
PERMANENCE FOR A CLASS OF NONLINEAR
DIFFERENCE SYSTEMS

BINXIANG DAI AND XINGFU ZOU

Received 22 January 2006; Accepted 13 March 2006
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permanence results are obtained.
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1. Introduction

Consider the following system of nonlinear difference equations:

xn+1 = λxn + f
(
α1yn−β1yn−1

)
, yn+1 = λyn + f

(
α2xn−β2xn−1

)
, (1.1)

where λ∈ (0,1), αi,βi (i= 1,2) are given positive constants, and f :R→R is a real func-
tion. System (1.1) can be regarded as the discrete analog of the following neural network
of two neurons with dynamical threshold effects:

dx(t)
dt

=−μx(t) + f
(
α1y(t)−β1y(t− τ)

)
,

dy(t)
dt

=−μy(t) + f
(
α2x(t)−β2x(t− τ)

)
.

(1.2)

System (1.2) has found interesting applications in, for example, temporal evolution of
sublattice magnetization (see [3]). Recently, the dynamics of (1.2) and some related mod-
els have been discussed in [1, 2, 5].

System (1.1) can also be viewed as an extension to two dimensions of the equation

xn+1 = λxn + f
(
xn− xn−1

)
, (1.3)

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2006, Article ID 78607, Pages 1–10
DOI 10.1155/DDNS/2006/78607

http://dx.doi.org/10.1155/S1026022606786071


2 Permanence for a class of nonlinear difference systems

which has been studied by Sedaghat [6] and other authors (see [4, 7]). By exploring the
relationship between (1.3) and the following first-order initial value problem:

vn+1 = f
(
vn
)
, v1 = x1− x0, (1.4)

some sufficient conditions for the permanence of (1.3) are obtained in [6]. It is natural
to expect that similar results in [6] can be extended from (1.3) to system (1.1). This is the
goal of this paper.

As usual, system (1.1) is said to be permanent, if there exists a compact set Ω in the
interior of R×R such that any solution of (1.1) will ultimately stay in Ω.

The organization of this paper is as follows. In Section 2, we discuss the following
difference system:

un+1 = f
(
α1vn

)
, vn+1 = f

(
α2un

)
, n= 1,2, . . . , (1.5)

and give some propositions which address the permanence of system (1.5), and therefore
which themselves are of some interest and importance. In Section 3, by setting up a useful
relationship between systems (1.1) and (1.5), we obtain some sufficient conditions for the
permanence of system (1.1). An important example is given in Section 4.

2. Basic propositions

In this section, we discuss some properties of system (1.5). For convenience, we will adopt
some notations as follows:

g := α1 f , h := α2 f , F2 := F ◦F, Fn := F ◦Fn−1, n= 2,3, . . . , (2.1)

where F ◦G(x)= F(G(x)).
It is easy to have the following proposition.

Proposition 2.1. Every solution {(un,vn)}n∈N of system (1.5) satisfies

un+1 =
⎧
⎨

⎩

f ◦ (g ◦h)k−1 ◦ g(α2u1), if n= 2k,

f ◦ (g ◦h)k(α1v1), if n= 2k+ 1,

vn+1 =
⎧
⎨

⎩

f ◦ (h◦ g)k−1 ◦ g(α1v1), if n= 2k,

f ◦ (h◦ g)k(α2u1), if n= 2k+ 1.

(2.2)

Proposition 2.2. Let f : R→ R be a nondecreasing function. Assume that the following
condition holds.

(H1) There exist δi ∈ (0,1) and M1 > 0 such that for all x ≥M1,

f
(
αix
)≤ δix, i= 1,2. (2.3)

Then every solution of (1.5) is eventually bounded from above (independent of initial condi-
tions).
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Proof. Let {(un,vn)} be a solution of (1.5). We claim that there exists a positive integer m
such that

um <M1, vm <M1. (2.4)

First we can prove that there is an m1 such that um1 <M1. Otherwise, for any n > 0, we
have un ≥M1. Then

vn+1 = f
(
α2un

)≤ δ2un < un,

un+2 = f
(
α1vn+1

)≤ f
(
α1un

)≤ δ1un,

vn+3 = f
(
α2un+2

)≤ δ2un+2 < un+2,

un+4 = f
(
α1vn+3

)≤ f
(
α1un+2

)≤ δ1un+2 ≤ δ2
1un.

