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Abstract. In this paper, we propose a mathematical model to describe the
avian influenza dynamics in wild birds with bird mobility and heterogeneous
environment incorporated. In addition to establishing the basic properties of
solutions to the model, we also prove the threshold dynamics which can be ex-
pressed either by the basic reproductive number or by the principal eigenvalue
of the linearization at the disease free equilibrium. When the environment fac-
tor in the model becomes a constant (homogeneous environment), we are able
to find explicit formulas for the basic reproductive number and the principal
eigenvalue. We also perform numerical simulation to explore the impact of the
heterogeneous environment on the disease dynamics. Our analytical and nu-
merical results reveal that the avian influenza dynamics in wild birds is highly

affected by both bird mobility and environmental heterogeneity.

1. Introduction. Aquatic birds such as Anseriformes (ducks, geese and swans)
and Charadriiformes (gulls, terns and waders) are the major reservoir of all influenza
A viruses, including the highly pathogenic H5N1 AI virus transmitted to humans
[9, 17, 22, 36]. Understanding of the ecology of avian influenza (AI) virus and
its dynamics in wild birds is useful in predicting influenza dynamics in human
population and devising control strategies.

In the context of AI dynamics in wild birds, in addition to transmission of AI
from bird to bird, another highly efficient route of transmission is through the ex-
cretion of AI virus by infected birds, followed by ingestion of virus in the drinking
water of uninfected birds [4, 12, 13, 37]. Laboratory experiments have shown that
the persistence of AI virus in water depends on environmental factors such as tem-
perature, pH and salinity [4, 5, 6, 28, 37]. Numerous mathematical modeling studies
have already highlighted the importance of such environmental factors in AI dy-
namics among wild birds [3, 10, 23, 24, 29, 32]. In particular, [32] has shown that
even small differences in the environmental condition between two locations (for
example, differences in temperature of less than 8oC) can produce significantly dif-
ferent AI dynamics. In addition, mobility is a common strategy for birds to occupy
seasonal habitats [2]. Because of their mobility, birds come across various environ-
mental conditions. Therefore, it is quite obvious to raise the question of how such
spatial heterogeneity affects AI dynamics in mobile aquatic wild birds.
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In this study, we propose a dynamic model for the transmission of AI among
wild birds that incorporates both mobility of the birds and spatial heterogeneity
in the environmental condition. We introduce into the model a spatial diffusion
of the bird population and use the experimentally-determined dependence of virus
persistence in water upon temperature, pH and salinity. We focus on how spatial
diffusion and environmental heterogeneity affect the basic reproductive number and
threshold dynamics of the system.

One of the main technical difficulties in our analysis is the lack of compactness
of solution maps of the model system (see also [15]). This is because one of the
equations, which describes the dynamics of virus particles in water, loses its diffusion
term as the diffusion of virus particles is negligible compared to the birds’ mobility.
To overcome this difficulty, we first prove that the solution maps associated with
a linearized system around the disease-free equilibrium are κ-condensing, where
κ is the Kuratowski measure of non-compactness (see, e.g., [7]). By a generalized
Krein-Rutman Theorem, we can show that the principal eigenvalue of the associated
eigenvalue problems exists. Next, we prove the solution maps associated with our
model system are κ-contracting. Thus, we conclude that the solution maps admit a
connected global attractor by appealing to some existing results in [21].

The basic reproductive number for an infectious disease, conventionally denoted
by R0, is an important index in epidemiology which predicts whether an infectious
disease will die out or persist in the host population. For models given by infinite
dimensional systems, such as our model system with spatial structure, identifying
R0 is usually not trivial. For our model, by making use of the abstract results
on this topic in [31], we are able to find the so called next generation operator L,
and thereby, identify R0 as the spectral radius of L. We show that R0 plays a
threshold role in the sense that when R0 < 1, the disease dies out from the birds
population while when R0 > 1, the disease remains persistent. We also carry out
model simulations to observe how AI dynamics vary with diffusion rate and spatial
heterogeneity of the environmental conditions.

The rest of the paper is organized as follows. The model is formulated in Section
2. The model analysis and simulation results are presented in Sections 3 and 4,
respectively. Finally, we state the conclusions of the paper in Section 5.

2. Model. Suppose Ω ⊂ R
n is a bounded domain which is the habitat of a host (for

the AI virus) bird species. We divide the total bird population into susceptible (S),
infected (I) and recovered (R) groups. We further consider AI virus concentration
in water as V . We introduce the birds’ mobility by the spatial diffusion terms in
the model. Following [32], we incorporate environmental effects via the spatially-
varying viral decay rate c(x), which depends on environmental conditions such as
temperature, pH and salinity. The model we consider is as follows:

∂S(x, t)

∂t
= D∆S + λ− βISI − βV SV − dS + ηR, (1)

∂I(x, t)

∂t
= D∆I + βISI + βV SV − γI − dI, (2)

∂R(x, t)

∂t
= D∆R+ γI − ηR − dR, (3)

∂V (x, t)

∂t
= αI − c(x)V, (4)
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with (x, t) ∈ Ω × (0,∞). Here, D is the diffusion coefficient and ∆ is the Laplace
operator. As included in the model, the susceptible birds get infected by direct
bird-to-bird transmission at rate βISI, and by indirect fecal-oral transmission at
rate βV SV . The parameters λ, d, γ and η represent the rate of recruitment of
susceptible birds, the rate of natural death, the rate of recovery from infection and
the rate of immunity loss, respectively. Since AI virus is generally non-pathogenic
in wild birds [22], we have ignored disease caused deaths in our model. Infected
birds shed virus particles in their feces at rate α.

Here, we use the homogeneous Neumann boundary condition

∂S(x, t)

∂ν
=
∂I(x, t)

∂ν
=
∂R(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0, (5)

and initial conditions

S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), V (x, 0) = V 0(x), x ∈ Ω, (6)

where ∂
∂ν

denotes the differentiation along the outward normal ν to ∂Ω. Here we
assume that the habitat dependent parameter c(x) is strictly positive and continuous
on Ω̄.

