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Abstract. This paper deals with a two-species competition system of
discrete Lotka-Volterra type with delays. Motivated by an existing 3/2
global attractivity result for the scaler discrete logistic model with de-
lay, we establish a new 3/2 type criterion for global attractivity of the
positive equilibrium of the system.

1 Introduction

In [11], May first proposed the following discrete two-species competition model
of Lotka-Volterra type

Tpt1 = Tp €XP[r1 — a11%n — 12Yn]
(1.1)
Ynt1 = Yn XP[T2 — A21 Ty, — A22Yn]-
By rescaling, (1.1) can be rewritten as
Tpy1 = Tp eXp[Tl(l — Tp — Hlyn)]
(1.2)
Yn+1 = Ynexplra(l — potn — yn)]-
Since May [11], system (1.1) or (1.2) has attracted great attention and interest of
many authors, and it has been found that the system can demonstrate quite rich
and complicated dynamics. For example, (1.1) can admit limit cycle, various bifur-
cations and even chaotic oscillations. For details of the various dynamics for (1.1),

we refer to [1-4, 7-8, 10-14] and the references therein. However, a mathematical
model is expected to serve at least two purposes: (i) explaining what is observed in

2000 Mathematics Subject Classification. 39A11 92D25.
This work is supported by NNSF of China and NSERC of Canada .

(©0000 American Mathematical Society



2 X. H. Tang and Lin Wang and Xingfu Zou

field or from experiments; (ii) predicting what would happen under certain circum-
stances. Keeping in mind these basic purposes, complicated and chaotic dynamics
of the model is not what one would like to see. Instead, one would like to see some
nice properties, among which are permanence and stability. Permanence is the basic
requirement for a reasonably proposed population growth model, while existence
of a globally asymptotically stable positive equilibrium accounts for co-existence
of the species involved. In a recent paper, Lu and Wang [9] addressed these two
properties for a more general system that includes (1.1) as well as a cooperative
version of (1.1). More precisely, they proved the following results (Lu and Wang
[9, Theorem 2-3]).

Theorem 1.1 Assume
m <1l and p2 <Ll (1.3)

Then

(i) system (1.2) is permanent;

(i) the positive equilibrium (x*,y*) is the global attractor of (1.2), provided that
r = max{ry,r2} is sufficiently small, where

*:117'“1, y*zlliluz‘ (1.4)
— M2 — H1M2

Note that for 1.1-(ii), no measurement or estimate for ‘smallness’ of r is given
in [9]. But Smith [16, Proposition 6.1-(c)] established, among many other things,
an estimate for r which is 7 < 1. Applying the main result in Wang and Lu [18] to
(1.2) also generates this estimate.

X

Related to 1.1-(i), Hafbauer et al [5], and Hutson and Moran [6] discussed
permanence of more general systems of difference equations.

There have been many arguments and evidences that time delay always exists
in real situations, and should be taken into consideration in modeling. For example,
individuals of a species need time to grow mature, resources once consumed take
time to recover, and the conversion of biomass of the captured prey into the biomass
of the predator is also not instantaneous. For models of differential equations, there
has been much work in the literature. For discrete models related to (1.2), Morris
et al [12] incorporated delays into the system and observed chaotic behavior of the
model. Recently, Saito et al [15] also introduced delays into (1.2) and considered
the following system

Tpt1 = Tpexplri(l — Tk, — 1Yn—1,)]

(1.5)
Yn+1 = Ynexp[ra(l — poTn—t; — Yn—ks)]
with initial conditions
z_;>0, i=0,1,--- max{ki,l1}; o >0,
5 (1.6)
y—;i >0, i=0,1,--- ,max{ks,la}; yo >0,

where 7; > 0,u; > 0,4,5 = 1,2, and kq, ke,l1,lo are non-negative integers. The
main concern of Saito et al [15] is the permanence of (1.5). Here, the system (1.5)
is said to be permanent if there exists a compact set D in the interior of Ri such
that any solution of (1.5)-(1.6) will ultimately stay in D. The main result of [15] is
the the following necessary and sufficient condition.
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Theorem 1.2 The system (1.5) is permanent for all non-negative integers
k1, ko, 1,12 if and only if (1.8) holds.

