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TRAVELING WAVE FRONTS IN SPATIALLY

DISCRETE REACTION-DIFFUSION EQUATIONS

ON HIGHER DIMENSIONAL LATTICES

Xingfu Zou

Abstract. This paper deals with the existence of traveling wave fronts of spatially

discrete reaction-diffusion equations with delay on lattices with general dimension. A

monotone iteration starting from an upper solution is established, and the sequence

generated from the iteration is shown to converge to a profile function. The main

theorem is then applied to a particular equation arising from branching theory.

1. Introduction

Consider the spatially discrete reaction-diffusion equation

u′η(t) = α(∆nu)η + f(uη), η ∈ Ω ⊂ Zn (1.1)

where α > 0 is a constant, and ∆n is the standard n-dimensional discrete Laplacian,

(∆nu)η =
( ∑
|ξ−η|=1

uξ
)
− 2nuη . (1.2)

where | · | denotes the Euclidean norm in Rn.
Systems of differential equations with an underlying lattice structure (referred

as lattice differential equations in literature) occur in mathematical models in many
scientific disciplines, and have attracted many mathematicians and scientists from
other fields. We mention here, among the others, materials science [1], population
biology [13,16], pattern recognition [3,4]. For additional references, see the excellent
survey papers [5,6,17,20].
In addition to the above motivation for studying equation (1.1), there are also

some theoretical reasons. As indicated in the title of this paper, Eq.(1.1) is a spatial
discretization of the partial differential equation (reaction-diffusion equation)

∂u(t, x)

∂t
= α∆u(t, x) + f(u(t, x)), x ∈ Ω ∈ Rn (1.3)
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where ∆ is the usual Laplacian with respect to the spatial variable x. Therefore, it
is interesting and worthwhile to compare the dynamics of (1.3) with that of (1.1).
It has been noticed that an anisotropy in directional dependence is often introduced
in discretizing the n-dimensional Laplacian for n ≥ 2, and thus, spatially discrete
equations often exhibit more complicated and richer dynamics than spatially con-
tinuous equations. See, for example, [1,6,7,22,27].
We all know that traveling wave solutions play an important role in under-

standing the dynamics of the PDE (1.3). Naturally, we expect that traveling wave
solutions be also an important class of solutions for (1.1). For (1.3), a traveling
wave solution takes the form u(t, x) = φ(σ · x + ct) for some function φ : R → R
where σ ∈ Rn is a unit vector representing the direction of motion of the wave, and
c > 0 is the wave speed. Note that both the wave profile function and the wave
speed c are unknown. By substituting the traveling wave formula into (1.3), we
arrive at a second order ordinary differential equation

cφ′(ξ) = αφ′′(ξ) + f(φ(ξ)), ξ ∈ R (1.4)

where ξ = σ · x+ ct is the moving coordinate. Usually, one imposes the boundary
conditions

φ(−∞) = q−, φ(∞) = q+ (1.5)

to obtain a traveling wave front that represents a transition from one equilibrium
to another in applications. Observe that (1.4) is independent of the dimension n
and the direction σ.
Analogously, for the discrete reaction-diffusion equation (1.1) we can also look for

traveling wave solutions of the form uη(t) = y(σ·η+ct), where σ = (σ1, σ2, · · · , σn) ∈
R
n and c > 0 are as before. Now substitution of uη(t) = y(σ · η+ ct) into (1) yields
the difference-differential equation

cy′(s) = α

n∑
k=1

[y(s+ σk) + y(s− σk)]− 2αny(s) + f(y(s)), s ∈ R (1.6)

where s = σ ·η+ct. Just as for PDE case, one also imposes the boundary conditions

y(−∞) = q−, y(∞) = q+ (1.7)

for Eq.(1.6). One notices that in contrast to the second order ordinary differen-
tial equation (1.4), the difference-differential equation (1.6) is a genuinely infinite
dimensional problem. Moreover, it depends on the dimension n as well as the di-
rection σ and involves not only retarded but also advanced arguments. While a
great deal is known [10] about differential equations with retarded arguments, very
little of any general theory has addressed the so-called “mixed” type equation (1.6)
in which both forward s+σk and backward s−σk shifts of the argument s appear.
It was not until recently, a systematic study of the general theory of such mixed
equations and of the global structure of the solutions was initiated in [18,19].
There have been many arguments and evidences that time delay always exists

