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Abstract. In this paper, we consider a mathematical model for HIV-1 in-
fection with intracellular delay and cell-mediated immune response. A novel
feature is that both cytotoxic T lymphocytes (CTLs) and the intracellular delay
are incorporated into the model. We obtain a necessary and sufficient condi-

tion for the global stability of the infection-free equilibrium and give sufficient
conditions for the local stability of the two infection equilibria: one without
CTLs being activated and the other with. We also perform some numerical
simulations which support the obtained theoretical results. These results show
that larger intracellular delay may help eradicate the virus, while the activa-
tion of CTLs can only help reduce the virus load and increase the healthy CD+

4

cells population in the long term sense.

1. Introduction. In the past decade, there has been much interest in mathemati-
cal modeling of HIV dynamics (see, for example, [14, 18, 19]). This is because HIV
mathematical models can provide insights into the dynamics of viral load in vivo
and may play a significant role in the development of a better understanding of
HIV/AIDs and drug therapies.

A simple, standard yet classic model (probably the first) for HIV dynamics was
proposed by Perelson et al. in [18, 19] as follows:

dx(t)

dt
= s− dx(t) − kv(t)x(t),

dy(t)

dt
= kv(t)x(t) − �y(t),

dv(t)

dt
= N�y(t)− �v(t).

(1)

The variables x(t), y(t), and v(t) denote the concentrations of uninfected cells, in-
fected cells and virus, respectively. The parameter s is the rate at which new target
cells are generated, d is the death rate of the susceptible cells and k is the constant
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characterizing the infection rate. The infected cells are assumed to die at a rate �
(say, via lysis) due to the action of virus, each releasing N new virus particles as the
lysis of infected cells occurs. Thus, on average, virus is instantaneously produced
at rate N�y(t). Lastly, virus particles are cleared from the system at rate � per
virion.

Note that the immune response after viral infection is universal and necessary
to eliminate or control the disease. Antibodies, cytokines, natural killer cells, B
cells and T cells are all essential components of a normal immune response to
viral infection. However, in HIV-1 infection, cytotoxic T lymphocytes (CTLs) play
a critical role in antiviral defense by attacking virus-infected cells. Indeed, it is
believed that CTLs are the main host immune factor that determines virus load
(e.g.,[1]). Therefore, the dynamics of HIV-1 infection with CTLs response has
recently drawn much attention of researchers in the related areas (see, e.g., [1, 15,
21, 7] and the references therein), and is also the main concern of this research.
Letting z(t) be the concentration of CTLs, model (1) can be modified to

dx(t)

dt
= s− dx(t) − kv(t)x(t),

dy(t)

dt
= kv(t)x(t) − �y(t)− py(t)z(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
= f(x, y, z)− bz(t),

(2)

where p accounts for the strength of the lytic component and b is the death rate for
CTLs. The function f(x, y, z) describes the rate of immune response activated by
the infected cells. Arnaout et al.[1] and Wang et al.[21] assumed that the production
of CTLs depends only on the concentration of infected cells and chose the linear
dependent former f(x, y, z) = cy(t). In [15], Nowak and Bangham assumed that
the production of CTLs is also dependent upon the concentration of CTL cells, and
used f(x, y, z) = cy(t)z(t), leading to the following concrete model:

dx(t)

dt
= s− dx(t) − kv(t)x(t),

dy(t)

dt
= kv(t)x(t) − �y(t)− py(t)z(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
= cy(t)z(t)− bz(t).

(3)

Using symbolic calculation software on computers, Liu [13] gave stability analysis of
model (3). By simple algebraic manipulations, Kajiwara and Sasaki [11] presented
pure theoretic results on the stability of model (3).

Culshaw et al. [7] further assumed that the production of CTLs is also related
the healthy cells’ help and accordingly chose f(x, y, z) = cx(t)y(t)z(t). With the
extra assumption that the viral load is proportional to the level of infected cells,
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they proposed and studied the following HIV-1 infection model:

dx(t)

dt
= s− dx(t)− kx(t)y(t),

dy(t)

dt
= k′x(t)y(t)− �y(t)− py(t)z(t),

dz(t)

dt
= cx(t)y(t)z(t)− bz(t).

(4)

Here the ratio k′ : k is the proportion of infected cells that survive the incubation
period ( average time between the new infection of a CD+

4 T cell and the time
it becomes infectious). Model (4) may have up to three equilibria and the local
stability of the three equilibria were analyzed in [7].

