∑
j=1

β|j−i|uj(t− τij)

]
+ di [ui+1(t) + ui−1(t)− 2ui(t)] , i = 1, . . . , n (mod n), (1.9)
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where ri > 0, di > 0, bi ≥ 0 and τij ≥ 0 for i, j = 1, 2, . . . , n. Note that we
allow in (1.9) different dispersion strengthes, different intrinsic growth rates
and different delays in different patches. Moreover, we assume

(H1) βn−j = βj, j = 1, . . . , n (mod n) and
∑n

j=1 βj = 1.
Here,(H1) again describes the ring structure of the patchy environment and
is in the normalized form. Also note that we do not require ai, 1+ai−bi and
βi, i = 1, . . . , n, to be positive, which means nonlocal interaction could be
either advantageous (cooperative) or disadvantageous (competitive). When
ai > 0 and bi > 0, Allee effect is reflected in the model too.

The justification for system (1.9) can be similarly done as for (1.7) in
[11], by considering a species of land (or amphibious) animals that live on
the shores of a lake. The patches correspond to segments of the shoreline,
and thus form a ring. In such an environment, the nonlocal interaction is
complicated and could be due to, among other things, the migration of the
population, the resulting competition for resources and the accumulation of
populations waste production in the environment. For detailed argument on
this context, we refer to [11] and [3]. We mention that a simpler version of
(1.9) with ri = r, ai = a, bi = b and di = d for i = 1, . . . , n was considered
in Wu and Zou [16] where some local stability and Hopf bifurcation results
were obtained. But so far no global stability result has ever been addressed
for such models.

The purpose of this paper is to present some global stability and Hopf
bifurcation results for (1.9). Section 2 deals with homogeneous equilibria of
(1.9) and their stability. In particular, we establish a global asymptotic sta-
bility result for the positive homogeneous equilibrium, by Liapunov methods.
Section 3 is devoted to the existence of periodic solutions. By using some
symmetric Hopf bifurcation theorem developed by Geba, Krawcewicz and
Wu [6], Krawcewicz, Vivid and Wu [9], and Krawcewicz and Wu [10] based
on equivariant degree theory, we are able to obtain the existence of phase-
locked oscillations (or discrete waves) or synchronous oscillations, which are
special periodic solutions with certain symmetries.

2 Global Asymptotic Stability

For biological reasons, we are only interested in solutions in the non-negative
cone Rn

+ where

Rn
+ = {u = (u1, u2, . . . , n)n ∈ Rn; ui ≥ 0, i = 1, 2, . . . , n} .
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Let τ = max{τij; i, j = 1, 2, . . . , n}. Then, fundamental theory of exis-
tence and uniqueness in Hale [8] shows that for any initial function φ ∈
C([−τ, 0], Rn

+), there exists a unique solution u(t) = (u1(t), u2(t), . . . , un(t))T

of (1.9) such that u(s) = φ(s) for s ∈ [−τ, 0].

Theorem 2.1. For any φ ∈ C([−τ, 0], Rn
+), the corresponding solution u(t)

remains in Rn
+ in the interval of existence and is bounded, and therefore, the

existence is global.

The positivity is trivial, as the ith component of the right-hand side of
(1.9) is non-negative at t ≥ 0 such that ui(t) = 0 and uj(t) ≥ 0 for j 6= i.
The proof of the boundedness is also obvious because of the negativity of the
higher order terms −biu

2
i (t), i = 1, 2, . . . , n, in the equations.

Note that there are two explicit spatially homogeneous equilibria, i.e.,(0, 0,
. . . , 0)T , (1, 1, . . . , 1)T in Rn

+. The trivial equilibrium (0, 0, . . . , 0)T is always
unstable, for the linearized system at this equilibrium

d

dt
ui(t) = ri ui(t) + di [ui+1(t) + ui−1(t)− 2ui(t)] , i = 1, . . . , n (mod n)

(2.1)
is unstable. The instability of (2.1) can be easily established by considering
the positive invariance of (2.1) and a Liapunov function V (u) =

∑n
i=1

1
di

ui.

For the positive equilibrium (1, 1, . . . , 1)T , we have

Theorem 2.2. Assume that

ai+
n∑

j=1

1

2

[
|1+ai−bi|+

di

dj

rj

ri

|1+aj−bj|
]
|β|i−j|| < bi, i = 1, 2, · · · , n. (2.2)

Then the positive equilibrium (1, 1, . . . , 1)T is globally attractive in the sense
that all positive solutions of (1.9) converge to (1, 1, . . . , 1)T .