in reality and should be taken into consideration in modeling. See, for example,
[8,9,10,15,21]. For this reason, we incorporate a discrete delay into (1.1) and (1.3)
to consider, respectively,

u′η(t) = α(∆nu)η + f(uη(t), uη(t− τ)), η ∈ Zn (1.8)
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and
∂u(t, x)

∂t
= α∆u(t, x) + f(u(t, x), u(t− τ, x)), x ∈ Rn. (1.9)

The corresponding wave equations for (1.8) and (1.9) become, respectively,

cy′(s) = α

n∑
k=1

[y(s+σk)+ y(s− σk)]− 2αny(s) + f(y(s), y(s− cτ)), s ∈ R (1.10)

and
cφ′(ξ) = αφ′′(ξ) + f(φ(ξ), φ(ξ − cτ)), ξ ∈ R. (1.11)

Here, (1.11) is an ordinary differential equation with only retarded argument, but
(1.10) is again a mixed equation.
In this paper, we deal with the existence of traveling wave fronts of the delayed

lattice differential equations (1.8). We mention that for τ = 0, existence results are
established in [11,12, 24-26], for one dimensional lattice (n = 1) using comparison
and continuation methods. In [2] the existence of traveling wave fronts is explored,
for two dimensional (n = 2) lattice differential equations with some idealized nonlin-
earities by considering differential inclusion. Recently (1.8) was studied, [22], with
n = 1 but with general delay. In the remainder of this paper, we follow the idea
of upper and lower solutions in [22] to study the existence of traveling wave fronts
of (1.8) with general dimension n. The rest of this paper is organized as follows.
In section 2, we establish an iteration scheme starting from an upper solution, and
prove that the iteration converges to a solution of (1.10) and (1.7) provided that
the upper solution is properly chosen. In Section 3, we apply the main theorem
established in Section 2 to a particular equation arising from branching theory. By
analyzing the corresponding characteristic equation, we are able to construct the
required ordered pair of upper and lower solutions, and thus, claim the existence
of traveling wave fronts with large velocity.

2. Monotone Iteration

We have seen in Section 1 that the existence of traveling wave fronts of (1.8)
is equivalent to the existence of solutions of (1.10) and (1.7). Without loss of
generality, we can assume q− = 0 and q+ = q > 0, because other cases can be
reduced to such a case simply by a translation. So, in what follows, we look for
solutions of (1.10) and (1.7) with q− = 0 and q+ = q > 0, i.e., solutions of

cy′(s) = α
n∑
k=1

[y(s+ σk) + y(s− σk)]− 2αny(s) + f(y(s), y(s− cτ)), s ∈ R (2.1)

and
y(−∞) = 0, y(∞) = q. (2.2)

It is obvious that if (2.1)-(2.2) has a solution, then 0 and q must be zeros of the
nonlinear function f . Thus, it is natural to make the following assumption.
(A1) f is continuous and f(0, 0) = 0 = f(q, q) and f(u, u) 6= 0 for u ∈ (0, q).
Moreover, in order to get the monotonicity of our iteration, we need the following

quasi-monotonicity condition for f .
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(A2) There exists a β > 0 such that for any u1, u2, v1 and v2 with 0 ≤ u1 ≤
u2 ≤ q and 0 ≤ v1 ≤ v2 ≤ q, one has

f(u2, v2)− f(u1, v1) + β(u2 − u1) ≥ 0 .

Define the set of profiles by

Γ =

{
ρ : R→ [0, q], ρ is continuous and nondecreasing,

lim
t→−∞

ρ(t) = 0, and lim
t→∞

ρ(t) = q.