As pointed out in [22], time delays can not be ignored in models for immune
response, since antigenic stimulation generating CTLs may need a period of time,
that is, the activation rate of CTL response at time t may depend on the population
of antigen at a previous time. Based on such a reality, in [5, 6, 22], a time delay
was incorporated into the the immune activation term f(x, y, z) for f(x, y, z) = cy
and f(x, y, z) = cyz respectively, and the effects of the delay on the dynamics of the
corresponding models was investigated. It has been found (in [22]) that the delay
in activating immune response could lead to very complicated dynamics including
stable periodic solutions and chaos, and such complicated dynamical behaviors may
well explain irregular real time series data for the immune state of a patient.

The aforementioned models can capture some essential features of the immune
system and are able to produce a variety of immune responses. On the other
hand, it has been realized recently that there are also delays in the process of cell
infection and virus production, and thus, delays should be incorporated into the
infection equation and/or the virus production equation of a model. In the absence
of immune responses, Nelson et al.[16] added a discrete delay in the y equation of
model (1), and presented detailed analysis of the resulting delay differential equation
model. By comparing their results to those from the corresponding model without
delay (i.e., (1)), they showed that the predicted rate of decline in plasma virus
concentration depends on the length of the delay. Nelson and Perelson [17] further
generalized the model by considering a general delay distribution, and suggested
incorporating delays in both cell infection equation and virus replication. As a
follow-up of [17], Zhu and Zou [23] investigated a model with a discrete delay in the
infection equation and another discrete delay in the virus production equation, by
analyzing the two delay model, they found that large delays can help eliminate the
virus.

In this paper, following the line of [16], we incorporate a delay into the cell
infection equation in model (3). That is, we propose the following model:

dx(t)

dt
= s− dx(t) − kv(t)x(t),

dy(t)

dt
= ke−��v(t− �)x(t − �) − �y(t)− py(t)z(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
= cy(t)z(t)− bz(t),

(5)



514 HUIYAN ZHU AND XINGFU ZOU

where � denotes the lag between the time the virus contacts a target cell and the
time the cell becomes actively infected (including the steps of successful attachment
of virus to the cell, and penetration of virus into the cell). The novelty of the model
(5) is that it includes both the main immune response factor CTLs in HIV infection
and the intracellular delay in virus production. For other viral infections, as long as
there is an intracellular delay in virus replication and the CTLs plays the main role
in the immune response to the virus, we believe the model is also appropriate. In
the rest of this paper, we investigate the impact of the delay � and CTLs on the the
dynamics of model (5). In Section 2, the positivity and boundedness of solutions
of the system (5) are presented. The stability analysis for the three equilibria are
given in Section 3, and some numerical simulations are given in Section 4. Finally, in
Section 5, some conclusions are drawn from the obtained results in previous sections,
revealing both qualitatively and quantitatively the positive role of the CTLs and
the intracellular delay.

2. Positivity and boundedness of solutions. Model (5) is a system of delay
differential equations. For such a system, initial functions need to be specified
and well-posedness needs to be addressed. Let X = C([−�, 0];R4) be the Banach
space of continuous mapping from [−�, 0] to R equipped with the sup-norm. By
the fundamental theory of FDEs (see Hale and Verduyn Lunel [10]), we know that
there is a unique solution (x(t), y(t), v(t), z(t)) to system (5) with initial conditions

(x(�), y(�), v(�), z(�)) ∈ X. (6)

For biological reasons, the initial functions x(�), y(�), v(�) and z(�) are assumed
to be non-negative:

x(�) ≥ 0, y(�) ≥ 0, v(�) ≥ 0, z(�) ≥ 0, for � ∈ [−�, 0]. (7)

The following theorem establish the positivity and boundedness of solutions of (5)
with initial functions satisfying (6) and (7).

Theorem 2.1. Let (x(t), y(t), v(t), z(t)) be the solution of system (5) satisfying
conditions (6) and (7). Then x(t), y(t), v(t) and z(t) are all non-negative and
bounded for all t ≥ 0 at which the solution exists.

Proof. Note that from (5), we have

x(t) = x(0)e−
∫

t
0
(d+kv(�))d� +

∫ t

0

se−
∫

t
�
(d+kv(�))d�d�,

y(t) = y(0)e−
∫

t

0
(�+pz(�))d� +

∫ t

0

kx(� − �)v(� − �)e−��e−
∫

t
�
(�+pz(�))d�d�,

v(t) = v(0)e−�t +

∫ t

0

N�y(�)e−�(t−�)d�

and

z(t) = z(0)e
∫

t
0
(cy(�)−b)d�.