Proof. Assume u(t) = (u1(t), u2(t), · · · , un(t))T is a positive solution of
(1.9). Let

xi = logui, yi = exi − 1, i = 1, · · · , n.

Then
ui(t) = exi(t), yi(t) = ui(t)− 1.
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Since (1, 1, · · · , 1) is a positive equilibrium of (1.9), using the above relations,
we can write (1.9) as follows:

ẋi(t) = ri

(
aiyi(t)− bi[yi(t) + 2]yi(t)− (1 + ai − bi)

n∑
j=1

β|j−i|yj(t− τij)

)
+di[e

xi+1(t)−xi(t) + exi−1(t)−xi(t) − 2]. (2.3)

Define

Vi(xi) =

∫ xi

0

[es − 1]ds

and

V (x) =
n∑

i=1

1

di

Vi(xi).

¿From (2.3) we have

d

dt
V (x(t)) =

n∑
i=1

1

di

yi(t)ẋi(t)

=
n∑

i=1

ri

di

(
aiy

2
i (t)− bi[yi(t) + 2]y2

i (t)

−(1 + ai − bi)
n∑

j=1

β|j−i|yi(t)yj(t− τij)

)

+
n∑

i=1

[exi(t) − 1][exi+1(t)−xi(t) + exi−1(t)−xi(t) − 2]. (2.4)

By the definition of yi, we know that

yi(t) + 2 ≥ 1.

Note that
n∑

i=1

[exi(t) − 1][exi+1(t)−xi(t) + exi−1(t)−xi(t) − 2]

=
n∑

i=1

[
(exi+1(t) − 1) + (exi−1(t) − 1)− 2(exi(t) − 1)

]
−

n∑
i=1

[
exi+1(t)−xi(t) + exi−1(t)−xi(t) − 2

]
. (2.5)
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But
n∑

i=1

[
(exi+1(t) − 1) + (exi−1(t) − 1)− 2(exi(t) − 1)

]
= 0, (2.6)

and

n∑
i=1

[
exi+1(t)−xi(t) + exi−1(t)−xi(t) − 2

]
=

n∑
i=1

[
e

1
2
(xi+1(t)−xi(t) − e

1
2
(xi(t)−xi+1(t)

]2

.

(2.7)
Using (2.4)-(2.7), we obtain

d
dt

V (x(t)) ≤
n∑

i=1

ri

di

[
(ai − bi)y

2
i (t)

+
1

2
|1 + ai − bi|

n∑
j=1

|β|j−i||(y2
i (t) + y2

j (t− τij))

]
. (2.8)

Let

W (xt) =
n∑

i,j=1

ri

di

1

2
|1 + ai − bi||β|j−i||

∫ t

t−τij

y2
j (s)ds.

Then, using |β|i−j|| = |β|j−i||, we have

d

dt
[V (x(t)) + W (xt)]

≤
n∑

i=1

ri

di

[
(ai − bi)y

2
i (t)

+
1

2
|1 + ai − bi|

n∑
j=1

|β|j−i||(y2
i (t) + y2

j (t))

]

=
n∑

i=1

[
ri

di

(ai − bi) +
1

2

n∑
j=1

(
ri

di

|1 + ai − bi|+
rj

dj

|1 + aj − bj|
)
|β|i−j||

]
y2

i (t)

= −
n∑

i=1

θiy
2
i (t), (2.9)

where

θi =
ri

di

(bi−ai)−
1

2

n∑
j=1

(
ri

di

|1+ai−bi|+
rj

dj

|1+aj−bj|
)
|β|i−j||, i = 1, 2, · · · , n.
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¿From (2.2), we know θi > 0, i = 1, 2, · · · , n. Therefore

0 ≤ V (x(t)) + W (xt) +

∫ t

0

n∑
i=1

θiy
2
i (s) ds ≤ V (x(0)) + W (x0), for t > 0.

(2.10)
Thus, nonnegativity of V and W and (2.10) imply∫ ∞

0

n∑
i=1

y2
i (t) dt < ∞. (2.11)

But, by the boundedness of ui, i = 1, 2, · · · , n and (1.9), we know ẏi(t) =
u̇i(t) is also bounded, and hence,

∑n
i=1 y2

i (t) is uniformly continuous. ¿From
a useful lemma in Barbálat [2] (also see Gopalsamy [5]), we obtain

lim
t→∞

n∑
i=1

y2
i (t) = 0,

that is,
lim
t→∞

yi(t) = 0, i = 1, 2, · · · , n. (2.12)

By the definition of yi(t), we conclude that

lim
t→∞

ui(t) = 1, i = 1, 2, · · · , n.

This complete the proof.

