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1. Introduction

Consider a system of delayed linear differential equations with variable
coefficients of the form

n
(1.1) %i(0) ==Y ag(x(t —75(0),  i=1,2,....m,
=1
where (1), 7;(t), i,j=1,2,...,n are continuous on [f,0), and the delays

(1) (i,j=1,...,n) satisfy
(1.2) 7(1) =0 and r—1;(1) T o as f — oo.

When a;;(¢) and 7;(f) are constants, that is, a;(t) = ay, ;(t) =15 (i,j =

1,2,...,n), (1.1) reduces to an autonomous system
(1.3) Xi(0) ==Y agxi(t—ty),  i=12,...,n
j=1

For system (1.3), it is well known the trivial solution x(¢) = 0 is asymptotically

"

stable if and only if all the roots A of its characteristic equation, namely,
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ajje”*m — ), alze—)ﬂ'lz . ajpe
a21e_“21 azze—hzz S aype T
(1.4) det . . . . =0
anle*’h’” anzefh"z .. annef/lfml — A

have negative real parts (c.f. [5]). However, in general, it is quite difficult and
often an analytically almost impossible task to decide if all the roots of (1.4)
have negative real parts. When 7; =0, for all i,j =1,2,...,n, (1.3) becomes
an ordinary differential system. In that case, x(¢) = 0 is asymptotically stable
if and only if the coefficients matrix 4 = (a;) is a positively stable matrix (i.e.
all its eigenvalues have positive real parts) and the Routh-Hurwitz criterion is
applicable.

When 7; =0 for i=1,2,...,n, by studying the roots of (1.4) using
Rouché’s theorem and the implicit function theorem, Hofbauer and So [6]
established the following result.

Theorem 1.1. Assume that t; =0 for i=1,2,...,n. Then x(t)=0 is
asymptotically stable for (1.3) for all choice of ©; =0 (i # j) if and only if
a; >0 fori=1,2,....n,det A #0 and A is weakly diagonally dominant. (A is
said to be weakly diagonally dominant if all the principal minors of A = (aj) are
non-negative, where a; = a;, d; = —|ay|, i # j).

In the case of a quasi-monotone matrix 4 (i.e. a; = 0 for i # j), Gyori [4]
obtained a similar result.

When 7; #0, i = 1,...,n, i.e. when instantaneous feedback is absent, (1.3)
becomes a system of “pure-delay-type”. As was pointed out by Gopalsamy
and He [3], He [6] and Kuang [8], the stability problem for such a system
becomes much harder, even for the autonomous case. Recently, So, Tang and
Zou [9] obtained a criterion for the stability of (1.3) by using M-matrix and
some inequality techniques. The criterion is related to a form of 3/2 estimate
for the diagonal delays 7; (i=1,...,n). In order to state this result, first we
introduce the matrix 4 = (&;) defined by

d,-,-:a,-,-, fori:1727...,n
and

1+ §aiti(3 + 2a;7;)
1 — gayti(3 + 2a;7;)

a,-j:—

|al, for 1 <i#j<n.

Also, for the sake of convenience, we recall the concept of a non-singular M-
matrix (c.f. Fiedler [1, p. 114]).

Definition 1.1. A square matrix B = (b;) of order n is called a non-
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singular M-matrix if (i) b; <0, for all i # j, and (ii) all the principal minors of
B are positive.

There are many equivalent formulation of this concept (c.f. [1, Theorem
5.1]). In particular, if B is a non-singular M-matrix, then B~! is a positive
matrix. The following theorem is proved in So, Tang and Zou [9].

Theorem 1.2. Assume that
3 : .
a,~,~r,~,»<§, for all i=1,2,... n.

If A is a non-singular M-matrix, then every solution (xi(t),x2(1),...,x,(1)) of
(1.3) tends to 0, as t — oo.

Now, back to the non-autonomous system (1.1). Recall that in the scalar
case, there are also 3/2 type criteria in the form of an integral (c.f. [10], [11]).
One naturally wonders if a result similar to Theorem 1.2 can be established for
(1.1). This paper will answer this question in the affirmative (see Section 2).
As will be seen in what follows, due to the non-autonomous nature of (1.1),
one also needs some additional tricks on integration, besides AM-matrix and
inequalities.