From the above two theorems, we see that as far as permanence is concerned,
delays play no role for system (1.5). But, in respect to the global attractivity of
the positive equilibrium (z*,y*) given by (1.4), it remains an open problem. This
paper will address this problem. Note that (1.5) is a result of coupling of two scalar
equations of the form

Tapr = 2 explr(l — k)] (L.7)
For (1.7), So and Yu [17, Corollary 3.2] showed that the if 7(k + 1) < 3/2, then
the positive equilibrium z = 1 of (1.7) is globally attractive. Thus, one naturally
expects some criteria for the global attractivity of the positive equilibrium of (1.5)
which are related to 3/2 and which reduce to the criterion in So and Yu [17, Corol-
lary 3.2] when the coupling disappears (i.e., u3 = g2 = 0 ). This is the goal of this
paper, and we will achieve this goal by proving the following theorem.

Theorem 1.3 Assume that (1.3) holds and that

3(1 —p)

(ki +1) < o —F,

ri(ki +1) < 2(1+ p)

where p = max{p, ua}. Then the positive equilibrium point (z*,y*) given by (1.4)
is a global attractor of (1.5)-(1.6).

Remark 1.4 1.1 is included by 1.3. Moreover, 1.3 provides estimates for both
r; and k; for ¢ = 1,2. Tt also shows that under the diagonally dominance condition
(1.3), the off-diagonal delays ;, i = 1,2, have no impact on the global attractivity
of the positive equilibrium.

Remark 1.5 When g = 0, 1.3 reproduces Corollary 3.2 in [17].

i=1,2, (1.8)

2 Preliminaries

Lemma 2.1 Let 0< a,b< 1,0 < pp < 1. The system of inequalities

y < (a + px)exp [(1 — )z — él(;flz) xi’] —a
(2.1)

2 <b—(b—py)exp [~(1 -y - §iyy?]
has a unique solution: (z,y) = (0,0) in the region D = {(z,y) : 0 <z <1, 0<
y <b/u}.
Proof Let

|
=
)
8
ow
=
N

I
_

I
=
<

+
|
E
o
<
¥

1—p)
= ]_ — _—
(@) = (1= = ga—
Then (2.1) can be written as

y < (a+ pz)e?® — q,
(2.2)
z<b—(b—py)e W,
Assume that (2.2) has another solution in the region D besides (0,0), say (zo,Yo)-
Then 0 < 29 < 1 and 0 < yo < b/p. Define two curves I'y and T’y as follows:

y: y=(a+pz)e?™ —a, Ty: z=b—(b— py)e ¥W. (2.3)
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By direct calculation, we have for curve I';:

d:
& =a+(1-a)u<l
dz | 0,0)
and for curve I's:
d_y 1

1.
dx >

00 O+I-bu

Hence I'; lies above I'y near (0,0). The existence of (g, yo) implies that the curves
I'; and I's must intersect at some point(s) in the region D besides (0, 0). Let (z1,y1)
be the first such point, i.e. z; is smallest. Then the slope of 'y at (z1,y1) is not
less than the slope of T's at (z1,y1), i-e.

1
+ (a + pz1)¢' (z1)]e?@) > eVt
[+ (a+ pz1)@' (z1)] ~ p+ (b= py)Y' (1)

or
[+ (a + pan) ¢ (20)][1 + (0 = pyn)d (91)] > e¥ D=0, (2.4)

Now we claim that
z1 < Y1- (2.5)

It follows from (2.3) that 1 < b so that (2.5) is true if y; > b. Next we may assume
that y1 < b and then from (2.3), we have

T Hy1 (1—M)2 2
~mm(1-2) = —m(1-2)+(- A 2
n( b) n( b)+( u)y1+6(1+u)y1
2 3 2
14 H a2 M3 (1—=p)* ,
L 7 7 1— RSl o7
< (by1+2b2y1+3b3y1+ >+( u)y1+6(1+u)y1
SRR NN SPINE DT
> byl 2b2y1 3b3y1