3. Model analysis. For the sake of convenience, let (u1, u2, u3, u4) = (S, I, R, V ).
Then (1)-(4) with (5) and (6) is equivalent to the following system:



















∂u1(x,t)
∂t

= D∆u1 + λ− βIu1u2 − βV u1u4 − du1 + ηu3,
∂u2(x,t)

∂t
= D∆u2 + βIu1u2 + βV u1u4 − (γ + d)u2,

∂u3(x,t)
∂t

= D∆u3 + γu2 − (η + d)u3,
∂u4(x,t)

∂t
= αu2 − c(x)u4,

(7)

in (x, t) ∈ Ω× (0,∞) with the homogeneous Neumann boundary condition

∂ui(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0, i = 1, 2, 3, (8)

and initial conditions

ui(x, 0) = u0i (x), x ∈ Ω, i = 1, 2, 3, 4. (9)

3.1. Existence, uniqueness and positivity of solutions. Let X := C(Ω̄,R4)
be the Banach space with the supremum norm ‖ · ‖X. Define X

+ := C(Ω̄,R4
+),

then (X,X+) is a strongly ordered spaces. Suppose T1(t), T2(t), T3(t) : C(Ω̄,R) →
C(Ω̄,R) be the C0 semigroups associated withD∆−d, D∆−(γ+d) andD∆−(η+d)
subject to the Neumann boundary condition, respectively. It then follows that for
any ϕ ∈ C(Ω̄,R), t ≥ 0,

(T1(t)ϕ)(x) = e−dt
∫

Ω

Γ(x, y, t)ϕ(y)dy, (10)

(T2(t)ϕ)(x) = e−(γ+d)t

∫

Ω

Γ(x, y, t)ϕ(y)dy, (11)

and

(T3(t)ϕ)(x) = e−(η+d)t

∫

Ω

Γ(x, y, t)ϕ(y)dy, (12)

where Γ is the Green functions associated with D∆ subject to the Neumann bound-
ary condition, respectively. Let

T4(t)ϕ = e−c(·)tϕ. (13)
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From [26, Section 7.1 and Corollary 7.2.3], it follows that Ti(t) : C(Ω̄,R) → C(Ω̄,R)
is compact and strongly positive, ∀ t > 0 and i = 1, 2, 3.

For every initial value functions φ = (φ1, φ2, φ3, φ4) ∈ C(Ω̄,R4), we define F =
(F1, F2, F3, F4) : X

+ → X by

F1(φ)(x) = λ− βIφ1(x)φ2(x) − βV φ1(x)φ4(x) + ηφ3(x),

F2(φ)(x) = βIφ1(x)φ2(x) + βV φ1(x)φ4(x),

F3(φ)(x) = γφ2(x),

F4(φ)(x) = αφ2(x), ∀ x ∈ Ω̄.

Then (7)-(9) can be rewritten as the integral equation:

u(t) = T (t)φ+

∫ t

0

T (t− s)F (u(s))ds, (14)

where

u(t) =









u1(t)
u2(t)
u3(t)
u4(t)









, T (t) =









T1(t) 0 0 0
0 T2(t) 0 0
0 0 T3(t) 0
0 0 0 T4(t)









.

It is easy to show that

lim
h→0+

dist(φ+ hF (φ),X+) = 0, ∀ φ ∈ X
+.

By [20, Corollary 4], we obtain the following basis results on solutions of (7)-(9)

Theorem 3.1. For every initial value function φ := (φ1, φ2, φ3, φ4) ∈ X
+, sys-

tem (7)-(9) has a unique mild solution u(x, t, φ) on [0, τφ) with u(·, 0, φ) = φ and

u(·, t, φ) ∈ X
+, ∀ t ∈ [0, τφ), where τφ ≤ ∞.

Next, we show that the solution of (7)-(9) with initial function φ ∈ X
+ actually

exists globally, that is, τφ = ∞. To this end, we let

W (x, t) := u1(x, t) + u2(x, t) + u3(x, t). (15)

Then W (x, t) satisfies the following system











∂W (x,t)
∂t

= D∆W + λ− dW, x ∈ Ω, t > 0,
∂W (x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

W (x, 0) =W 0(x) ≥ 0, x ∈ Ω.

(16)

The following result is related to the long-term behavior of the system (16):

Lemma 3.2. [18, Lemma 1] The system (16) admits a unique positive steady state

w∗ := λ
d
which is globally asymptotically stable in C(Ω̄,R).

Making use of the above lemma and theorem, we now can confirm global existence
of the solution to (7)-(9), as stated in the next theorem.

Theorem 3.3. For every initial value function φ ∈ X
+, system (7)-(9) has a unique

solution u(·, t, φ) on [0,∞) with u(·, 0, φ) = φ and the semiflow Ψt : X+ → X
+

generated by (7)-(9) is defined by

Ψt(φ) = (u1(·, t, φ), u2(·, t, φ), u3(·, t, φ), u4(·, t, φ)), ∀ x ∈ Ω̄, t ≥ 0. (17)

Furthermore, the semiflow Ψt : X
+ → X

+ is point dissipative and the positive orbits

of bounded subsets of X+ for Ψt are bounded.



AVIAN INFLUENZA DYNAMICS IN SPATIAL HETEROGENEOUS ENVIRONMENT 2833

Proof. From (15), (16), Lemma 3.1 and Lemma 3.2, it follows that ui(·, t, φ) is
bounded on [0, τφ), ∀ i = 1, 2, 3. Thus, there exists a positive number Q such that
the fourth equation of the system (7) is dominated by the equation

∂v(x, t)

∂t
= αQ− c̃v, x ∈ Ω, t > 0, (18)

where c̃ := minx∈Ω̄ c(x). It is easy to see that αQ
c̃

is globally attractive in C(Ω̄,R)
for the scalar equation (18) and hence u4(·, t, φ) is bounded on [0, τφ). Therefore,

(u1(·, t, φ), u2(·, t, φ), u3(·, t, φ), u4(·, t, φ))

is bounded on [0, τφ) ∀ φ ∈ X
+, and hence for τφ = ∞. Thus, system (7)-(9) defines

a semiflow Ψt : X
+ → X

+ by

Ψt(φ) = (u1(·, t, φ), u2(·, t, φ), u3(·, t, φ), u4(·, t, φ)), ∀ φ ∈ X
+.