(2.5)

It follows, by induction, that

un+2k ≤ δk1un, k = 1,2, . . . . (2.6)

Now, fix n and take k→∞ in (2.6) and note that 0 < δ1 < 1, we then get

lim
k→∞

un+2k = 0, (2.7)

which contradicts to un ≥M1 > 0.
Next we distinguish two cases.

Case 1. If vm1 <M1, then (2.4) holds.
Case 2. If vm1 ≥M1, we show that there exists k1 such that

vm1+2k1 <M1. (2.8)

Assume that (2.8) is not true, then vm1+2k ≥M1 for all k. Similar to the proof of (2.6), we
have

0 <M1 ≤ vm1+2k ≤ δk2vm1 −→ 0 (as k −→∞) (2.9)

which is contradiction.
Noting um1 <M1 implies that um1+2k < M1 for all k, then take m=m1 + 2k1, and (2.4)

holds.
Now, by (1.5), we have

um+1 = f
(
α1vm

)≤ f
(
α1M1

)≤ δ1M1 <M1,

vm+1 = f
(
α2um

)≤ f
(
α2M1

)≤ δ2M1 <M1.
(2.10)

Thus, by induction, we obtain

un <M1, vn <M1 (2.11)

for all n≥m.This completes the proof. �
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Letting u′n = −un, v′n =−vn, F(x) =− f (−x), we then have the following proposition
which comes directly from Proposition 2.2.

Proposition 2.3. Let f : R→ R be a nondecreasing function. Assume that the following
condition holds.

(H2) There exist δi ∈ (0,1) and M2 > 0 such that for all x ≤−M2,

f
(
αix
)≥ δix, i= 1,2. (2.12)

Then every solution of (1.5) is eventually bounded from below (independent of initial condi-
tions).

Propositions 2.2 and 2.3 can be combined to give the following proposition.

Proposition 2.4. Let f :R→R be a nondecreasing function. If there exist δi ∈ (0,1) such
that

lim
x→∞

f
(
αix
)

x
= δi, i= 1,2, (2.13)

then (1.5) is permanent.

3. Permanence of (1.1)

In this section, we are concerned with the permanence of system (1.1). To this end, we
need to establish the following lemma which gives a useful link between the solutions of
(1.1) and (1.5).

Lemma 3.1. Suppose that f : R→ R is a nondecreasing function. Let {(xn, yn)} be a non-
negative solution of the following difference inequalities:

xn+1 ≤ λxn + f
(
α1yn−β1yn−1

)
, yn+1 ≤ λyn + f

(
α2xn−β2xn−1

)
, (3.1)

with initial conditions (x0, y0) and (x1, y1), and {(un,vn)} is the solution of (1.5) with the
initial values u1, v1 satisfying

α2u1 = α2x1−β2x0, α1v1 = α1y1−β1y0. (3.2)

If the following condition holds:
(H3) αiλ−βi ≤ 0, i= 1,2,

then for all n≥ 1,

α2xn ≤ λn−1β2x0 +
n∑

k=1

λn−kα2uk, α1yn ≤ λn−1β1y0 +
n∑

k=1

λn−kα1vk. (3.3)

Proof. We first observe that

α2x1 = β2x0 +α2u1, α1y1 = β1y0 +α1v1, (3.4)
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and that

α2x2 ≤ α2
(
λx1 + f

(
α1y1−β1y0

))

= λ
(
β2x0 +α2u1

)
+α2 f

(
α1v1

)= λβ2x0 + λα2u1 +α2u2,

α1y2 ≤ α1
(
λy1 + f

(
α2x1−β2x0

))

= λ
(
β1y0 +α1v1

)
+α1 f

(
α2u1

)= λβ1y0 + λα1v1 +α1v2.