= —ln(l—‘%).
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This implies that (2.5) holds and thus so does the claim. Using (2.5), we derive

that
[+ (a+ pz1)¢' (@0)][p + (b= py1)d' (y1)]
< fp+ A+ pp) (@)l + (1 = pya)d (1)]
_ (1—p) (1—p)? ’
= 1+ [3(1+u) —u(l—u)] (y1 — 1) — [3(1+u) —u(l—u)] Ty
p(A=p)? 5 o0 pA=p?[ 1-p
—m(ml +y1) + 30+ p) [3(1+M) —M] z1y1(y1 — 21)
PP (1= p)?
St
< 10 (s - u) - ((11;‘;)) (#F +43)
pu(l— p)t ( N) Y2
O e~ 20+ g e
= 1+(1-p) (3(11+M u) — 1) + h(p, z1,91)
< 14 (Gt~ u) tn -
since that
— )2 )4
Mnerm) = B+ A i - )
A=t o,
+ 9(1 +/J/)2 xlyl
= B B - -]
A=t o> 1 - 301+p
TN [yl u?t u(l—u)z]
< AT 0 - ()
p?(1 - u“ 1 3(1+p)
o s {yl ut u(l—m?}
< ”E ;2 (3u+2)y3—%w%
< 0 (in the proof we used the fact that
0§m1<1,05y1<gﬁl)
T
and
0D = e [(1= s — 1) + S (a4 y)
6(L+p) " 7t
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It follows that
V=2 [y 4 (a4 pwy)@' (z1)][k + (b — py1)Y' (31)]

S O R L Y
6(1+ p)
L—p
—1+(1— —r _
1—p A=pw? 5 -
= 1= |1+p—- —" - A
=) [t 0= 5] o) + S 0
> 0,
which contradicts (2.4). The proof is complete. O
Lemma 2.2 Assume that
p <1, <l (2.6)
Let ({zn},{yn}) be the solution of (1.5) and (1.6). Then
0 < liminf z,(¢) < limsup z,(t) < oo, (2.7)
n—00 n—00
and
0 < liminf y,(t) < limsupy,(t) < oo. (2.8)
n—0o n—00
Proof This is a direct result of 1.2. O

3 The Proof of Theorem
By the transformation
Ip =Tp — T, gn:yn_y*a
system (1.5) becomes
Tntt + 8% = (30 + 2%) expl—11 (T, + f19n12)]
(3.1)
Ynt1 +y* = (Yn +y") expl—r2(p2Zn_t, + Yn—k,)]
here we used z,, y, instead of Z,,§,. Clearly, the global attractivity of (z*,y*) of
system (1.5) is equivalent to that for (3.1),
lim (zn,y,) = (0,0) (3.2)
n—oo

whenever (z9,yo) > —(z*,y*). We will prove (3.2) in the following two cases:

Case 1. Both z,_g, + p1yn—1, and poxpn_i, + Yn—g, are non-oscillatory. In this
case, by the boundedness of {z, }, {y,} and the fact z,+z* > 0,y,+y* > 0 (Lemma
2), Tn41 — 2, and ypq1 — Yy, are sign-definite eventually which imply that {z,} and
{yn} are monotonous eventually. It follows immediately that z,(t) = ¢,yn(t) = d
as n — 0o, and

c+pwpd=0, pc+d=0,
which imply that ¢ = d = 0, i.e., (3.2) holds.

Case 2. At least xp—g, + p1Yn—1, OF U2Tn_i, + Yn—g, i oscillatory, say, the
former. Then there exists an infinite sequence {n;} of integers such that

Tnj—k1 +/'I’lynj*l2 <0, and Tnj+1—k1 +/l’1ynj+lflz >0, J=12--. (33)
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Set

Vi =liminfx,, U; =limsupz,,
n—0o0 n—oo

and
Vo =liminfy, U, =limsupy,.
n—o0 n—oo

In view of Lemma, 2,

—r* <V <U;<oo, and —y*<V,<U;< oo. (3.4)
Let

-V =min{V;,V5} and U =max{U;,Us}.
Then from (3.3) and (3.4), we have
0<V <max{z*,y*} <1, 0<U<oo. (3.5)