From (15), (16), Lemma 3.1 and Lemma 3.2, it follows that for every initial value
function φ ∈ X

+ there exists a t1 := t1(φ) such that ui(·, t, φ) ≤ 2w∗, ∀ t > t1, i =
1, 2, 3. From the fourth equation of the system (7), it follows that

∂u4(x, t)

∂t
≤ 2αw∗ − c̃u4, t ≥ t1. (19)

Since 2αw∗

c̃
is globally attractive in C(Ω̄,R) for the scalar equation ∂v(x,t)

∂t
= 2αw∗−

c̃v. By (19), it follows that there is a t2(φ) > t1 such that u4(x, t) ≤
4αw∗

c̃
, ∀ t ≥

t2(φ). Therefore, the solution semiflow Ψt : X
+ → X

+ is point dissipative. Further-
more, the positive orbits of bounded subsets of X+ for Ψt are bounded.

3.2. The basic reproductive number. The basic reproductive number, which
is defined as the average number of secondary infections generated by a single in-
fected individual introduced into a completely susceptible population, is one of the
important quantities in epidemiology. In this subsection, we will identify the basic
reproductive number for the model system (7)-(9).

Obviously E0 = (w∗, 0, 0, 0) is the disease free equilibrium of (7) where w∗ = λ
d
.

Note that by Lemma 3.2, w∗ is the unique positive equilibrium of (16) and is
globally asymptotically stable in C(Ω̄,R). Linearizing system (7)-(9) at E0, we get
the following system for the infection related variables u2 and u4:











∂u2(x,t)
∂t

= D∆u2 + βIw
∗u2 + βV w

∗u4 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂u2(x,t)
∂ν

= ∂u4(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0.

(20)

We first consider the following generalized version of the system (20):










∂u2(x,t)
∂t

= D∆u2 + βIH(x)u2 + βVH(x)u4 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂u2(x,t)
∂ν

= ∂u4(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0

(21)

where H(x) > 0, ∀ x ∈ Ω̄.
Substituting ui(x, t) = eµtψi(x), i = 2, 4, into (21) leads to the following associ-

ated eigenvalue problem:










µψ2(x) = D∆ψ2 + βIH(x)ψ2 + βVH(x)ψ4 − (γ + d)ψ2, x ∈ Ω,

µψ4(x) = αψ2 − c(x)ψ4, x ∈ Ω,
∂ψ2(x)
∂ν

= ∂ψ4(x)
∂ν

= 0, x ∈ ∂Ω.

(22)
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It is easy to see that the system (21) is co-operative, but its solution map is not
compact since the second equation in (21) has no diffusion term. The following
lemma deals with the existence of the principal eigenvalue of (22).

Lemma 3.4. For H(x) > 0, ∀ x ∈ Ω̄, the eigenvalue problem (22) has a principal

eigenvalue, denoted by µ(H) which is associated with a strongly positive eigenfunc-

tion.

Proof. Let Y = C(Ω̄,R2). For every initial value function φ = (φ2, φ4) ∈ Y, the
solution map Πt : Y → Y associated with the linear system (21) is defined by

Πt(φ) = (u2(·, t, φ), u4(·, t, φ)), ∀ φ ∈ Y, t ≥ 0.

By the same argument as that in the proof of Lemma 3.5 in the next subsection,
we can show that for each t > 0, Πt is an κ-contraction on Y in the sense that

κ(ΠtB) ≤ e−c̃tκ(B),

for any bounded set B in Y, where c̃ := minx∈Ω̄ c(x) > 0 and κ is the Kuratowski
measure of non-compactness as defined in (28).

From the discussions above, it is easy to see that the solution map Πt generated
by (21) is κ-condensing in the sense that

κ(ΠtB) < κ(B), for any bounded set B in Y with κ(B) > 0, t > 0.

Note that (21) is a cooperative system. By the generalized Krein-Rutman Theorem
(see, e.g., [16, Lemma 2.2]) and [11, Chapter II.14], the equation (22) has a principal
eigenvalue, denoted by µ(H), with an associated eigenvector ψ∗ = (ψ∗

2 , ψ
∗

4) � 0.

With the above preparation, we can now employ the ideas and theory in [8, 18,
31, 33, 35] to the linearized system (20) to define the basic reproductive number
for the system (7)-(9). Assume that population is near the disease free equilibrium
(w∗, 0, 0, 0). Let ϕ := (ϕ2, ϕ4) be the spatial distribution of (u2, u4) and S(t)ϕ be
the solution semiflow generated by the following linear system:



















∂u2(x,t)
∂t

= D∆u2 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂u2(x,t)
∂ν

= ∂u4(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

u2(x, 0) = ϕ2(x), u4(x, 0) = ϕ4(x), x ∈ Ω.

(23)

Let T2(t) and T4(t) be the semigroup defined in (11) and (13), respectively. From
the first two equations of (23), it follows that u2(·, t, ϕ) = T2(t)ϕ2 and

u4(·, t, ϕ) = T4(t)ϕ4 +

∫ t

0

T4(t− s)[αu2(·, s, ϕ)]ds

= e−c(·)tϕ4 +

∫ t

0

e−c(·)(t−s)[αT2(s)ϕ2]ds.

That is,

S(t)ϕ :=

(

T2(t)ϕ2, e
−c(·)tϕ4 +

∫ t

0

e−c(·)(t−s)[αT2(s)ϕ2]ds

)

.

It then follows that S(t) is a positive C0-semigroup on C(Ω̄,R2) and S(t)ϕ represents
the spatial distribution of u2 and u4 at time t > 0.

Let C be the positive linear operator on C(Ω̄,R2) defined by

C(ϕ)(x) := (C2(ϕ)(x), 0), ∀ ϕ := (ϕ2, ϕ4) ∈ C(Ω̄,R2), x ∈ Ω̄, (24)
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where

C2(ϕ)(x) := βIw
∗ϕ2 + βV w

∗ϕ4.

Then, at time t > 0 and location x, there will be C2(S(t)ϕ)(x) individuals added
per unit time into the u2 compartment, and hence C(S(t)ϕ)(x) accounts for the
infection force at time t and location x. Thus, the spatial distribution of total new
infected individuals caused by the initial infective distribution ϕ = (ϕ2, ϕ4) is

∫

∞

0

C2(S(t)ϕ) dt = C2

(∫

∞

0

S(t)ϕdt

)

= βIw
∗

∫

∞

0

T2(t)ϕ2dt

+βV w
∗

∫

∞

0

[

e−c(·)tϕ4 +

∫ t

0

e−c(·)(t−s)(αT2(s)ϕ2)ds

]

dt. (25)

Along the line of [29] where no spatial factor is considered, we can define the next
generation operator L by

L(ϕ) :=

(

C2

(∫

∞

0

S(t)ϕdt

)

, 0

)

= C

(∫

∞

0

S(t)ϕdt

)

(26)

By [31], the basic reproductive number for system (7)-(9) is given by the spectral
radius of L, that is,

R0 := r(L) (27)

Also, by the general results in [31] and the same arguments as in [35, Lemma
2.2], we have the following conclusion on R0 and µ(w∗).