}

Also define Hβ : C(R;R)→ C(R;R) by

Hβ(ρ)(t) = f(ρ(t), ρ(t− cτ)) + βρ(t) + α
n∑
k=1

[ρ(t+ σk) + ρ(t− σk)], t ∈ R. (2.3)

Then Hβ has the following properties.

Proposition 2.1. Assume (A1) and (A2) are satisfied.
(i) If ρ is in Γ, then Hβ(ρ)(t) is nondecreasing, and limt→−∞Hβ(ρ)(t) = 0 and
limt→∞Hβ(ρ)(t) = (β + 2nα)q;

(ii) Hβ(ψ)(t) ≤ Hβ(φ)(t) for t ∈ R, if ψ, φ ∈ C(R,R) with 0 ≤ ψ ≤ φ ≤ q.

Proof. The two limits in (i) are obvious. Fix t ∈ R and s > 0. Using (A2), we get

Hβ(ρ)(t+ s)−Hβ(ρ)(t)

= f(ρ(t+ s), ρ(t+ s− cτ))− f(ρ(t), ρ(t− cτ)) + β[ρ(t+ s)− ρ(t)]

+ α

n∑
k=1

[ρ(t+ s+ σk)− ρ(t+ σk)] + α
n∑
k=1

[ρ(t+ s− σk)− ρ(t− σk)]

≥ 0.

This proves (i). As for (ii), it is just an immediate consequence of (A2). This
completes the proof.

Denote µ = β + 2nα and rewrite (2.1) as

c
d

dt
y(t) = −µy(t) +Hβ(y)(t). (2.4)

It is easy to verify that y : R → [0, q] is a solution of (2.4) with limt→−∞ y(t) = 0
if and only if it solves the following integral equation

y(t) = e−
µt
c

∫ t
−∞

1

c
e
µs
c Hβ(x)(s) ds. (2.5)

Definition 2.1. ρ ∈ C(R,R) is called an upper solution of (2.1) if it is differentiable
almost everywhere, and satisfies

c
d

dt
ρ(t) ≥ α

n∑
k=1

[ρ(t+ σk) + ρ(t− σk)]− 2nαρ(t) + f(ρ(t), ρ(t− cτ)) (2.6)
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a.e. on R. Lower solutions of (2.1) can be similarly defined by reversing the
inequality in (2.6).

We now establish an iteration that generates a monotone sequence. In order to
start the iteration, let us first assume that there exist an upper solution ρ(t) that is
in Γ and a lower solution ρ(t) (not necessarily in Γ) of (2.1) with 0 ≤ ρ(t) ≤ ρ(t) ≤ q
for t ∈ R. We assume ρ is a nontrivial lower solution (that is , ρ 6≡ 0 on R). It is
easy to verify that y1 : R→ R given by

y1(t) = e
−µtc

∫ t
−∞

1

c
e
µs
c Hβ(ρ)(s) ds, t ∈ R (2.7)

is a well defined C1- function. Some of the important properties of y1 are formulated
as follows:

Proposition 2.2. The function y1 defined by (2.7) satisfies
(i) d

dt
y1(t) ≥ 0 for t ∈ R;

(ii) ρ(t) ≤ y1(t) ≤ ρ(t) for t ∈ R;
(iii) limt→−∞ y1(t) = 0 and limt→+∞ y1(t) = q.

Proof. Using the monotonicity of ρ and (i) of Proposition 2.1, we get

d

dt
y1(t) = −

µ

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(ρ)(s) ds +

1

c
Hβ(ρ)(t)

= −
µ

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(ρ)(s) ds +

µ

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(ρ)(t) ds

=
µ

c
e−

µt
c

∫ t
−∞

e
µs
c [Hβ(ρ)(t)−Hβ(ρ)(s)] ds ≥ 0.

Applying the L’ Hospital’s rule, we get

lim
t→−∞

y1(t) = lim
t→−∞

1
c
e
µt
c Hβ(ρ)(t)
µ
c
e
µt
c

= lim
t→−∞

1

µ
Hβ(ρ)(t) = 0;

lim
t→∞

y1(t) = lim
t→∞

1
c
e
µt
c Hβ(ρ)(t)
µ
c
e
µt
c

= lim
t→−∞

1

µ
Hβ(ρ)(t) =

(β + 2nα)q

µ
= q.