In what follows, we show that V' and U satisfy the inequalities

a+ U< (a+ uV)exp [(1 —p)V - %Vﬂ (3.6)
and ) )
b—V > (b— uU)exp [—(l—p)U— %Uz]. (3.7)

where a,b = z* or y*. Without loss of generality, we may assume that U = U; and
V = —Va. Then V < y*. Let € > 0 be sufficiently small such that v; =V + € <
max{z*,y*}. Choose an integer N > 0 such that

—U1 < T, Yp < U+ €e=u1, n>N—max{ky, ko, l1,l2}. (3.8)

Define two functions z(t) and y(¢) as follows:

() = (@0 + o) (
and

*\ t—n
* yn+1+y *
t) = + —_ -y, n<t<n+1, n=0,1,---.
y(t) = (yn y)(yn+y*) y <

Then z(t) and y(t) are continuous on [0, c0) and differentiable except t = 0,1,2,.. .,
and satisfy

Tng1 +2*\"
m -, n§t<n+1, n=0,1,---,
n

z(n) = p, min{z,,Tpy1} < z(t) <max{cp,Tpy1}, n<t<n+1,

y(n) = Yn, min{yn;yn+1} < y(t) < max{yn;yn+1}; n<t<n+l,
and
&(t) = —ri(2(t) + =) (@([t — k) + my ([t — 12])),
(3.9
y(t) = —r2(y(t) + y*) (pez([t — l]) + y([t — k2]))
where and in the sequel, [z] denotes the greatest integer which is less or equal z,
and z(t) and g(¢t) denote the left derivatives of z(t) and y(t), respectively. Set
vy = (1 4+ p)v1 and ua = (1 + p)ui. Then from (3.9), we have

&(t)
1o SRl =R+l <rive, >N (3.10)
and )
WO s (s — gt — D) > —r2z, >N (3d1)

y* +y(t)
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First, we prove that (3.6) holds. If U < uV, then (3.6) obviously holds. Therefore,
we will prove (3.6) only for the case when U > uV', which implies U > pvy (by
choosing € > 0 sufficiently small). Thus, we cannot have z(t) < pv; eventually. On
the other hand, if x(¢t) > pv; eventually, then it follows from the first inequality
in (3.10) that z(t) is non-increasing and U = limy_, o 2(t) = povi. This is also
impossible. Therefore, it follows that z(t) oscillates about pw;.

Let {p;} be an increasing sequence of integers such that p; > N + ki, 2(p;) >
0,2(pj) > p1,lim;_,op; = 00 and lim;_, o z(p;) = U. By (3.10), z(p; —k1) < povs.
Thus, there exists §; € [p; — k1 — 1,p;] such that z(§;) = pvi. For t € [§;,pj],
integrating (3.10) from [t — k1] to &; we get

x* + z([t — k1))

~ln z* + z(§;)

<roa(&+ ki +1-1t),
or
([t — k1]) > —2* + (2" + pv1) exp[—r1v2(& + k1 + 1 —t)], & <t <p,.

Substituting this into the first inequality in (3.10), we obtain

0,

e <ri(1+ po){1 —exp[—riv2(& + k1 +1-1)]}, & <t <pj.

Combining this with (3.10), we have

(t)

> 2 < min{rive, 1 (1+poi){1 —exp[—riv2(§; + k1 +1-1)]}}, & <t <p;.

(3.12)
To prove (3.6), we consider the following two possible subcases.

Case 2.1. r1(p; — &) < —3-1n[1 — (1 — g)vi]. Then by (1.8) and (3.12)

In x* + x(p;)
* 4+ povg
Pj
< ri(l+pon)(pj — &) —ri(1+ por) /5 exp[—riv2 (& + k1 + 1 — t)]dt
= (1+ pvr)
{ratos =€) = = explorivn(€s + by + 1= )1 = expl-rrvalo; - )1}
< (14 pon) {Tl(pj - &) - L exp(triva(p; — &)