2. Main results

Theorem 2.1. Assume that

(21) Cl,','(l) 20, i= 1,2,...,”, |6ll]([)| Sbijdii(l), 1 Sl?&]Sn
and
! 3
(2.2) d; == lim supJ ai(s)ds < =, i=12...,n
t— o0 t—7;i(t) 2

Let B = (by) be the nx n matrix with entries

(2.3) bi=1, i=12,...,n
and
24-d? T
5 — by, i di< 1,
(2.4) =g 247 s i # .

If B is a non-singular M-matrix, then every (forward) solution x(t) of (1.1) is
bounded.
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Proof. Assume that x(7) = (x1(¢),x2(¢),...,x,(¢)) is a solution of (1.1)
on [fp,0). Let Zp=minj<; j<,{to —75(t0)}. We _may assume that x(¢) is

defined and continuous on [fo,0). Let B(e) = (b;(e)) be the matrix with
entries b;(e) =1 for i=1,2,...,n and

UL
bye) = a0 A<, i# ]
v _ 1+2(d,-+::)bu ifd>1
3 2(dte) Vi i= 1

Since B(0) = B is a non-singular M-matrix, it follows that there exists an g > 0
such that B(gy) is also a non-singular M-matrix, d; 4+ & < 3/2 for all i and
di +¢& < 1 whenever d; <1. Note that for i # j, we have, 0 < b; < —l;ij(eo),
where we set b; =1 if a;(f) =0. For the given ¢, there exists Ty > fyp such

that
t

(2.5) J a;i(s)ds < d; + ¢, for all t>Ty,i=1,2,...,n.
t*‘f[,’(t)

We shall prove that max{|x;(¢)|:i=1,2,...,n} is bounded. Otherwise, we
may assume, without loss of generality, that

(2.6) lim sup |x;(#)| = oo for i=1,2,...,k(<n)

— 00
and
(2.7) lxi(t) <M for t>ty,i=k+1,...,n
First, choose a sequence {ty,,},._, such that t;,, > Ty, t1m T 00, |x1(f1m)] T 00 as
m — oo and |x|(t1,,)] = max{|xi(s)|: fp < s < t1,,}. For each i=2,... k, let
tim be the leftmost maximum point of the function |x;(¢)| on the interval [, f1).
Hence, we have obtained k sequences {fi},._;, i=1,2,...,k such that

tim — Tij(lim) >ty, tim=To
tim T 00, [Xi(ti)| T 00 as m— 0, i=1,2,... k j=1,2,...,n
|x,-(l)| < |Xj(tjm)| for i() <t< lm,

We may assume |x;(t;,)] = xi(t;n) (if necessary, we can apply the following
argument to —x;(¢) instead of x;(f) and —a;(¢) instead of a;(¢) for j #i). Then

(28) |Xi(l)| < x,'(l,-m), o <t< tin, )'c,-(t,-m) > 0, i= 172, e ,k.
It follows from (1.1) that
(2.9)

k n
Xi(1) < ai(t) | —xi(t — (1)) + szj|xj(ljm)| +M Z b |, o <1 < tim.
J# s
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Set
k n
(2.10) o =Y bylxi(m) + M > by, i=12,... k.
j#i j=k+1
We claim that
(211) )Ci(tjm _Tjj([im)) < o, i= 1,2,...,k.

If (2.11) is not true for some i (i=1,...,k), then there exists a 2 > 0 such
—xi(t —7;()) + o, <0 for t;, —h <t < tj,
which, together with (2.9) and (2.10), implies that
Xi(1) <0 for ti, —h <t < ti.

This contradicts to the choice of #;, as the leftmost maximum point. Hence
(2.11) holds.
Next, we show that

(212) xiltim) + Y by(eo)li(m)] < MY |by(e0)l,  i=1,2,...,k.

J# j=k+1

If x;(ti) < oy, then (2.12) obviously holds. On the other hand, if x;(#,) > o,
then it follows from (2.11) that there exists &, € [tin — Tii(tim), tin] such that
xi(&pm) = ;. From (2.9) we have
(2.13)  xi(t) < au(t)[—x;(t — (1)) + o] < @i (O)(|xi(tim)| + 0t2)s th <t <t
For t e [&;,, tim), we have, t —7;(t) < &;,,. Integrating (2.13) from ¢ — 7;(¢) to
Eim» We have
éim
o=t = 0) < (i) +9) | auls)ds, G <0< i
t—;(1)
Substituting this into the first inequality in (2.13), we obtain
Eim
500 < ()| +a)au) | s, <1<t
t—7;(1)
Combining this and (2.13), we have
Cvim