The inequality ρ(t) ≤ y1(t) ≤ ρ(t) for t ∈ R follows from the definition of y1, the
upper solution and the monotonicity Hβ(ρ)(t) ≥ Hβ(ρ)(t) for t ∈ R. This completes
the proof.

Note that by (ii) of Proposition 2.1, we have

c
d

dt
y1(t)

= −µy1(t) +Hβ(ρ)(t)

≥ −µy1(t) +Hβ(y1)(t)

= f(y1(t), y1(t− cτ)) + α
n∑
k=1

[y1(t+ σk) + y1(t− σk)]− 2nαy1(t), t ∈ R.
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Therefore, y1 is also an upper solution of (2.1) and is in Γ. Thus, we can repeat
the above process for the pair (y1, ρ) to obtain another upper solution

y2(t) =
1

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(y1)(s) ds, t ∈ R. (2.8)

Inductively, we can define

yn(t) =
1

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(yn−1)(s) ds, t ∈ R, n ≥ 2 (2.9)

and obtain:

Proposition 2.3. The above sequence is well-defined and satisfies

(i) d
dt
yn(t) ≥ 0 for t ∈ R;

(ii) limt→−∞ yn(t) = 0, limt→+∞ yn(t) = q;
(iii) ρ(t) ≤ yn(t) ≤ yn−1(t) ≤ ρ(t) for t ∈ R and n ≥ 2.

The monotonicity (iii) in the above result ensures the existence of

y(t) = lim
n→∞

yn(t), t ∈ R. (2.10)

Clearly, the limit function y : R→ R is nondecreasing. Moreover, we claim

Proposition 2.4. y : R → R obtained from (2.7), (2.8), (2.9) and (2.10) is a
solution of the asymptotic boundary value problem (2.1)-(2.2).

Proof. Applying the Lebesgue’s Dominated Convergence Theorem to (2.9), we
can establish

y(t) =
1

c
e−

µt
c

∫ t
−∞

e
µs
c Hβ(y)(s) ds (2.11)

from which it follows that y satisfies (2.1). limt→−∞ y(t) = 0 is obvious since
0 ≤ ρ(t) ≤ y(t) ≤ ρ(t) and ρ ∈ Γ. It remains to show that limt→∞ y(t) = q. Note
that y is nondecreasing and bounded. So y∗ := limt→∞ y(t) ≤ q exists. Taking limit
as t → ∞ in (2.1), we get f(y∗, y∗) = 0. On the other hand, we have yn(t) ≥ ρ(t)

for n ≥ 1 and t ∈ R. Therefore, y(t) ≥ ρ(t) and hence y∗ ≥ supt∈R ρ(t) > 0.
Consequently, in view of (A1), we must have y∗ = q. This completes the proof.

Summarizing the above propositions, we have

Theorem 2.5. Assume (A1) and (A2) are satisfied. Suppose (2.1) has an upper
solution ρ in Γ and a non-trivial lower solution ρ (not necessarily in Γ) satisfying

(H1) 0 ≤ ρ(t) ≤ ρ(t) ≤ q, t ∈ R.
Then, (2.1)-(2.2) has a solution in Γ, that is, (1.8) has a traveling wave front.

Remark 2.1. In the proof of Theorem 2.5, the assumption f(r, r, ) 6= 0 for r ∈
(0, q) in (A1) is used only in proving limt→∞ y(t) = q. Therefore, any replacement
that ensures limt→∞ y(t) = q will not change the conclusion of Theorem 2.5. So,
we have
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Theorem 2.5∗. Assume f is continuous and (A2) is satisfied. Suppose (2.1) has
an upper solution ρ in Γ and a non-trivial lower solution ρ (not necessarily in Γ)
satisfying (H1) and

(A1)∗ f(u, u) 6= 0 for u ∈ (m, q), where m = supt∈R ρ(t).