Remark 2.3. When

ri = r, ai = a, bi = b, di = d, τij = τ, i, j = 1, 2, · · · , n, (2.13)

(1.9) reduces to the system studied in [16]. It was shown in [16] that if
βi ≥ 0, i = 1, 2, · · · , n and

1

2
< b− a < 1 (or equivalently 0 < 1 + a− b <

1

2
), (2.14)

then the positive equilibrium (1, 1, · · · , 1)T is locally asymptotically stable.
Note that under the assumptions (2.13) and βi ≥ 0, i = 1, 2, · · · , n, condition
(2.2) in Theorem 2.2 becomes

|1 + a− b| < b− a (2.15)

which is weaker than (2.14), but the conclusion in Theorem 2.2 is stronger.
So, Theorem 2.2 not only generalizes but also improves the corresponding
result in [16].

9



3 Synchronous oscillations and phase-locked

oscillations

This section deals with the Hopf bifurcation of system (1.9). As mentioned
in the previous section, (0, 0, · · · , 0)T and (1, 1, · · · , n)T are two spatially
homogeneous equilibria. Since the trivial equilibrium is always unstable for
any τij ≥ 0 and ri > 0, i, j = 1, 2, · · · , n, we will concentrate on the positive
equilibrium (1, 1, · · · , 1)T and look for Hopf bifurcation from this equilibrium.
For simplicity, we will assume, in the remainder of this section, ri = r, ai =
a, bi = b, di = d, τij = τ, i, j = 1, 2, · · · , n, and consider

d ui(t)
dt

= r ui(t)

[
1 + aui(t)− bu2

i (t)− (1 + a− b)
n∑

j=1

β|j−i|uj(t− τij)

]
+ d [ui+1(t) + ui−1(t)− 2ui(t)] , i = 1, . . . , n (mod n). (3.1)

Set xi(t) = ui(t)− 1, i = 1, 1, · · · , n. Then (3.1) becomes

dxi(t)
dt

= r [xi(t) + 1]

[
axi(t)− bxi(t) ( xi(t) + 2 )

−( 1 + a− b )
n∑

j=1

β|j−i|xj(t− τ)

]
+d [ xi+1(t) + xi−1(t)− 2xi(t) ] , i = 1, . . . , n (mod n). (3.2)

We consider the equivalent system (3.2) and the corresponding equilibrium
(0, . . . , 0)T . The linearization of (3.2) at this point is

dxi(t)
dt

= r

[
(a− 2b) xi(t) − (1 + a− b)

n∑
j=1

β|j−i|xj(t− τ)

]
+d [ xi+1(t) + xi−1(t)− 2xi(t) ], i = 1, . . . , n (mod n).(3.3)

When τ = 0, (3.3) only has real eigenvalues, for the coefficient matrix is
symmetric, and hence no Hopf bifurcation occurs if τ = 0. In the rest of
this section, we will use τ > 0 as the bifurcation parameter and detect the
occurrence of Hopf bifurcations.

Normalizing the delay by yi(t) = xi(τ t), (3.3) becomes

d

dt
y(t) = [ τr(a− 2b) Id + τdN ] y(t) − τr (1 + a− b) M y(t− 1), (3.4)
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where Id is the n× n identity matrix and

M =


β0 β1 β2 . . . βn−2 βn−1

β1 β2 β3 . . . βn−3 βn−2
...

...
...

. . .
...

...
βn−1 βn−2 βn−3 . . . β1 β0

 ,

N =


−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 −2

 .

In what follows, we assume, in addition to (H1), the following
(H2) 1 + a− b 6= 0.

For fixed r > 0, d ≥ 0 and b > 0, let

Λτ (λ) := [λ− τr(a− 2b)] Id + e−λτr(1 + a− b) M − τdN.

Then, considering the restriction of Λτ (λ) on the one-dimensional complex

subspace spanned by (1, ei 2π
n

j, · · · , ei 2π
n

(n−1)j)T , we can get the following (see,
for example [11])

Lemma 3.1. Suppose (H1) holds. Then

det Λτ (λ) =
n−1∏
k=0

qk(τ, λ)

where

qk(τ, λ) = λ− τr(a− 2b) + e−λτr(1 + a− b) Bk + 4τd sin2 kπ

n
,

Bk =
n−1∑
j=0

βj ξjk, k = 0, 1, . . . , n− 1, ξ = ei 2π
n .