=i

(214) )'c,-(t) < (|xi([im)| + OCi)Cl,',‘(l) mln{l,J aii(s)ds}, éim <t < tyy-
(1)

We consider the following three cases:
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Case 1. di+¢ < 1. In this case, by (2.5) and (2.14) we have
Xi(tim) = Xi(Eim)

tim é[m
|xl zm |+O€ J ai,-(t) a,-,-(s)dsdt

= (|xi(tim)| + o)

tim 2
(d; + &) a,, s)ds — = <J aii(s)ds> 1

1
< 5(di+ e0)” (X (tim)| + ),

since z+ Jz—z2/2 is increasing for ze[0,5] (where d=d;+& and z=
l'"’ " aji(s)ds). We have used the fact that

tim 1t tim S 1 tim [ lim
J J a;i(t)a;(s)dsdt = J J a;i(t)a;(s)dtds = J J a;i(t)ag(s)dsdt.
Em S0 2Je, Je,
Case 2. di+& > 1 and [."a;(s)ds < 1. In this case, by (2.5) and (2.14)
we have

tim Eim
Xiltim) — xi(Em) < (xiltam)| + >j aﬁmj ai(s)dsdr

Eim 1= (1)

tim 1 tim 2
(di + &) J a;i(s)ds — 5 (J aii(s)ds) 1
é”‘)l y!Wl

[2(d; + &) = 1] (|xi(tam )| + ),

< (|xi(tim)| + o)

1
=3
since z+ 0z —z2/2 is increasing for z€[0,1], > 1 (where 6 =d; +& and
z= J“ftl”” a;;(s)ds).
Case 3. d; +£0 > 1 and J" a;(s)ds > 1. 1In this case, let 7, € &, tim)
such that J"[ a;i(s)ds = 1. Then by (2 5) and (2.14) we have

xi(tim) - xi(gim)

< (|xi(tim)| + i)

Eim im =(1)

Him tim cim
J aii(s)ds—i—J a,«i(t)J aii(s)dsdl]
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— (ei(tan)] + o) -<1 - J’ aii(s)ds> J” ai(s)ds + J’ ai(f) J” aii(s)dsdt]

Mim Eim Nim t=;i(t)

= (|xi(tim)| + o) Jlim a;i (1) Or ai(s)ds — Jrh” a,~,~(s)ds> dt]

L im =i (1) 7

Nim Mim

[ tim tim 2
< (|Xi(ti,71)| + O(j) (dz + 60) J a,»i(t)dt —% (J Cl,'l'(S)dS> :|

- % [2(dl + 80) - 1]<|xi(lim)‘ + OC,').

Combining Cases 1, 2 and 3, we have for i=1,2,... k

2+ (di +a0)? [ & ] .
X,‘(l,‘m) < (170)2 Zb(/|.)€j(lj,,1)| + M Z b,j R if di+e < 1,
2 — (dl'+80) =i J=k+1

or

if di+e =1

1 + 2(d, + 8()) [k n 1
Xi(tim) < 2SN byl ()| + MY by
3 — 2(di + 80) _; /A MIANS/ _/':2](:4.1 y

This implies (2.12) is true.

Let By(co) = (bj(0)),,, denote the kth leading principal submatrix of
B(ey). Then By(g) is a non-singular M-matrix of order k, and so B;!(g) > 0.
Hence, by writing (2.12) as a matrix inequality and multiplying it on both sides
by B;'(e), we have

(xl(tlm), Xz(lzm), e ,xk(tkm)) T

n n n T
< M§k1(50)< Z ‘blj(EO)‘; Z |b2j(80)|,..., Z |bkj(80)|> s m = 1,2,....
j=k+1 Jj=k+1 Jj=k+1

Note that if k =n, then the right hand side (above) is just the zero vector.
From this, we conclude that

lim sup |x;(#;m)| < o0, i=12,...k,

m—oo

which contradicts the fact that lim,, . |x;(¢;n)| = oo for i =1,2,... k, and the
proof is complete.

Remark. The hypotheses in Theorem 2.1 are different from that of Theo-
rem 1.2 even for the special case of (1.3).
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Theorem 2.2. If, in addition to the hypotheses of Theorem 2.1, we further
assume that

(2.15) J a;i(s)ds = oo, for all i=1,2,...,n,

fo

then every solution x(t) of (1.1) tends to 0 as t — oo.