Proposition 1. R0 − 1 and µ(w∗) have the same sign.

3.3. Threshold dynamics. In this subsection, we show that R0 is, in fact, a
threshold index for disease persistence. Since the last equation in (7) has no diffusion
term, its solution map Ψt is not compact. In order to overcome this problem, we
introduce the Kuratowski measure of non-compactness (see [7]), κ, which is defined
by

κ(B) := inf{r : B has a finite cover of diameter < r}, (28)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to
see that B is precompact (i.e., B̄ is compact) if and only if κ(B) = 0.

Recall that for any φ(·) = (φ1(·), φ2(·), φ3(·), φ4(·)) ∈ X
+, the semiflow associated

with system (7)-(9) is defined by

Ψt(φ) = (u1(·, t, φ), u2(·, t, φ), u3(·, t, φ), u4(·, t, φ)), ∀ φ ∈ X
+, t ≥ 0.

The following Lemma is concerned with the non-compactness of Ψt (see also [15]).

Lemma 3.5. Ψt is κ-contraction on X
+ in the sense that there is a c̃ > 0 such that

κ(ΨtB) ≤ e−c̃tκ(B), for any bounded set B ⊂ X
+.

Further, Ψt is κ-contracting on X
+ in the sense that

lim
t→∞

κ(ΨtB) = 0, for any bounded set B ⊂ X
+.

Proof. It is easy to see that u4(·, t, φ) satisfies the following equations:
{

∂u4(t)
∂t

= −c(·)u4(·, t, φ) + αu2(·, t, φ), t > 0,
u4(0) = φ4,

(29)
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Then

u4(·, t, φ) = e−c(·)tφ4 + α

∫ t

0

e−c(·)(t−s)u2(·, s, φ)ds.

Motivated by the discussion above, we define the following operators:

L(t)φ = (0, 0, 0, e−c(·)tφ4),

and

Q(t)φ = (u1(·, t, φ), u2(·, t, φ), u3(·, t, φ), α

∫ t

0

e−c(·)(t−s)u2(·, s, φ)ds)

for any φ = (φ1, φ2, φ3, φ4) ∈ X
+. It is easy to see that

Ψt(φ) = L(t)φ+Q(t)φ, ∀φ ∈ X
+, t ≥ 0.

Consequently, we have

κ(ΨtB) ≤ κ(L(t)B) + κ(Q(t)B), ∀t ≥ 0,

for any bounded set B ⊂ X
+. It is easy to see that Q(t) : X+ → X

+ is compact for
each t > 0 and hence κ(Q(t)B) = 0, ∀ t ≥ 0.

It is easy to see that there exists a real number c̃ := minx∈Ω̄ c(x) > 0 such that
c(·) ≥ c̃ and it then follows that

sup
φ∈Y

‖L(t)φ‖

‖φ‖
≤ sup

φ∈Y

‖e−c(·)tφ4‖

‖φ‖
≤ sup
φ∈Y

‖e−c̃tφ4‖

‖φ‖
≤ e−c̃t,

and hence ‖L(t)‖ ≤ e−c̃t. Consequently,

κ(ΨtB) ≤ κ(L(t)B) + κ(Q(t)B) ≤ ‖L(t)‖κ(B) + 0 ≤ e−c̃tκ(B), ∀ t > 0.

Thus, Ψt is κ-contraction of order e−c̃t on X
+. This implies Ψt is κ-contracting on

X
+.

Theorem 3.6. Ψt admits a connected global attractor on X
+.

Proof. By Lemma 3.3, it follows that Ψt is point dissipative on X
+ and that the

positive orbits of bounded subsets of X+ for Ψt are bounded. Furthermore, Ψt is
κ-contracting on X

+ by Lemma 3.5. By [21, Theorem 2.6], Ψt has a global attractor
that attracts each bounded set in X

+.

The following results will play an important role in establishing the persistence
of (7)-(9).

Lemma 3.7. Suppose u(x, t, φ) is the solution of system (7)-(9) with u(·, 0, φ) =
φ ∈ X

+.

(i) If there exists some t0 ≥ 0 such that ui(·, t0, φ) ≡/ 0, for some i ∈ {2, 3}, then
ui(x, t, φ) > 0, ∀ x ∈ Ω̄, t > t0;

(ii) If there exists some t0 ≥ 0 such that u2(·, t0, φ) ≡/ 0 and u4(·, t0, φ) ≡/ 0, then
u4(x, t, φ) > 0, ∀ x ∈ Ω̄, t > t0;

(iii) For any φ ∈ X
+, we always have u1(x, t, φ) > 0, ∀ x ∈ Ω̄, t > 0 and

lim inf
t→∞

u1(·, t, φ) ≥
λ

2w∗βI + 4αw
∗

c̃
βV + d

,

where c̃ := minx∈Ω̄ c(x) and w
∗ := λ

d
.
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Proof. It is easy to see that u2 and u3 satisfy the following inequality:
{

∂u2(x,t)
∂t

≥ d∆u2(x, t)− (γ + d)u2(x, t), x ∈ Ω, t > 0,
∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0.

and
{

∂u3(x,t)
∂t

≥ d∆u3(x, t)− (η + d)u3(x, t), x ∈ Ω, t > 0,
∂u3

∂ν
= 0, x ∈ ∂Ω, t > 0.

By the similar arguments as in [14, Lemma 2.1] and [34, Proposition 3.1], it follows
from the strong maximum principle (see, e. g., [25, p. 172, Theorem 4]) and the
Hopf boundary lemma (see, e.g., [25, p. 170, Theorem 3]) that part (i) is valid.

From the last equation of (7), we get that

u4(x, t) = αe−c(x)t
∫ t

t0

u2(x, s)e
c(x)sds+ e−c(x)(t−t0)u4(x, t0), x ∈ Ω, t ≥ t0.