By a standard application of the well-known result about the zeros of
λ + A + Be−λ = 0(see, for example Hale [8]), we obtain
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Lemma 3.2. The following statements hold:
(i) The equation

qk(τ, λ) = 0 (3.5)

has purely imaginary roots λ if and only if

(Ak) |Bk| >
|r(a− 2b)− 4d sin2 kπ

n
|

r |1 + a− b|

holds;
(ii) For each k ∈ {0, 1, . . . , n− 1} satisfying (Ak), the least positive τ for

(3.5)k to have purely imaginary roots and the corresponding pair ±ωk of the
purely imaginary roots are given by

τk = ωk

Bkr(1+a−b) sin ωk
,

ωk =

 arccos
r(a−2b)−4d sin2 kπ

n

rBk(1+a−b)
if Bk(1 + a− b) > 0;

2π − arccos
r(a−2b)−4d sin2 kπ

n

rBk(1+a−b)
if Bk(1 + a− b) < 0.

(iii) For each k ∈ {0, 1, . . . , n−1} satisfying (Ak), there exist δk > 0 and a
continuously differentiable λ : ( τk−δk, τk+δk ) → C such that qk( τ, λ(τ) ) =
0 for ( τk − δk, τk + δk ), λ(τk) = iωk and

d

dt
Re( λ(τ) )

∣∣∣∣
τ=τk

=
ω2

k

τk

[(
1− τkr(a− 2b) + 4dτk sin2 kπ

n

)2
+ ω2

k

] > 0.

Suppose that there exists k ∈ {0, 1, . . . , n− 1} satisfying (Ak). Then the
characteristic equation

det Λτ (λ) = 0 (3.6)

has purely imaginary roots at τ = τk. Sine sin2 (n−k)π
n

= sin2 kπ
n

and Bn−k =
Bk, we observe that these purely imaginary roots of (3.6) at τ = τk will
not be simple unless k = 0, or k = n

2
when n is even. This observation

implies that the standard Hopf bifurcation theorem is not applicable in the
case k 6= 0 and k 6= n

2
when n is even. Fortunately, the symmetry of (3.2)

arising from the ring structure of the patchy environment makes the newly
developed symmetric bifurcation theory for functional differential equations
in [6,9,10] applicable.
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To apply these results, we now explore the symmetry of system (3.2).
Define

Zn =
{

ei 2π
n

j; 0 ≤ j ≤ n− 1
}

.

Then, Zn is a group with the usual operation:

ei 2π
n

j1 · ei 2π
n

j2 = ei 2π
n

(j1+j2), j1, j2 (mod n).

Define the orthogonal representation ρ : Zn → GL(Rn) of the Zn cyclic
permutation on Rn by(

ρ
(
ei 2π

n
k
)

x
)

j
= xj−k, x ∈ Rn and j, k (mod n).

Then, under (H1) we can verify that system (3.2) is equivariant with respect
to the above Zn action.

Now we can apply the symmetric bifurcation theory in [6,9,10] (see [11]
or [15] for a simpler version applicable to (3.2)) to obtain

Theorem 3.3. Assume (H1), (H2) and
(H3) rBk (1 + a− b)− r(a− 2b) + 4d sin2 kπ

n
6= 0, k ∈ {0, 1, . . . , n− 1}

are satisfied. Suppose (Ak0) hold for some k0 ∈ {0, 1, . . . , n− 1}. Then, there

exists a sequence of triples
{
u(l)(t), τ (l), ω(l)

}
such that

(i) τ (l) → τk0 , ω(l) → ωk0 as l →∞ and u(l)(t) =
(
u

(l)
1 (t), . . . , u

(l)
n (t)

)T

→
(1, . . . , 1)T uniformly for t ∈ R as l →∞.

(ii) u(l)(t) =
(
u

(l)
1 (t), . . . , u

(l)
n (t)

)T

is a 2π
ω(l) − periodic solution of (3.1)

with τ = τ (l) for l = 1, 2, . . . .
(iii) u

(l)
j−1(t) = u

(l)
j

(
t− 2π

ω(l)
k0

n

)
for t ∈ R, l = 1, 2, . . . and j = 1, 2, . . . , n

(mod n).

Remark 3.4. If k0 = 0, the bifurcated periodic solutions are spatially ho-
mogeneous and are called synchronous oscillations, and if k0 6= 0, they are
spatially heterogeneous and are called discrete waves or phase-locked oscilla-
tions.

We now discuss some special cases. If 1 + a− b < 0, then we have

|a− 2b|
|1 + a− b|

=
(b− a) + b

(b− a)− 1
≥ 1 for b ≥ −1. (3.7)

So, as b ≥ 0, (A0) cannot hold. Hence it is necessary that 1 + a − b > 0 in
order for synchronous oscillations to occur.
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Corollary 3.5. If

a > −1

2
and 0 ≤ b <

2a + 1

3
, (3.8)

then there exist synchronous oscillations for (3.1).