Then, (2.1)-(2.2) has a solution in Γ, that is, (1.8) has a traveling wave front.

Remark 2.2. In (1.8), we just incorporated a single discrete delay. The approach
used in Section 2 is also applicable to lattice differential equations with general
delay, i.e., equations of the form

u′η(t) = α(∆nu)η + f((uη)t), η ∈ Zn (2.12)

where f : C([−τ, 0];R) → R and (uη)t ∈ C([−τ, 0];R) is defined by (uη)t(θ) =
uη(t + θ) for θ ∈ [−τ, 0]. In such a general case, the quasi-monotonicity condition
(A2) should be replaced by

(A2)∗ There exists a β > 0 such that for any φ, ψ ∈ C([−τ, 0];R) with 0 ≤ φ ≤
ψ ≤ q, one has

f(ψ)− f(φ) + β[ψ(0) − φ(0)] ≥ 0.

Moreover, the monotonicity condition (A2) ((A2)∗) can be relaxed to some extent,
but as a cost, the requirements on the ordered pair of upper and lower solutions
will be more restrictive. For the details of this idea, see [22,23].

3. Applications

In this section, we apply Theorem 2.5 to a particular system. Consider

u′η(t) = α(∆nu)η + uη(t− τ)[1 − uη(t)], t ∈ R, η ∈ Zn. (3.1)

This is a spatial discretization of

∂u

∂t
= α∆u(t, x) + u(t− τ)[1 − u(t, x)], t ∈ R, x ∈ Rn, (3.2)

which was derived from branching theory in [14]. The corresponding wave equation
of (3.1) is

cy′(t) = α

n∑
k=1

[y(t+ σk) + y(t− σk)− 2y(t)] + y(t− cτ)[1 − y(t)], (3.3)

and the boundary conditions for wave fronts are

lim
t→−∞

y(t) = 0, lim
t→∞

y(t) = 1. (3.4)

The nonlinear function f(u, v) = v(1−u) is obviously continuous and satisfies (A1)
with q = 1. For (A2), we have
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Lemma 3.1. f(u, v) = v(1 − u) satisfies (A2) with q = 1 and β = 1.

Proof. Let u1, u2, and v2 be such that 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1. Then

f(u2, v2)− f(u1, v1) = v2(1− u2)− v1(1− u1)

= (1− u1)(v2 − v1)− v2(u2 − u1)

≥ −v2(u2 − u1) ≥ −(u2 − u1)

which completes the proof of this lemma.

Let G(s) be defined by

G(s) = α
n∑
k=1

[
esσk + e−sσk − 2

]
+ e−cτs − cs, s ∈ R.

Then,

Lemma 3.2. There exists a c∗ > 0 such that
(i) when c < c∗, G(s) > 0 for s ∈ R;
(ii) when c = c∗, G(s) = 0 has a unique positive solution; and
(iii) when c > c∗, there exist 0 < s1 < s2 such that

G(s1) = G(s2) = 0,
G(s) < 0 for s ∈ (s1, s2), and
G(s) > 0 for s ∈ (−∞, s1) ∪ (s2,∞).

Proof. Denote g(s) = α
∑n
k=1[e

sσk + e−sσk − 2] and hc(s) = cs − e−cτs. Then,
G(s) = g(s)− hc(s), and elementary analysis of g(s) and hc(s) (see Figure 1) leads
to the conclusion of this lemma.

-1

0

 

c

g(s)

h  (s) with c>c*

h  (s) with c=c*

h  (s) with c<c*

ss

s1

2

c

c

Figure 1

Note that c∗ depends on the direction σ = (σ1, σ2, · · · , σn), dimension n as well
as the diffusion coefficient α and the delay τ . Using c∗, s1 and s2 in Lemma 3.2,
we can construct the required ordered pair of upper and lower solutions.
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Lemma 3.3. Assume c > c∗ and s1 be as in Lemma 3.2. Then, ρ(t) = min{es1t, 1}
is in Γ with q = 1 and is an upper solution of (3.3).