This implies that part (ii) is valid.
From (15), (16), Lemma 3.1 and Lemma 3.2, it follows that there exists a t1 > 0

such that u2(x, t) ≤ 2w∗, ∀ t ≥ t1. From the last equation of (7), we get

∂u4(x, t)

∂t
≤ 2αw∗ − c̃u4, t ≥ t1,

where c̃ := minx∈Ω̄ c(x). Thus, there exists t2 ≥ t1 such that u4(x, t) ≤ 4αw
∗

c̃
, t ≥

t2. The first equation of (7) gives
{

∂u1(x,t)
∂t

≥ D∆u1 + λ− (2w∗βI + 4αw
∗

c̃
βV + d)u1,

∂u1

∂ν
= 0, x ∈ ∂Ω, t > t2.

Therefore,

lim inf
t→∞

u1(·, t, φ) ≥
λ

2w∗βI + 4αw
∗

c̃
βV + d

,

which completes the proof.

Now we prove the main result of this section, which shows that R0 is a threshold
index for disease persistence.

Theorem 3.8. Suppose u(x, t, φ) is the solution of system (7)-(9) with u(·, 0, φ) =
φ ∈ X

+. Then the following statements hold.

(i) If R0 < 1, then the disease free equilibrium (w∗, 0, 0, 0) is globally attractive

in X
+;

(ii) If R0 > 1, then system (7)-(9) admits at least one positive steady state û(x)
and there exists a σ > 0 such that for any φ ∈ X

+ with φi(·) ≡/ 0 for i = 2, 3, 4,
we have

lim inf
t→∞

ui(x, t) ≥ σ, ∀ i = 1, 2, 3, 4,

uniformly for all x ∈ Ω̄.

Proof. We first assume that R0 < 1. By Lemma 1, it implies that µ(w∗) < 0.
By the continuity, there is a ρ0 > 0 such that µ(w∗ + ρ0) < 0. From (15), (16),
Lemma 3.1 and Lemma 3.2, it follows that there is a t0 := t0(φ) such that

u1(x, t, φ) ≤ w∗ + ρ0, ∀ t ≥ t0, x ∈ Ω̄.
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From the second and the last equations of (7), we get the following system:










∂u2(x,t)
∂t

≤ D∆u2 + βI(w
∗ + ρ0)u2 + βV (w

∗ + ρ0)u4 − (γ + d)u2,
∂u4(x,t)

∂t
= αu2 − c(x)u4,

∂ui(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0, i = 2, 4

(30)

and initial conditions.
By Lemma 3.4, there is a strongly positive eigenfunction ψ̂ := (ψ̂2, ψ̂4) corre-

sponding to µ(w∗ + ρ0). Since for any given φ ∈ X
+, there exists some a > 0 such

that (u2(x, t0, φ), u4(x, t0, φ)) ≤ aeµ(w
∗+ρ0)t0ψ̂(x), ∀ x ∈ Ω̄. Note that the following

linear system










∂u2(x,t)
∂t

= D∆u2 + βI(w
∗ + ρ0)u2 + βV (w

∗ + ρ0)u4 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂ui(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0, i = 2, 4,

(31)

admits a solution aeµ(w
∗+ρ0)tψ̂(x), ∀ t ≥ t0. The comparison principle implies that

(u2(x, t, φ), u4(x, t, φ)) ≤ aeµ(w
∗+ρ0)tψ̂(x), ∀ t ≥ t0,

and it then follows that limt→∞(u2(x, t, φ), u4(x, t, φ)) = 0 uniformly for x ∈ Ω̄.
Then, the equation for u3 is asymptotic to

{

∂u3(x,t)
∂t

= D∆u3 − (η + d)u3, x ∈ Ω, t > 0,
∂u3(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0.
(32)

Thus, limt→∞ u3(x, t, φ) = 0 uniformly for x ∈ Ω̄, by the theory for asymptotically
autonomous semiflows (see, e.g., [30, Corollary 4.3]). Hence, it then follows that
the equation for u1 is asymptotic to (16). This implies that limt→∞ u1(x, t, φ) = w∗

uniformly for x ∈ Ω̄, by Lemma 3.2 and the theory for asymptotically autonomous
semiflows (see, e.g., [30, Corollary 4.3]). Thus Part (i) is proved.

We consider the case where R0 > 1. By Lemma 1, it implies that µ(w∗) > 0.
Let

W0 = {φ ∈ X
+ : φ2(·) ≡/ 0 and φ3(·) ≡/ 0 and φ4(·) ≡/ 0},

and

∂W0 = X
+\W0 = {φ ∈ X

+ : φ2(·) ≡ 0 or φ3(·) ≡ 0 or φ4(·) ≡ 0}.

By Lemma 3.7, it follows that for any φ ∈ W0, we have ui(x, t, φ) > 0, ∀ x ∈ Ω̄, t >
0, i = 2, 3, 4. In other words, ΨtW0 ⊆ W0, ∀ t ≥ 0.

Let

M∂ := {φ ∈ ∂W0 : Ψtφ ∈ ∂W0, ∀ t ≥ 0},

and ω(φ) be the omega limit set of the orbit O+(φ) := {Ψtφ : t ≥ 0}.
Claim: ω(ψ) = {(w∗, 0, 0, 0)}, ∀ ψ ∈M∂.
Since ψ ∈ M∂ , we have Ψtψ ∈ M∂ , ∀ t ≥ 0. Thus u2(·, t, ψ) ≡ 0 or u3(·, t, ψ) ≡
0 or u4(·, t, ψ) ≡ 0, ∀ t ≥ 0. In case where u2(·, t, ψ) ≡ 0, ∀ t ≥ 0. From
the third and fourth equations of (7), it is easy to see that limt→∞ u3(x, t, φ) =
limt→∞ u4(x, t, φ) = 0 uniformly for x ∈ Ω̄. Thus, u1 is asymptotic to (16) and
limt→∞ u1(x, t, φ) = w∗ uniformly for x ∈ Ω̄, by Lemma 3.2 and the theory for
asymptotically autonomous semiflows (see, e.g., [30, Corollary 4.3]). In case where
u2(·, t̃0, ψ) ≡/ 0, for some t̃0 ≥ 0. Then Lemma 3.7 implies that u2(x, t, ψ) >
0, ∀ x ∈ Ω̄, ∀ t > t̃0. Hence, u3(·, t, ψ) ≡ 0, ∀ t > t̃0 or u4(·, t, ψ) ≡ 0, ∀ t > t̃0. In
case where u4(·, t, ψ) ≡ 0, ∀ t > t̃0. From the last equation of (7), it follows that
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u2(·, t, ψ) ≡ 0, ∀ t > t̃0, which is a contradiction. Hence, u4(·, t̃1, ψ) ≡/ 0, for some
t̃1 > t̃0. Then Lemma 3.7 implies that u4(x, t, ψ) > 0, ∀ x ∈ Ω̄, ∀ t > t̃1. Hence,
u3(·, t, ψ) ≡ 0, ∀ t > t̃1. From the third equation of (7), it follows that u2(·, t, ψ) ≡
0, ∀ t > t̃1, which is a contradiction. Hence, ω(ψ) = {(w∗, 0, 0, 0)}, ∀ ψ ∈M∂ .