V2

ri(p — &) < —%lnu — (1= o] < 31— p)/2(1 + p),

If
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then
1 &t 2@))
T* + poy
< () {~ il = (1= o]
1—p 3(1—p)  In[l—(1— p)uv]
T [‘”2 (2(1+u)+ v )]}
< (1+uv1){—%ln[1—(1—u)v1]
l-p 3(1=p)  In[1—(1—pv]
e (g s )]}
_ 1+ pvy
T+u
{—% In[1 — (1 —p)vi]—(1—p) [1 — 3(127_'“)1;1 —In[1-(1- u)vl]] }
= Ll g wudal - (-l - 0o+ 20525
1+ pvy 9 (1—p)? ,
PECYEY e
2
< (1=pv — %vf

In the above third inequality, we have used the following inequality

(1—N)2 2
7 Uit

(1 —N)3 3

[1— (1 = i)l — (1 = por] > —(1 - goy + o (3.13)

I 7y (py — &) < 3(1— 1)/2(1 + ) < — In[1 — (1 — )y, then

N o

1 1—p 1—p (1—w? ,
(1-p)< o In[1 —(1-p)v] < == 0 1 5 U1 g U

which implies that (1 — p)vy > 1/2. Hence,

In 733*4-%‘(]?]')
T* + puy
< (14 por) {H - % [1 - exp(—g(l —u)vl] }

14 py [§(1 —p) — i (1 _ 6—3(1—u)v1/2)]
14+ p U1
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< DH (0o -0 - -+ -
- o5 W]

= L) [0 oy — - ed + -l

< BB o o - 50 ]

< (- — étl_ﬁ/); 2

In[1 — (1 — p)v1]. Then by (1.8) and (3.12),

v

Case 2.2. —%ln[l—(l—,u)vl] <ri(pj—§&) <3(1—p)/2(1+u). Choosel; € (&,p;)
1

IA

IA

IA

IA

<

u x* + x(p;)
T* + pvg
riva(ly — &) + (1 + pvr) (ri(p; — 1)

Pj
-7 / exp[—r1v2(§j +k +1-— t)]dt)
]

riva(l; — &) + (14 por)

|

X {n(pj - 1) - %GXP[—THW(&' + k1 +1—pj)|[1 —exp(—riv2(p; — lj))]}
riva(l; — &)

(1 + ) {Tl(pj 1) - £ cxpl-rion (€ + by +1- p,.)]}

r102(l; — &)

1-— 1-—
+(]. + ,U/U1) {Tl(pj — l]) - —H + —M’f'lvz(&j +k +1 —pj)}

I+p 1+4p
T1U2(k1 + 1) + (1 - Ul)Tl(pj - l]) - ]1_;_—5
ri(ky + vy — %(1 —v1)Infl — (1 = p)vy] - :_—Z
g(l — oy — ﬁ [—(1—u)+ a _”)2(1+”)v1 Gl 6(1+2H)Uf]
1—p
1p
(1= p)*(1+2p) ,
(1= pv — Teirp U
1-p?
e (e

In the above fourth inequality, we have used the following inequality

(1—v)In[1 -1 —pw]>—(1—pv +

(1=p)(1+p)
2

L= w)?(1 + 2)

3
Vq -
6 1

2
U1
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Combining Case 2.1 with Case 2.2, we have proved that

* i 1— 2
lnwg(l—p)vl—ﬂvf, j=1,2, ....
x* + pvy 6(1+ p)
Letting j — oo and € — 0, we have
* 1_ 2
nug(l_u)v’_ﬂyﬂ
z* +uV 6(1+ p)

This shows that (3.6) holds. Next, we will prove that (3.7) holds as well. In the
case where V = 0, then it follows from (3.6) that U = 0, the proof is complete.
Hence, in what follows, we consider the case when V' > 0. From (3.6), we have

U<(a+pe ™ —a<?2, pU<plla+pV)e MV —al<V <y*. (3.14)

Thus we may assume, without loss of generality, that V > puq. In view of this
and (3.11), we can show that neither y(t) > —pu; eventually nor y(t) < —pus
eventually. Therefore, y(t) oscillates about —pu;.