(3.5)

Hence, (3.3) holds for n= 1,2. Next we assume that (3.3) holds for all integers less than
or equal to some integer n. Then

α2xn+1 ≤ α2
(
λxn + f

(
α1yn−β1yn−1

))

≤ λnβ2x0 +
n∑

k=1

λn−k+1α2uk +α2 f
(
α1yn−β1yn−1

)
,

α1yn+1 ≤ α1
(
λyn + f

(
α2yn−β2xn−1

))

≤ λnβ1y0 +
n∑

k=1

λn−k+1α1vk +α1 f
(
α2xn−β2xn−1

)
.

(3.6)

So it remains to show that

f
(
α1yn−β1yn−1

)≤ un+1, f
(
α2xn−β2xn−1

)≤ vn+1. (3.7)

To this end, we note that

α1yn−β1yn−1 ≤
(
α1λ−β1

)
yn−1 +α1 f

(
α2xn−1−β2xn−2

)

≤ α1 f
(
α2xn−1−β2xn−2

)= g
(
α2xn−1−β2xn−2

)
,

α2xn−β2xn−1 ≤
(
α2λ−β2

)
xn−1 +α2 f

(
α1yn−1−β1yn−2

)

≤ α2 f
(
α1yn−1−β1yn−2

)= h
(
α1yn−1−β1yn−2

)
,

(3.8)

which, together with the assumption that f is nondecreasing, implies that

f
(
α1yn−β1yn−1

)≤ f ◦ g(α2xn−1−β2xn−2
)
,

f
(
α2xn−β2xn−1

)≤ f ◦h(α1yn−1−β1yn−2
)
.

(3.9)

Following this fashion, we can get

f
(
α1yn−β1yn−1

)≤
⎧
⎨

⎩

f ◦ (g ◦h)k−1 ◦ g(α2u1
)
, if n= 2k,

f ◦ (g ◦h)k
(
α1v1

)
, if n= 2k+ 1,

f
(
α2xn−β2xn−1

)≤
⎧
⎨

⎩

f ◦ (h◦ g)k−1 ◦ g(α1v1
)
, if n= 2k,

f ◦ (h◦ g)k
(
α2u1

)
, if n= 2k+ 1.

(3.10)

Then (3.7) follows from Proposition 2.1 and thus the proof is complete. �
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Similar to the proof of Lemma 3.1, we have the following.

Lemma 3.2. Suppose that f : R→ R is a nondecreasing function. Let {(xn, yn)} be a non-
positive solution of the following difference inequalities:

xn+1 ≥ λxn + f
(
α1yn−β1yn−1

)
, yn+1 ≥ λyn + f

(
α2xn−β2xn−1

)
, (3.11)

with initial conditions (x0, y0) and (x1, y1), and {(un,vn)} is the solution of (1.5) with the
initial values u1,v1 satisfying (3.2). If the condition (H3) holds, then for all n≥ 1,

α2xn ≥ λn−1β2x0 +
n∑

k=1

λn−kα2uk, α1yn ≥ λn−1β1y0 +
n∑

k=1

λn−kα1vk. (3.12)

We are now able to state and prove our permanence results for system (1.1).

Theorem 3.3. Let f be nondecreasing and bounded from below on R. Suppose that (H1)
and (H3) hold. Assume further that

(H4) αi ≥ βi, i= 1,2.
Then (1.1) is permanent.

Proof. If we define Xn = f (α2xn − β2xn−1), Yn = f (α1yn − β1yn−1) for all n ≥ 1, then it
follows inductively from (1.1) that

xn = λn−1x1 +
n−1∑

k=1

λn−k−1Yk, yn = λn−1y1 +
n−1∑

k=1

λn−k−1Xk. (3.13)