Proof. ρ ∈ Γ is obvious. For t > 0, ρ(t) = 1, and

α

n∑
k=1

[ρ(t+ σk) + ρ(t− σk)− 2ρ(t)] + ρ(t− cτ)[1− ρ(t)]

= α
n∑
k=1

[ρ(t+ σk) + ρ(t− σk)− 2]

≤ α
n∑
k=1

[1 + 1− 2] = 0 = cρ′(t).

For t < 0, ρ(t) = es1t, and

α

n∑
k=1

[ρ(t+ σk) + ρ(t− σk)− 2ρ(t)]ρ(t− cτ)[1 − ρ(t)]

= α
n∑
k=1

[
ρ(t+ σk) + ρ(t− σk)− 2e

s1t
]
+ es1(t−cτ)

(
1− es1t

)

≤ α
n∑
k=1

[
es1(t+σk) + es1(t−σk) − 2es1t

]
+ es1(t−cτ)

(
1− es1t

)

= es1t

[
α

n∑
k=1

(
es1σk + e−s1σk − 2]

)
+ e−s1cτ

(
1− es1t

)]

≤ es1t
[
α

n∑
k=1

(
es1σk + e−s1σk − 2]

)
+ e−s1cτ

]

= es1t(cs1) = cρ
′(t).

This completes the proof.

Lemma 3.4. Assume c > c∗ and let s1 and s2 be as in Lemma 3.2. Let r > 0
be such that r < s1 and s1 + r < s2. Then, ρ(t) = max{0, (1 −Mert)es1t} is a
non-trivial solution of (3.3), provided M > 0 is sufficiently large.

Proof. Let t0 < 0 be such that Mert0 = 1. For t > t0, ρ(t) = 0, and

α

n∑
k=1

[ρ(t+ σk) + ρ(t− σk)− 2ρ(t)] + ρ(t− cτ)[1− ρ(t)]

= α
n∑
k=1

[ρ(t+ σk) + ρ(t− σk)] + ρ(t− cτ)

≥ 0 = cρ′(t).

For t < t0, ρ(t) = (1 − Mert)es1t and ρ′(t) = (s1 − (s1 + r)Mert)es1t. Using
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Lemma 3.2, we get

α

n∑
k=1

[ρ(t+ σk) + ρ(t− σk)− 2ρ(t)] + ρ(t− cτ)[1 − ρ(t)]

≥ α
n∑
k=1

[(
1−Mer(t+σk)

)
es1(t+σk) +

(
1−Mer(t−σk)

)
es1(t−σk) − 2

(
1−Mert

)
es1t
]

(
1−Mer(t−cτ)

)
es1(t−cτ)

[
1−
(
1−Mert

)
es1t
]

= es1t

[
α

n∑
k=1

(
es1σk + e−s1σk − 2

)
− αMert

n∑
k=1

(
e(s1+r)σk + e−(s1+r)σk − 2

)
(
1−Mer(t−cτ)

)
e−s1cτ −

(
1−Mer(t−cτ)

) (
1−Mert

)
es1te−s1cτ

]

= es1t

[
α

n∑
k=1

(
es1σk + e−s1σk − 2

)
+ e−s1cτ − αMert

n∑
k=1

(
e(s1+r)σk + e−(s1+r)σk − 2

)

−Merte−(s1+r)cτ − es1te−s1cτ
(
1−Mer(t−cτ)

) (
1−Mert

)]
= es1t

[
cs1 −MertG(s1 + r)− c(s1 + r)Mert

−es1te−s1cτ
(
1−Mer(t−cτ)

) (
1−Mert

)]
> es1t

[
cs1 − c(s1 + r)Mert −MertG(s1 + r)− e

rte−s1cτ
]

= cρ′(t) + e(s1+r)t
[
−MG(s1 + r)− e

−s1cτ
]

≥ cρ′(t),

provided M ≥ e−s1cτ

−G(s1+r)
. This completes the proof.

Combining the above lemmas with Theorem 2.5, we obtain

Theorem 3.5. For each c > c∗ where c∗ is as in Lemma 3.2, (3.1) has a traveling
wave front with velocity c.
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