Proof. Assume that x(¢) = (x1(£), x2(¢), . .., x,()) satisfies (1.1) on [fy, c0).
We will prove that
(2.16) ,lim xi(t) =0, for all i=1,2,...,n
Set d. =max{d;:d; <1,i=1,2,...,n} and d* =max{d;:d; > 1,i=1,2,...,n}.
For any ¢ € (0,min{1 — d,,3/2 — d*}), there exists Ty > #, such that

t

(2.17) J a;i(s)ds < d; + ¢, for all t>Ty,i=1,2,...,n
t—7;i(1)

Note that ¢ is chosen small enough so that for each i with d; < 1, we have,

di+¢&e <1 and for each i with d; > 1, we have, d; +¢& < 3/2.

Case 1. The functions > " a;(1)x;(t — 7;(t)) (i=1,2,...,n) are all non-
oscillatory, meaning that they are non-zero for ¢ sufficiently large. Then X;(¢)
(i=1,2,...,n) are eventually sign-definite, and so the limits lim, ., x;(¢) = ¢;
exist, for all i=1,2,...,n. Without loss of generality, we may assume that
xi(t) > 0 eventually for i = 1,2,...,n (if necessary, we use —x;(¢) instead of x;(¢)
and —ay;(¢) instead of a;(f) for j#i). Then, for i=1,2,...,n,

cl»ximﬂjiafj(s>xj<sry ]dj Zal] 95 - 4(5))

ds

00
J an z Tzz + Zal] X] — T S)) ds
J#i
> J |aii(s)xi(s — Tii(s Za’/ Xj — Tj (5))|ds
J#i
0
= J azz |xz Tu | - Zbl]|x] Tl] )| ds.
J#i

Since

n
[lim bxz 1 — it Zby|x/ 1 — (1 |]=|c,-|—2b,;q|,

J#i J#i



Global Attractivity 33

it follows from (2.15) that

n
|Ci|_§ blj‘c/|goa i:1,2,...,l’l7
J#i

and hence,
n ~

(2.18) > bilei| <0, i=1,2,....n,
j=1

since Bij < —b; <0, fori# j. Now, by the positivity of B!, we conclude that

il = lea| = -+ = lea] = 0.

Case 2. At least one of the functions Zjilaij(t)xj(t—rij(t)) (i=
1,2,...,n) is oscillatory. Set
U; = lim sup |x;(7)], i=12,...,n
— o0
By Theorem 2.1, 0<U;< o0, i=1,2,...,n. It suffices to prove that
U=U,=---=U,=0. Without loss of generality, assume that the func-
tions -7 a;(0)x;(t— (1)) (i=1,2,...,k) are oscillatory and the functions
Yoy a(t)xi(t — (1)) (i=k+1,k+2,...,n) are non-oscillatory. It follows

j
from (1.1) that X;(¢) is oscillatory for i =1,2,... .k and

(2.19) x;(¢) is non-oscillatory and ,lim lx:()] = Uy, i=k+1,...,n
— 00

o0

Let ¢ >0 be sufficiently small. Then, there exist k sequences {Z}, _;,
1,2,...,k with t;, — 7(tsn) > To such that f;, is the local left maximum point
of x;(¢) and

(2.20)
tim T 0, |.X,'(l,'m)| — U; as m — o0, |xi(lim)| > U — &,
|Xi(tim)| =0, |x:(8)| < Ui +& for t>t;,m=1,2,... and i=1,2,...,k

i:

where ¢t} = min{¢; :i=1,2,...,k}. We can assume that |x;(¢;,)| = xi(tin) (if
necessary, we use —x;(¢) instead of x;(¢) and —a;;(¢) instead of a;(7) for j # i).
Then as in (2.11), we can prove

n
(2.21) Xi(tin — Ti(tin)) < Y _by(Uj+e),  i=1,2,... k.
J#i

The proof will be omitted. Now set

(2.22) Bi=> by(U+e), i=12,.. k.
J#i

In what follows, we show that
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(2.23) Xi(tim) +Zb,j (U; +¢)
J#i

2-(d+e) i=1,2,...k
2¢[2(d;+e)—1] R

3-2(d+e) °

2
2dite) e g e <,
<
if di+e>1,

where bj(¢) is defined as in the proof of Theorem 2.1. If x;(tin) < f;,
then (2.23) obviously holds. If x;(z;,) > f;, then by (2.21) there exists &,, €
[tin — Tii(tim), tim) such that x;(&;,) = ;. From (1.1) we have