Let L0 be a lower bound for f (t) and without loss of generality we assume that L0 ≤ 0. As
Xk ≥ L0 and Yk ≥ L0 for all k, we conclude from (3.13) that for all n,

xn ≥ λn−1x1 +

(
1− λn−1

)
L0

1− λ
, yn ≥ λn−1y1 +

(
1− λn−1

)
L0

1− λ
, (3.14)

and therefore {(xn, yn)} is bounded from below. In fact, it is clear that there is a positive
integer n0 such that for all n≥ n0,

xn ≥ L, yn ≥ L, (3.15)

where L= L0/(1− λ)− 1 < 0. We next show that {(xn, yn)} is bounded from above as well.
Define

φn = xn+n0 −L, ϕn = yn+n0 −L (3.16)

for all n≥ 0, so that φn ≥ 0, ϕn ≥ 0 for all n. Now for each n≥ 1, we have

φn+1 = λxn+n0 + f
(
α1yn+n0 −β1yn+n0−1

)−L= λφn + f
(
α1yn+n0 −β1yn+n0−1

)− (1− λ)L,

ϕn+1 = λyn+n0 + f
(
α2xn+n0 −β2xn+n0−1

)−L= λϕn + f
(
α2xn+n0 −β2xn+n0−1

)− (1− λ)L.
(3.17)



B. Dai and X. Zou 7

Note that

α1yn+n0 −β1yn+n0−1 = α1ϕn−β1ϕn−1 +
(
α1−β1

)
L≤ α1ϕn−β1ϕn−1,

α2xn+n0 −β2xn+n0−1 = α2φn−β2φn−1 +
(
α2−β2

)
L≤ α2φn−β2φn−1,

(3.18)

which, together with the assumption that f is nondecreasing, implies that

f
(
α1yn+n0 −β1yn+n0−1

)≤ f
(
α1ϕn−β1ϕn−1

)
,

f
(
α2xn+n0 −β2xn+n0−1

)≤ f
(
α2φn−β2φn−1

)
.

(3.19)

Define F(x) := f (x)− (1− λ)L. By (3.17) and (3.19), we get

φn+1 ≤ λφn +F
(
α1ϕn−β1ϕn−1

)
, ϕn+1 ≤ λϕn +F

(
α2φn−β2φn−1

)
. (3.20)

Let δ∗i ∈ (δi,1), i = 1,2, and M∗
1 =max {M1,−(1− λ)L/(δ∗1 − δ1),−(1− λ)L/(δ∗2 − δ2)}.

It is readily verified that for all x ≥M∗
1 ,

F
(
αix
)≤ δ∗i x (i= 1,2). (3.21)

Consider the following initial value problem:

un+1 = F
(
α1vn

)
, u1 = α2φ1−β2φ0

α2
,

vn+1 = F
(
α2un

)
, v1 = α1ϕ1−β1ϕ0

α1
.

(3.22)

From Proposition 2.2 we know that there exist integer m ≥ 0 and constant M0 > 0 such
that for all n ≥m, un ≤M0, vn ≤M0. Applying Lemma 3.1 to (3.20), we obtain that for
all n≥m,

α2φn ≤ λn−1β2φ0 +
m−1∑

k=1

λn−kα2uk +
n∑

k=m
λn−kα2uk

≤ λn−m+1(λm−2β2φ0 + λm−2α2u1 + ···+α2um−1
)

+α2M0

n−m∑

k=0

λk

= λn−m+1M∗ +α2M0(1− λ)−1(1− λn−m+1),

α1ϕn ≤ λn−1β1ϕ0 +
m−1∑

k=1

λn−kα1vk +
n∑

k=m
λn−kα1vk

≤λn−m+1(λm−2β1ϕ0 + λm−2α1v1 + ···+α1vm−1
)

+α1M0

n−m∑

k=0

λk

= λn−m+1N∗ +α1M0(1− λ)−1(1− λn−m+1),

(3.23)
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where M∗ = λm−2β2φ0 + λm−2α2u1 + ··· + α2um−1, N∗ = λm−2β1ϕ0 + λm−2α1v1 + ··· +
α1vm−1. Thus there exists n1 ≥m such that for all n≥ n1,

φn ≤ M0

1− λ
+ 1, ϕn ≤ M0

1− λ
+ 1. (3.24)

Hence, for all n≥ n0 +n1, we have

(
xn, yn

)∈ [L,M]× [L,M], (3.25)

where

M = M0

1− λ
+ 1 +L. (3.26)

This shows that (1.1) is permanent. The proof is completed. �

Similarly, we have the following.