Let {g;} be an increasing sequence of integers such that ¢; > N + k2, §(g;) <
0,2(g;) < —pus, lim; 00 ¢; = 00 and lim; . y(g;) = —V. By (3.11), y(g; — k2) >
—puq. Thus, there exists n; € [¢; — ka2 — 1,q;] such that y(n;) = —puy. For
t € [n;,q;], integrating (3.11) from [t — k] to 7;, we have

y([t = ko)) < (y* — pun) explrous(n; + k2 + 1 =) -y, n; <t <g;.
Substituting this into the first inequality in (3.11), we obtain

y(t)
< 1- oua(n; + k 1-t)]-1 i <t<gq;.
1y S ro(1 = pur){explrouz(n; + k2 +1—-8)] =1}, n; <t <gqj
Combining this and (3.11), we have
(1 .
_y*%;(t) < min{rauz, r2 (1 — pug ){exp[rauz(n; + k2 +1—8)]—=1}},  n; <t < g5

(3.15)
There are also two possibilities:

Case 2.3. r2(g; — 1) < % - ul_2 In[1+ (1 — p)uy]. Integrating (3.15) from 7; to

gj and using the inequality

1 (1—p)
In[1 1-— > —(1-— e PEm——
I'l[ +( [L)U]_] j 2( /,I,)U]_ 6(]. +M)u17
we have
y* +y(qn)
—In y* ~ S TQ'LLQ(qJ' - ’f}j)
3(1—p) 1
< AR i+ (1-
< U2{2(1+M) . nf1 + ( M)Ul]}
3
= 5(1 — p)ur —In[1 + (1 — p)uq]
(1-p)? ,
< (1- —uy.
Case 2.4. ra(g; —n;) > 381"3 - ul_2 In[1+ (1 —p)uq]. Choose h; € (n;,q;) such that
3(1 — 1
raty — ) = S Ly (1 )

21+ p)  w



12 X. H. Tang and Lin Wang and Xingfu Zou

Then by (1.8) and (3.15) we have

¥t y(an)
y* — pu

< rauz(hj — ;)
q;5
+(1 — puq) {7'2 / exp[roua(n; + ko + 1 —t)]dt — ra(g; — hj)}
hj
1
= rouz(hj —n;) + (1 — pu1) x {u—[exp(f‘zw(nn + k2 + 1 — hy))
2
—exp(rauz(nj + k2 +1—¢;))] — r2(g; — hj)}
1—puu
= raua(hj — ;) — ra(1 — pur)(g; — hy) + #e”(kﬁ'l)“?
_ _3(1 — 1) _ o rau2(g; —nj)
{[1 + (1 — pua] exp ( 20T ) UQ) e
< roug(hy — ;) — r2(1 — pua)(gn — ha)

lopa [ (1 — p)uy —exp [uz (2(1715) — (g —W))]}

i) — r2(1 — pu1)(g; — hy)

IN
<
[ V)
<
V)
—~
>
<
|
<

S - @ |39 s - )|}
= (1 +u1)ra(hj —n;) 2(1+M)(1 pur)
30-p) CQtu)l+ (-] 1-p
ST {0+ pun ot )
< Llop  A=-p?(+2 ,
= 1+4p ! 6(1+ ) !

(1—p)? 2

———uj.

6(1+ p)

In the above fourth inequality, we have used the following inequality

I-p+p) o (—p?(1+24) 4
2 1 6 1

Combining Case 2.3 with Case 2.4, we have shown that

* X 1— 2
_m ) (Sl R S
y* — pun 6(1+ p)
Letting j — oo and € — 0, we have

< (Q=-pu+

(1 +wu)nfl + (1 - pu] > (1= plus +

1= p)uy +

y -V A-w?

Y7V cqa-pU+ oy,

y* —pU <@-w 6(1 + p)

which implies that (3.7) holds. In view of Lemma 1, it follows from (3.6) and (3.7)
that U =V = 0. Thus, (3.2) holds as well. The proof is complete.

—In

4 Numeric Simulations

1.3 gives sufficient conditions under which the positive equilibrium is a global
attractor of (1.5)-(1.6). But if (1.8) is not satisfied, the dynamics of the system
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could be very complicated. In this section, we provide some results of numerical
simulations for the dynamics of (1.5)-(1.6).