Positivity immediately follows from the above integral forms and (6) and (7).
For boundedness of the solution, we define

G(t) = cNe−��x(t) + cNy(t+ �) +
c

2
v(t+ �) +Npz(t+ �)
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and q = min{d, �/2, �, b}. By non-negativity of the solution, it follows that

d
dt
[G(t)] = cNe−�� [s− dx(t) − kv(t)x(t)]

+cNke−��v(t)x(t) − �cNy(t+ �)− cNpy(t+ �)z(t+ �)

+ �cN
2 y(t+ �)− c�

2 v(t+ �) + cNpy(t+ �)z(t+ �) −Npbz(t+ �)

= cNse−�� − cdNe−��x(t) − �
2cNy(t+ �)− c�

2 v(t+ �) −Npbz(t+ �)

< cNse−�� − qG(t).

This implies thatG(t) is bounded, and so are x(t), y(t), v(t) and z(t). This completes
the proof of this theorem.

Remark 1. (i) From the proof, one can see that in addition to (6) and (7), if either
y(0) > 0 or v(0) > 0, then x(t), y(t), v(t) and z(t) are actually positive; (ii) The
existence theory from [10] only guarantees local existence, and the boundedness
established in Theorem 2.1 indeed ensures that the solution exist for all t ≥ 0.

3. Equilibria and their stability. System (5) has an infection-free equilibrium
E0 = (s/d, 0, 0, 0), corresponding to the maximal level of healthy CD+

4 T cells. This
is the only biologically meaningful equilibrium if

ℛ0 = ke−�� sN

d�
< 1.

However, if ℛ0 > 1, in addition to E0, there is another biologically meaningful
equilibrium

E1 =

(

�e��

Nk
,

s

�e��
− d�

N�k
,
sN

�e��
− d

k
, 0

)

=

(

�e��

Nk
,
d�

N�k
(ℛ0 − 1),

d

k
(ℛ0 − 1), 0

)

,

which corresponds to positive levels of healthy CD+
4 T cells, infected CD+

4 T cells
and virus, but no CTL response. If

ℛ1 = ke−�� scN

dc�+ kN�b
> 1,

or equivalently

ℛ0 > 1 +
kN�b

dc�
,

system (5) also has an interior equilibrium

E2 =

(

sc�

c�d+ kN�b
,
b

c
,
N�b

c�
,
�

p
(ℛ1 − 1)

)

,

accounting for the presence of all four components: uninfected CD+
4 T and infected

CD+
4 T cells, virus, and CTL response.
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3.1. Stability of the infection-free equilibrium E0. Linearizing (5) at the
infection-free equilibrium E0 leads to

dx(t)

dt
= −dx(t)− k

s

d
v(t),

dy(t)

dt
= ke−�� s

d
v(t− �) − �y(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
= −bz(t).

(8)

The characteristic equation for (8) is

(�+ b)(�+ d)[�2 + (� + �)� + ��− Nks�

d
e−��e−�� ] = 0. (9)

Obviously, � = −b and � = −d are eigenvalues for (8), and hence, the stability of
E0 is determined by the distribution of the roots of equation

�2 + (� + �)� + ��− Nks�

d
e−��e−�� = 0. (10)

If ℛ0 < 1, then � = 0 is not a root of the equation (10) since

��− Nks�

d
e−�� > 0.

When � = 0, then equation (10) becomes

�2 + (� + �)� + ��− Nks�

d
= 0. (11)

In this case, ℛ0 < 1 reduces to ksN
d�

< 1. Clearly, if ksN
d�

< 1, then ��−Nks�/d > 0

under which all roots of (11) have negative real parts. Note that all roots of (10)
depend continuously on � (see [3]). Notice also that the assumption (ii) of [4]
holds and this ensures Re(�) < +∞ for any root of (10). Therefore, as the delay �
increases, the roots of (10) can only enter the right-half in complex plane by crossing
the imaginary axis. Let � = iw with w > 0 be a purely imaginary root of (10),
then,

−w2 + iw(� + �) + �� = N
ks�

d
e−��e−iw� .