Since µ(w∗) > 0, there exists a sufficiently small positive number δ0 such that
µ(w∗ − δ0) > 0.
Claim: (w∗, 0, 0, 0) is a uniform weak repeller for W0 in the sense that

lim sup
t→∞

‖Ψtφ− (w∗, 0, 0, 0)‖ ≥ δ0, ∀ φ ∈ W0.

Suppose, by contradiction, there exists φ0 ∈ W0 such that

lim sup
t→∞

‖Ψtφ0 − (w∗, 0, 0, 0)‖ < δ0.

Then, there exists t2 > 0 such that u1(x, t, φ0) > w∗ − δ0, ∀ t ≥ t2, x ∈ Ω̄. Thus,
u2(x, t, φ0) and u4(x, t, φ0) satisfy










∂u2(x,t)
∂t

≥ D∆u2 + βI(w
∗ − δ0)u2 + βV (w

∗ − δ0)u4 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂u2(x,t)
∂ν

= ∂u4(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0.

(33)

By Lemma 3.4, we can let ψ̃ := (ψ̃2, ψ̃4) be the strongly positive eigenfunction
corresponding to µ(w∗ − δ0) > 0. Since ui(x, t, φ0) > 0, ∀ x ∈ Ω̄, t > 0, i = 2, 4,

there exists ε0 > 0 such that (u2(x, t1, φ0), u4(x, t1, φ0) ≥ ε0e
µ(w∗

−δ0)t1ψ̃. Note that

ε0e
µ(w∗

−δ0)tψ̃ is a solution of the following linear system:










∂u2(x,t)
∂t

= D∆u2 + βI(w
∗ − δ0)u2 + βV (w

∗ − δ0)u4 − (γ + d)u2, x ∈ Ω, t > 0,
∂u4(x,t)

∂t
= αu2 − c(x)u4, x ∈ Ω, t > 0,

∂u2(x,t)
∂ν

= ∂u4(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0.

(34)
The comparison principle implies that

(u2(x, t, φ0), u4(x, t, φ0)) ≥ ε0e
µ(w∗

−δ0)tψ̃, ∀ t ≥ t1, x ∈ Ω̄.

Since µ(w∗ − δ0) > 0, it follows that u2(x, t, φ0) and u4(x, t, φ0) are unbounded as
t→ ∞. This contradiction proves the claim.

Define a continuous function p : X+ → [0,∞) by

p(φ) := min{min
x∈Ω̄

φ2(x), min
x∈Ω̄

φ3(x), min
x∈Ω̄

φ4(x)}, ∀ φ ∈ X
+.

By Lemma 3.7, it follows that p−1(0,∞) ⊆ W0 and p has the property that if
p(φ) > 0 or φ ∈ W0 with p(φ) = 0, then p(Ψtφ) > 0, ∀ t > 0. That is, p is a gener-
alized distance function for the semiflow Ψt : X

+ → X
+ (see, e.g., [27]). From the

above claims, it follows that any forward orbit of Ψt in M∂ converges to (w∗, 0, 0, 0)
which is isolated in X

+ and W s(w∗, 0, 0, 0) ∩W0 = ∅, where W s(w∗, 0, 0, 0) is the
stable set of (w∗, 0, 0, 0) (see [27]). It is obvious that there is no cycle in M∂ from
(w∗, 0, 0, 0) to (w∗, 0, 0, 0). By [27, Theorem 3], it follows that there exists an σ̃ > 0
such that

min
ψ∈ω(φ)

p(ψ) > σ̃, ∀ φ ∈ W0.
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Hence, lim inft→∞ ui(·, t, φ) ≥ σ̃, ∀ φ ∈ W0, i = 2, 3, 4. From Lemma 3.7, there
exists an 0 < σ ≤ σ̃ such that

lim inf
t→∞

ui(·, t, φ) ≥ σ, ∀ φ ∈ W0, i = 1, 2, 3, 4.

Hence, the uniform persistence stated in the conclusion (ii) are valid. By [21,
Theorem 3.7 and Remark 3.10], it follows that Ψt : W0 → W0 has a global attractor
A0. Since the set W0 is convex and the solution maps Ψt are κ-condensing (see
Lemma 3.5), it then follows from [21, Theorem 4.7] that Ψt has an equilibrium
ũ(·) ∈ W0. Furthermore, Lemma 3.7 implies that ũ(·) is a positive steady state of
(7)-(9). This completes the proof.

3.4. Homogeneous environment: c(x) = c. In this subsection, we discuss the
special case when c(x) = c, a positive constant. The space independence will allow
us to obtain more explicit results on extinction and persistence of the disease (see
also [38, Lemma 3.1]).

First, we consider µ∗ := µ(w∗), the principal eigenvalue of the eigenvalue prob-
lem:











µψ2(x) = D∆ψ2 + βIw
∗ψ2 + βV w

∗ψ4 − (γ + d)ψ2, x ∈ Ω,

µψ4(x) = αψ2 − cψ4, x ∈ Ω,
∂ψ2(x)
∂ν

= ∂ψ4(x)
∂ν

= 0, x ∈ ∂Ω.

(35)

Note that the eigenvalue-eigenfunction problem

{

µφ(x) = D∆φ(x), x ∈ Ω,
∂φ(x)
∂ν

= 0, x ∈ ∂Ω.
(36)

has a unique (up to scalar multiple) positive eigenfunction φ0(x) = 1 with the
associated eigenvalue being µ0 = 0. Suppose that (ψ∗

2 , ψ
∗

4) � 0 is the eigenfunction
(unique up to scalar multiple) of (35) associated to µ∗. From the second equation
of (35), it follows that

ψ∗

4(x) =
α

µ∗ + c
ψ∗

2(x).