(2.24) xi(0) < au(t)[—xi(t — (1)) + B)] < au(t)[(Ui +¢) + B, H <t <ty

For t € [&,, tim], integrating (2.24) from ¢ — 7;(¢) to &;,, we have

Em
B — xi(t —7(2)) < [(Ui + &) + B J a;(s)ds, Eim St < by

t—(1)
Substituting this into the first inequality in (2.24), we obtain

mmguw+@+m@mrm ai(s)ds,  Cy <1<t

I*T,’[([)
Combining this with (2.24), we have
Eim

(225) xi(t) < [(Ul + 6) +ﬁi]afi(t) mln{LJ <)aﬂ'(S)dS}, éim <1< tlim-

=7
We consider the following three cases:
Case 2.1. di+e¢<1. In this case, by (2.17) and (2.25) we have
tim Eim
)~ 5ln) < (Vi) +) | )| ” anyasa

Sim =it

Eim

fmx t
= [( Ui + 6) +ﬁ an ( au dS - J a[i(S)dS) dt
Eim t—;(t

tim

tl”l I
ai(s ds—J aii(l)J aii(S)del:|

im im Eim

tim tim 2
J a;i(s)ds — = (J a,'i(s)ds)
Eim Eim

(d; +¢)’[(U; +¢) + B

KU+a+ﬁ[d+sJ
+é&

= (Ui +&)+ 5] |(d

IA

(d; + 3)2[xi(tim) + B + 2¢].

IA
RO = N —
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Case 2.2. di+e>1 and J"t”a,, )ds < 1. 1In this case, by (2.17) and
(2.25) we have
éim

Xiltim) — %i(Em) < [(Us +2) + B j aﬁmj i) dsdi

Cim 1—7;(t)

et ([

im

<[(Ui+¢) + 5]

<[(U+0+ Bl +e)1-501]

2(di +¢) = 1[(Ui +¢) + Bl

l\)l'—‘ l\”_‘

2(d; + &) = [xi(tim) + B; + 2e].

Case 2.3. di+e>1 and j a;(s)ds > 1. 1In this case, let #;, € €, tim]
be such that f "a;i(s)ds = 1. Then by (2.17) and (2.25) we have

X,’( im) - xi(éim)

gKm+@+ﬂ]r ails m+J”@mJ% m@mw%

im im [—T,','(f)

Eim im 1=7;i(t)

f im Nim tim Nim
=Kw+w+m]o aii(s )J %®w+J %mj %@mé
—(Ui+2)+5) J

=[<U,~+a>+ﬂ1j (j a,i<s>ds—j’_ aii(s)ds>dt]

< [(Ui+2)+5) d+ej aatoyii~ [ ") [ m;-(s)dsdz]

im im im

tim 2
=[(Ui+e) +p]|(di+e) J a;i(t dz——(J a,»,»(l)dl)}

2(di +¢) = 1[(Ui +¢) + Bl

2(d; + &) — 1][xi(ti) + f; + 2¢].

l\JI'—‘ N"—‘
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Combining Cases 2.1, 2.2 and 2.3, we have for i=1,2,....k

2 n 2
Xi(tim)_2+ d+822by Ui+e¢) g(dli—i—e)z’ if di+e<l,
di + J#i _(di+6)
or
1+ 2(d; + &) & 2e[2(d; +¢) — 1] )
iltim) < =777 (Ui T o f d; > 1.
x;i(t )<372(di+8);b‘/([]+8)+ 32 1 o) if di+e

This shows that (2.23) is true. Let m — oo and ¢ — 0 in (2.23), we obtain

(2.26) U+Zb,]U <0, i=1,2,... k.
J#EI

On the other hand, from (1.1) and (2.19), as in the proof of (2.18), we have

Ui = xi(0)] = J Zay $)x;(s — 7;i(s) )ds
%
ZJ aii(s) [1xi(s — Ti(s Zblj|xl — 7ii(s))] | ds,
t JjAi
i=k+1,...,n,
and
hmmf bxl —7;(t Zb,,|x, —1;())|| = Ui — Zbng, i=k+1,...,n
J#i J#I

It follows from the above and (2.15) that

Ui—> bUy <0,  i=k+1,....n,

J#i

and so

(2.27) Ui+ > bUy <0,  i=k+1,....n
J#i

By (2.26) and (2.27), and using the fact that B is a non-singular M-matrix, we
have U = U, =---= U, =0. Hence, the proof is complete.