Proof. (3.8) implies that 1 + a− b > (1 + a)− 2
3
(1 + a) = 1

3
(1 + a) > 0,

a−2b > b−a−1 = −(1+a−b) and a−2b ≤ (a−b)+1. Thus, |a−2b| < 1+a−b,
and hence (A0) holds. Therefore, by Theorem 3.3, synchronous oscillations
occur near τ = τ0.

We have seen that the conditions of Corollary 3.5 imply |a−2b|
1+a−b

< 1 and
hence

|r(a− 2b)| − 4d sin2 kπ
n
|

r(1 + a− b)
< 1 (3.9)

for k = 0, 1, . . . , [n
2
] for sufficiently small d > 0. Note also that Bk = 1, k =

0, 1, . . . , n− 1, if βj = 0 for j 6= 0 and β0 = 1, and hence (3.9k) is equivalent
to (Ak) in this case. This means that if we ignore the non-local interactions,
then under the condition (3.8), there will also occur phase-locked oscillations,
in addition to synchronous oscillations.

We next consider the order of the occurrences of these oscillations. First,
we note that Bk(1 + a− b) = 1 + a− b > 0 and

r(a− 2b)− 4d sin2 (k+1)π
n

r(1 + a− b)
<

r(a− 2b)− 4d sin2 kπ
n

r(1 + a− b)
, k = 0, 1, . . . , [

n

2
]− 1.

(3.10)
Thus, we have

ωk+1 = arccos
r(a− 2b)− 4d sin2 (k+1)π

n

r(1 + a− b)

>
r(a− 2b)− 4d sin2 kπ

n

r(1 + a− b)
= ωk, k = 0, 1, . . . , [

n

2
]− 1 (3.11)

which leads to

τk+1 =
1

r(1 + a− b)

ωk+1

sin ωk+1

>
1

r(1 + a− b)

ωk

sin ωk

= τk, k = 0, 1, . . . , [
n

2
− 1]. (3.12)

Thus, τ0 < τ1 < · · · < τ[n
2
], and hence we have

14



Corollary 3.6. Assume (3.8) is satisfied. If βj = 0 for j 6= 0, and d >
0 is sufficiently small, then there occur synchronous oscillations first, and
then phase-locked oscillations, as τ > 0 increases to τ0 < τ1 < · · · < τ[n

2
]

respectively.

Remark 3.7. When b = 0, Corollary 3.5 implies that for any a ∈ (−1
2
, ∞),

(A0) always holds. Hence, Hopf bifurcations for (3.1) always exist. Now, for
any fixed a ∈ (−1

2
, ∞), we can choose b > 0 such that 1

2
< b − a < 1 (say

b = a + 2
3
) which implies, by Theorem 2.2, that (1, . . . , 1)T is asymptotically

stable for any τ > 0. Therefore, no Hopf bifurcation will occur as τ > 0
increases. This shows that appropriate b > 0 prevents Hopf bifurcations.

Corollary 3.6 claims the existence of phase-locked oscillations under the
conditions that βj = 0 for j 6= 0 and that d > 0 is sufficiently small.
Such phase-locked oscillations are unstable under small perturbations be-
cause when τ is near τk > τ0 for k 6= 0, the characteristic equation (3.6)
always has zeros with positive real parts. The only phase-locked oscillations
which are possibly stable will be those occurring at τ = τk0 = min {τk : k ∈
{0, 1, . . . , n − 1} and (Ak) holds} for some k0 6= 0. The next result shows
that such phase-locked oscillations exist, due to non-local interactions.

Corollary 3.8. Assume βj = 0 for j > 1, and let β1 = −θ and β0 = 1 + 2θ
where θ > 0. If 1+ a− b < 0, then for sufficiently large θ > 0, (3.1) has (and
only has) phase-locked oscillations.

Proof. By (H1), we can obtain Bk = 1 + 4θ sin2 kπ
n

and hence, (Ak)
becomes

|r(a− 2b)− 4d sin2 kπ
n
|

r |1 + a− b |
< 1 + 4θ sin2 kπ

n

which would hold for each k ∈ {1, 2, . . . , n − 1}, provided that θ > 0 is
sufficiently large. Therefore, by Theorem 3.3 and Remark 3.4, we know that
(3.1) has phase-locked oscillations near τ = τk, k = 1, 2, . . . , n − 1. On the
other hand, discussion as argued before, 1 + a − b < 0 implies that (A0)
does not hold, and hence no synchronous oscillations would occur. Therefore
min {τk : k ∈ {0, 1, . . . , n−1} and (Ak) holds} = τk0 for some k0 6= 0. This
completes the proof.
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