Let us first consider the case when there is no delay: k; =1; =0, i = 1,2.
For convenience, we choose 11 = ro = r and g1 = p2 = p. If g = 0.02 and
r=144<3 }L’j, then by Theorem 3, we know that (1.2) has a globally attractive
positive equilibrium. When r is increased to r = 2.5, the global attractivity of
the positive equilibrium is destroyed and the system allows periodic solutions with
period 2, as is shown in Figure 1. If r is further increased to r = 2.9, chaotic

dynamics is observed ( see Figure 2).

We next consider the case when there are delays. As suggested by Theorem
2-3, the off-diagonal delays [;, i = 1,2, play no role in the global attractivity of
the positive equilibrium, and this is confirmed by our simulations (fixing r;, p; and
k; for i = 1,2 so that the conditions of Theorem 3 are satisfied, but increasing
l;, 1 = 1,2 does not change the global attractivity of the positive equilibrium). In
such a case, the system always demonstrate global convergence, and the dynamics
is very simple, so we give no figure here. But if we fix r; and [; and increase
the diagonal delays k;, i+ = 1,2, then as the condition (1.8) becomes violated,
complicated dynamics can be observed. To this end, we fix I; = I = 1 and
r1 =19 = 0.72, and let k1 = k2 = k. When k = 1, condition (1.8) holds, and (1.5)
has a global convergent dynamics as claimed in Theorem 3. Now if we increase k
to 2 and 4 respectively, the numerical simulations for these two values are shown in
Figure 3 and Figure 4 respectively. From these figures, we can see that the diagonal
delays do destroy the global attractivity of the positive equilibrium and cause very
complicated dynamics. Although it is not clear (at least to us) that what type of
dynamics Figure 3 corresponds to, Figure 4 seems to present a chaotic dynamics
again (but this time, caused by delay).

Finally, Figure 5 gives the numerics of the case whenry =r; =1, kg = ks =1
and l; = Iy = 2. Here periodic dynamics (with period more than 2) is observed.

To conclude this paper, we would like to point out that the numeric simulations
could not be complete, and other types of dynamics are also possible. We leave it
for further work (maybe hard though) to theoretically detect and describe those
various and complicated dynamics of system (1.5).
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14

Figure 1 Numeric simulations for (1.5) with 71 = ro = 2, u1 = s =
0.02, l; =k; =0,i=1,2, and zo = 0.5, yo = 0.6.

Figure 2 Numeric simulation for (1.5) with r1 = ro = 2.9, 1 = p2 =
0.02, I, =k;=0,i=1,2,and zo = 0.5, yo = 0.6
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Figure 3 Numeric simulation for (1.5) with ry = ro = 0.72, w1 = 2
0.02, Iy =1z =1, k1 = k2 = 2. Two sets of initial data are used: (a
T_o =y_2 =02, 21 =y_1 =02, 2o = yo = 0.5; (b) z1_5 = yl_»
0.2, 21_1 =yl = 0.2, 1o = 0.501, ylo = 0.5.

Nabd

) (anyn)
x (xLyLl)
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Figure 4 Numeric simulation for (1.5) with ry = ro = 0.72, u1 = 2
0.02, I3 =1ls =1, k1 = ko = 4. Two sets of initial data are used: (a
g = Yy-4 = 05, x-3 = y-3 =06, z—2 = y—2 = 0.2, z—1 = y—1
0.2, zo = yo = 0.5; (b) z1_4 = yl_4 = 0.5, z1_3 = yl_3 = 0.6, z1_o =
yl_2=0.2, z1_1 =yl_1 = 0.2, zlp = 0.501, ylp = 0.5.

Nabd
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(xy)
(x1.y1)

x O

Figure 5 Numeric simulation for (1.5) with r1 = ro = 1, w1 = ps =
0.02, Iy =1lx =2, k1 = k2 = 1. Two sets of initial data are used: (a)
T_o =y—2 =02, 21 = y_1 = 0.2,20 = yo = 0.5; (b) zl_2 = yl_o =
0.2, z1_y =yl_1 = 0.2, zlo = 0.501, ylo = 0.5.
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