Using Theorem 2.2, we have immediately
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Corollary 2.1. Assume that t; =0 for i=1,2,...,n, and that (2.1) and
(2.15) hold. Let B= (f),,) be the matrix with entries by =1 for i=1,2,...,n
and Z?U' = —|by| for i #j. If B is a non-singular M-matrix, then every solution
x(t) of (1.1) tends to 0 as t — oo.

From Theorem 2.2 and [1, Theorem 5.1], we immediately have

Corollary 2.2. Let B be defined by (2.3) and (2.4). Assume that (2.1), (2.2)
2.15) hold, and that one of the following conditions holds:

i) There exists a vector x >0 such that Bx > 0:

ii) Every real eigenvalue of the matrix B is positive:

iii) B is non-singular and B~ > 0;

iv) The real part of any eigenvalue of B is positive;

V) The leading principal minors of B are positive;

vi) Bx >0 implies x > 0.

Then every solution x(t) of (1.1) tends to 0 as t — oo.

and

N N N N N S

For the coupled system of fwo non-autonomous delay differential equa-
tions

(228) 561(2‘) = 7[6111(1))61([ - Tll(t)) + 012(Z)XQ(I - le(l))],
Xo(1) = —[aar (1)x1 (2 — 721(7)) + @22 (1) x2(t — t22(2))],

where a;(t),7;(t), i,j=1,2, are the same as in (1.1), we can derive the fol-
lowing simple criterion.

Corollary 2.3. Assume that (2.1), (2.2) and (2.15) hold for n=2, and
that

(1-D)(1 - Dy)

2
(2.29) (1+D1)(1+ D7)

> |b12ba1],

where

2 g
D,»{di/z’ i<l
di—1/2, if di>1,

Then every nontrivial solution of (2.28) satisfies

(2.30) lim [x2(1) + x3(1)] = 0.

3. Two examples

In the last section, we give two examples to illustrate the applications of
our theorems.
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Example 3.1. Consider the system of two non-autonomous delay differ-
ential equations

(3.1) x1(t) = — E sin? 1x1 (1 — 7t) + a sin® 1x,(f — 271)},

2
X(1) = — [b cos® tx (1 — 3n) + 3 cos? 1xy(t — n)} .

Since ay(t) =3 sin® 7, ap(f) = asin’ 1, ay (1) = bcos® t and ax(1) =2 cos? 1,

by a direct calculation, we have

. ! . 2 ! ) T
di = lim supJ ay(s)ds = lim sup (J sin” s ds) ==

)
1— 0 t—m 1— 0 t—m 3

. 2 (! T
d> = lim sup <§J cos? s ds) =3

— o0 —n

and thus,

(1-D)(1—Dy) (9 - 27z>2
(1+D)(1+Dy) \3+42z)°

Hence, in view of Corollary 2.3, if

ab] < 4 (9 271\
9\3+2xn)"’
then every nontrivial solution of (3.1) satisfies
tlim [x2(£) + x3(0)] = 0.

Example 3.2. Consider the system of three non-autonomous delay dif-
ferential equations

(32) xi(1)
X2(f) = —[0.4 cos 2tx(t — ) + x2(z — 0.5) — 0.3 cos tx3(t — 7)],

—[x1(z —0.6) — 0.2 sin tx,(t — ) + 0.1 cos tx3(¢ — 27)],

—[~0.8 cos? tx; (1 — 37) + 0.2 sin 1x5(t — 1) + 0.5x3(¢ — 1)].

x3(1)
Here

ap(t) = an(t) =1, ax(t) = 0.5; b1p =02, b1z =0.1;

b21 = 04, b23 = 03, b31 = 16, b32 =04.
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By a direct calculation, we have

d =06, dh=d =05 bp=-0288,  b3=—0.144;

byy = —0.514,  by3 =—0.386; by = —2.057; by = —0.514,

and the successive principal minors of the matrix B are as follows:

by =10, det<’Z“ ’312)=o.819>0 and
by bx»
1%11 1512 1%13
det b21 b22 b23 - 0091 > 0
by b3y b3

In view of Corollary 2.2 (v), every solution of (3.2) satisfies

[1]

(2]

[4]

[5]
[6]
[7]
8]
[9]
[10]

(11]

lim [x7(¢) + x3(¢) + x3(£)] = 0.

[— o0
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