Theorem 3.4. Let f be nondecreasing and bounded from above on R. Suppose that (H2),
(H3), and (H4) hold. Then (1.1) is permanent.

From the proof of Theorem 3.3, we can easily establish the following assertion.

Corollary 3.5. Let f be bounded from below (from above) on R. Then every solution of
(1.1) is bounded from below (from above). In particular, if f is bounded, then every solution
of (1.1) is bounded.

4. An example

Consider the following system of two difference equations:

Xn+1 = λXn +α1 f
(
Yn
)−β1 f

(
Yn−1

)
, Yn+1 = λYn +α2 f

(
Xn
)−β2 f

(
Xn−1

)
, (4.1)

where λ∈ [0,1), αi, βi (i= 1,2) are given positive constants with , and f :R→R is a real
function.

Let {(Xn,Yn)} be a solution of (4.1), and for n≥ 1, define

xn =
(
β2

α2

)n

x0 +
n−1∑

k=0

(
β2

α2

)n−k−1
1
α2

Yk,

yn =
(
β1

α1

)n

y0 +
n−1∑

k=0

(
β1

α1

)n−k−1
1
α1

Xk,

(4.2)

for some real numbers x0, y0. We will show that {(xn, yn)} satisfies (1.1) for some choice
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of (x0, y0). Note that

Xn = α1yn+1−β1yn, Yn = α2xn+1−β2xn, (4.3)

x2 =
(
β2

α2

)2

x0 +
β2

α2
2
Y0 +

1
α2

Y1,

y2 =
(
β1

α1

)2

y0 +
β1

α2
1
X0 +

1
α1

X1.

(4.4)

In order for {(xn, yn)} to satisfy (1.1), x0 and y0 must be chosen such that

λx1 + f
(
α1y1−β1y0

)= λ

(
β2

α2
x0 +

1
α2

Y0

)

+ f
(
X0
)
,

λy1 + f
(
α2x1−β2x0

)= λ

(
β1

α1
y0 +

1
α1

X0

)

+ f
(
Y0
)
.

(4.5)

Solving for x0 and y0 we obtain

x0 =− 1
β2

Y0− α2

β2
(
β2− λα2

)Y1 +
α2

2

β2
(
β2− λα2

) f
(
X0
)
,

y0 =− 1
β1

X0− α1

β1
(
β1− λα1

)X1 +
α1

1

β1
(
β1− λα1

) f
(
Y0
)
.

(4.6)

Thus,

x2 = λx1 + f
(
α1y1−β1y0

)
, y2 = λy1 + f

(
α2x1−β2x0

)
. (4.7)

Now, for any n≥ 1, from (4.1) and (4.3), we have

α2
[
xn+2− λxn+1− f

(
α1yn+1−β1yn

)]= β2
[
xn+1− λxn− f

(
α1yn−β1yn−1

)]
,

α1
[
yn+2− λyn+1− f

(
α2xn+1−β2xn

)]= β1
[
yn+1− λyn− f

(
α2xn−β2xn−1

)]
.

(4.8)

By (4.7) and (4.8), we can get inductively that {(xn, yn)} is the solution of (1.1). From
(4.3), we know

∣
∣Xn

∣
∣≤ α1

∣
∣yn+1

∣
∣+β1

∣
∣yn

∣
∣,

∣
∣Yn

∣
∣≤ α2

∣
∣xn+1

∣
∣+β2

∣
∣xn

∣
∣. (4.9)

Therefore, by Theorems 3.3 and 3.4 , we obtain the following result on permanence in
system (4.1).

Corollary 4.1. Let f be nondecreasing and bounded from below (or from above) on R.
Suppose that conditions (H1) (or (H2)), (H3), and (H4) hold. Then system (4.1) is perma-
nent.
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