Plugging this into the first equation of (35) leads to

{

[

µ∗ − βIw
∗ − βV w

∗ α
µ∗+c + (γ + d)

]

ψ∗

2(x) = D∆ψ∗

2(x), x ∈ Ω,
∂ψ∗

2 (x)
∂ν

= 0, x ∈ ∂Ω.
(37)

Since ψ∗

2(x) > 0 in x ∈ Ω, by the uniqueness of φ0(x) = 1, we conclude that
µ∗−βIw∗−βVw∗ α

µ∗+c +(γ+d) = µ0 = 0. Hence, µ∗ is a real root of the quadratic

equation

P (µ) := µ2 + [c− βIw
∗ + (γ + d)]µ− [βIw

∗c+ βV w
∗α− (γ + d)c] = 0. (38)

We show that µ∗ is the larger root of equation (38). Suppose that µ is a root
of (38). Obviously, P (−c) = −βV w∗α < 0 and hence µ 6= −c, that is, µ + c 6=
0. Let ψ0(x) = α

µ+cφ
0(x). Then µ is an eigenvalue of (35) with eigenfunction

(φ0(x), ψ0(x)). Thus, µ ≤ µ∗ since µ∗ is the principal eigenvalue of (35). This
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shows that µ∗ is the maximum root of equation (38), and hence

µ∗ =
1

2
[−[c− βIw

∗ + (γ + d)]

+
√

[c− βIw∗ + (γ + d)]2 + 4[βIw∗c+ βV w∗α− (γ + d)c]
]

=
1

2
[−[c− βIw

∗ + (γ + d)]

+
√

[c− βIw∗ + (γ + d)]2 + 4(γ + d)c[R∗

0 − 1]

]

(39)

where

R∗

0 =
βIw

∗

γ + d
+
α

c

βV w
∗

γ + d
.

Next, we show that the basic reproductive number R0 is indeed identical to R∗

0

in this case. To this end, we use the idea in [35, Theorem 2.1] to consider the
following operator obtained by perturbing L:

Lε(ϕ) = Cε
(∫

∞

0

S(t)ϕdt

)

, ∀ ϕ := (ϕ2, ϕ4) ∈ C(Ω̄,R2),

where ε > 0 is a constant and

Cε(ϕ) = εϕ+ C(ϕ), ∀ ϕ := (ϕ2, ϕ4) ∈ C(Ω̄,R2),

Then Lε is a strongly positive linear operator. Moreover, by
∫

Ω Γ(x, y, t)dy =
1, ∀ x ∈ Ω, t > 0, it is easy to see that

Lε(ẑ) = Jεz, ∀ z = (z2, z4)
T ∈ R

2,

where ẑ means the constant function taking value z on Ω̄ and

Jε =

(

βIw
∗

γ+d + α
c
βV w

∗

γ+d + ε
γ+d

βV w
∗

c
α
c

ε
γ+d +

ε
γ+d

ε
c

)

.

Since each element of matrix Jε is positive, its spectral radius r(Jε) is an eigenva-
lue corresponding to which there is a positive eigenvector in R

2. Straightforward
calculation shows that

r(J) = r(J0) =
βIw

∗

γ + d
+
α

c

βV w
∗

γ + d
= R∗

0.

If we can prove that

r(Lε) = r(Jε), for ε > 0, (40)

then by letting ε→ 0+, we would obtain

R0 = r(L) = r(L0) = r(J0) =
βIw

∗

γ + d
+
α

c

βV w
∗

γ + d
= R∗

0. (41)

Unfortunately, we are unable to prove (40). The main difficulty is that, like L,
Lε is not compact; otherwise the uniqueness of the positive eigenvector associated
with r(Lε) would immediately confirm (40). Note that the formulas (39) and (41)
coincide with the conclusion of Proposition 1. This makes us conjecture that (40)
holds.

Below we provide an alternative way to confirm (41). Assume that initially there
is no virus in the host population and a single infective individual is brought into the
host population with the probability of landing at the location x being ϕ2(x) ≥ 0
(hence 0 ≤ ϕ2(x) ≤ 1 and

∫

Ω ϕ2(x) dx = 1). This corresponds to ϕ4 = 0. By (25),
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the spatial distribution of total new infected individuals caused by such a single
infective individual is given by

βIw
∗

∫

∞

0

(T2(t)ϕ2)(x)dt + βV w
∗

∫

∞

0

∫ t

0

e−c(t−s)(αT2(s)ϕ2)(x) ds dt. (42)

Summing up the above over the spatial domain, we then obtain the total new
infected individuals caused by the single infective individual as

∫

Ω

[

βIw
∗

∫

∞

0

(T2(t)ϕ2)(x) dt + βV w
∗

∫

∞

0

∫ t

0

e−c(t−s)(αT2(s)ϕ2)(x) ds dt

]

dx

= βIw
∗

∫

Ω

∫

∞

0

∫

Ω

e−(γ+d)tΓ(x, y, t)ϕ(y)dy ds dt

+αβV w
∗

∫

Ω

∫

∞

0

∫ t

0

e−c(t−s)
∫

Ω

e−(γ+d)sΓ(x, y, s)ϕ2(y) dy ds dt dx. (43)

Making use of
∫

Ω
Γ(x, y, t)dx =

∫

Ω
Γ(x, y, t)dy = 1 and

∫

Ω
ϕ2(x) dx = 1, as well as

changing the orders of integrals in the above, we can show that the above quantity
involving multiple intergrals actually is equal to

βIw
∗

γ + d
+
α

c

βV w
∗

γ + d
.

On the other hand, by the biological definition of the basic reproductive number,
(43) is nothing but R0. This confirms (41).

4. Simulation results. For simplicity we consider Ω = [0, L] ⊂ R. Furthermore,
we can take L = 1 by transforming D → D/L2 and c(x) → c(xL). We obtained
the model parameters from the literature (See Table 1). It is quite difficult to
obtain the actual function c depending on the spatial variable x. In fact, it varies
from location to location and also from time to time. For illustration purposes, we
consider a linearly decay function of temperature, i.e. T (x), to represent the spatial
variation of the environment: T (0) = T0 and T (1) = T1 stand for temperatures of a
warmer place and a cooler place, respectively, while the temperature in between is
given by T (x) = (T1 − T0)x + T0. Then as obtained in [32], the decay rate of viral
particles, c(x) is given by the following relation:

c(x) =
ln 10

eaT (x)+b
, (44)

where a and b are constants (See Table 1).
By taking different values of D and different temperature profiles, T , we study

how the diffusion and the spatial heterogeneity of the environmental condition im-
pact AI dynamics. Numerical solutions are obtained by using the method of lines
to derive a system of ODEs, which are solved using MATLAB software.

As a case study, we consider spatial temperature variation in Canada [1]. As given
in [1], the mean annual temperature in Canada varies from 13oC at some places
along the southern border to -18oC in the north. Therefore we take T0 = 13oC
and T1 = −18oC for our base case computation, while the base case value of the
scaled diffusion coefficient is fixed at D = 5 × 10−4. We simulate the model for
a six month time-frame, and analyze the spatial distribution of avian influenza
prevalence (%) at the end of six months. Initially, birds are assumed to live locally
in the middle of the domain (Fig. 1). We then observe how the spatial diffusion and
the spatial environmental heterogeneity will drive the dynamics of avian influenza
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among these birds. We emphasize that this case study is not intended as a model
of AI in Canada, but simply illustrates the pattern and magnitude of the effects we
are studying.
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Figure 1. Distribution of AI prevalence (%) among wild birds in a
six month period for a model without spatial diffusion and spatial
environmental heterogeneity (case 1), with spatial environmental
heterogeneity only (case 2), with spatial diffusion only (case 3), and
with both spatial diffusion and spatial environmental heterogeneity
(case 4). The dotted line indicates the initial distribution.

We present spatial distributions of AI prevalence (%) predicted by the model
for different cases (Fig. 1): (i) neither spatial diffusion nor spatial environmental
heterogeneity, (ii) with spatial environmental heterogeneity only, (iii) with spatial
diffusion only, and (iv) with both spatial diffusion and spatial environmental hetero-
geneity. We can clearly see a significant effect of both diffusion and environmental
heterogeneity. As expected, without spatial diffusion, AI accumulates locally. While
the AI prevalence without diffusion shown in Fig. 1 is at T = 5oC, the level of AI
prevalence is set by the value of T considered: the lower the temperature the higher
the prevalence level, as the infectious viruses persist longer in cold temperatures.
When diffusion is introduced without any environmental heterogeneity, AI spreads
out symmetrically on both sides from the initial location. AI becomes asymmetri-
cally distributed across the spatial domain if spatial environmental heterogeneity is
taken into account in addition to diffusion.

We now fix the temperature distribution as T0 = 13oC,∆T = T1 − T0 = −31oC
and observe how the spatial distribution of AI prevalence changes with the diffusion
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Figure 2. Distribution of AI prevalence (%) among wild birds in
a six month period for various spatial diffusion constants, D = 2×
10−4, 4×10−4, 6×10−4 and 8×10−4, with a fixed T0 = 13oC,∆T =
T1 − T0 = −31oC.

coefficient D = 2 × 10−4, 4 × 10−4, 6 × 10−4 and 8 × 10−4 (Fig. 2). A higher
diffusion coefficient has tendency to increase AI prevalence towards the boundary
while decreasing the prevalence in the middle as seen in Fig. 2. However, due to the
spatial environmental heterogeneity, the effect of diffusion is more pronounced at
the cooler boundary than the warmer boundary and the prevalence remains higher
at cooler places, again due to longer persistence of viruses at low temperatures.

In Fig. 3, we show a spatial distribution of AI prevalence for different temperature
profiles while fixing the diffusion constant at D = 5 × 10−4. Here, in each case we
force the temperature in the middle of the domain to be always the same (5oC),
and then from the middle of the domain the temperature linearly increases to the
x = 0 boundary and linearly decreases to the x = 1 boundary so that ∆T = 5, 15, 25
and 35oC. AI prevalence is clearly affected by spatial environmental heterogeneity
with a positive correlation between heterogeneity in environment and heterogeneity
in the AI distribution. The results shown in Fig. 3 reveal that this effect is more
sensitive at cooler places than warmer places.

5. Conclusion. In this paper, we presented a transmission dynamic model of avian
influenza among wild birds. The novelty of the model is that it includes both spatial
diffusion of birds and spatial heterogeneity of the environment, which are critical
in understanding AI dynamics and devising control strategies. The environmental
heterogeneity was introduced into the model based on the experimentally-observed
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Figure 3. Distribution of AI prevalence (%) among wild birds in
a six month period for various temperature profiles with a fixed
diffusion constant D = 5× 10−4.

dependence of virus persistence on the environmental factors such as temperature,
pH and salinity. Mathematical analysis of the model allowed us to achieve a formula
for the basic reproductive number and a threshold condition for the disease to
die out. We found that the reproductive number is independent of the diffusion
coefficient in the absence of environmental heterogeneity. However, diffusion comes
into play to define the reproductive number due to spatial heterogeneity in the
environmental condition.

We performed model simulations for various diffusion constants and environmen-
tal conditions. Our results show that the dynamics of AI prevalence among wild
birds is highly affected by both bird diffusion and environmental heterogeneity.
While diffusion has a tendency to spread AI across a larger space, the environ-
mental heterogeneity brings an asymmetrical nature to the AI distribution. In our
model, we have introduced only spatial heterogeneity. However, the environmen-
tal condition, for example temperature, varies widely even within a short period.
Therefore, further extension of our work would be to analyze the effects of spatio-
temporal variations of the environmental conditions on AI dynamics in wild birds.
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Table 1. Model parameters

Parameter Description Value Reference
λ Recruitment rate of 60 (0-100) [3, 32]

susceptible birds [birds day−1]
d Natural death rate 0.1 (0.05-0.3) [3, 2]

[year−1]
βI Direct transmission rate 1.00× 10−9 [32]

[bird−1day−1]
βV Indirect transmission rate 1.97× 10−9 [32]

[virion−1day−1]
η Immunity loss rate 0.038 [32]

[day−1]
γ Recovery rate 0.14 [19, 37, 36]

[day−1]
α Viral shedding rate 1× 103 [23]

[virion bird−1 day−1]
D Diffusion coefficient varied
a In c(x) -0.12 [32]
b In c(x) 5.10 [32]
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