Taking moduli in both sides of the above equation gives

w4 + (�2 + �2)w2 + �2�2 −
(

Nks�e−��

d

)2

= 0.

Letting y = w2 yields

y2 + (�2 + �2)y + �2�2 − (N
ks�

d
e−�� )2 = 0. (12)

If ℛ0 < 1, then (12) has no non-negative real root. Therefore, there is no root
� = iw with w ≥ 0 for (10), implying that the roots of (10) can not cross the purely
imaginary axis. Hence all roots of (10) have negative real parts provided ℛ0 < 1.
On the other hand, it is easy to see that (10) has a real positive root if ℛ0 > 1.

Summarizing the above, we have established the following
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Theorem 3.1. If ℛ0 < 1, then the infection-free equilibrium E0 is locally asymp-
totical stable; if ℛ0 > 1, then the infection-free equilibrium E0 becomes unstable and
there occurs the equilibrium E1.

Theorem 3.1 only establishes local stability of E0 under ℛ0 < 1. By constructing
a Lyapunov functional, we can actually obtain globally asymptotic stability of the
infection-free equilibrium E0 under the condition ℛ0 < 1.

Theorem 3.2. The infection-free equilibrium E0 is indeed globally asymptotically
stable if ℛ0 < 1.

Proof. Define

V =
e−��

2

(

x(t) − s

d

)2

+
s

d
y(t) +

s

Nd
v(t) +

sp

cd
z(t) +

s

d
ke−��

∫ t

t−�

x(�)v(�)d�.

Calculating the time derivative of V along the solution of (5), we obtain

V ′∣(5) = e−�� (x(t) − s
d
)
[

−d(x(t)− s
d
)− kv(t)(x(t) − s

d
)
]

−e−��k s
d
(x(t) − s

d
)v(t) + e−��k s

d
x(t − �)v(t − �)

− �s
d
y(t)− ps

d
y(t)z(t) + s

Nd
N�y(t)− s

Nd
�v(t)

+ sp
cd
cy(t)z(t)− sp

cd
bz(t) + s

d
ke−�� [x(t) − s

d
]v(t)

+ s2

d2 ke
−��v(t) − s

d
ke−��x(t − �)v(t− �)

= − (d+ kv(t)) e−�� [x(t)− s
d
]2 − s�

dN
(1−ℛ0)v(t)− spb

cd
z(t)

≤ −de−�� [x(t)− s
d
]2.

Here we have used the fact that x(t), y(t), v(t) and z(t) are non-negative andℛ0 <
1. The globally asymptotic stability of the infection-free equilibrium E0 follows from
the above inequality and LaSalle Invariance principle (see e.g., [12]).

3.2. Stability of the CTL-inactivated infection equilibrium E1. In this sub-
section, we assume ℛ0 > 1. Thus, E1 exists and the linearization of (5) at E1

is

dx(t)

dt
= −ksN

�e��
x(t) − �e��

N
v(t),

dy(t)

dt
= ke−�� (

sN

�e��
− d

k
)x(t − �) +

�

N
v(t− �)− �y(t)− p(

s

�e��
− d�

N�k
)z(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
=

[

c(
s

�e��
− d�

N�k
)− b

]

z(t).

(13)
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The characteristic equation for (13) is
[

�+ b− c

(

s

�e��
− d�

N�k

)][

(�+ �) (�+ �)

(

�+
ksN

�e��

)

− ��(�+ d)e−��

]

= 0.

(14)
The first factor on the left hand side of (14) gives a real root

�1 = c(
s

�e��
− d�

N�k
)− b.

which is negative if ℛ1 < 1 and positive if ℛ1 > 1. The remaining roots of (14) are
obtained by considering

(�+ �)(� + �)

(

�+
ksN

�e��

)

− ��(�+ d)e−�� = 0. (15)

Rewrite equation (15) as

�3 + a2(�)�
2 + a1(�)� + a0(�)− [b1�+ b0]e

−�� = 0, (16)

where

a2(�) = �+ � + ksN
�e��

, a1(�) = �� + (�+ �) ksN
�e��

, a0(�) = �� ksN
�e��

,

b1 = ��, b0 = d��.

Clearly, under ℛ0 > 1, � = 0 is not a root of (16) since

a0(�)− b0 = ��
ksN

�e��
− d�� = ��d(ℛ0 − 1) > 0.

For � = 0, Eq. (16) reduces to

ℎ(�) := �3 + a2(0)�
2 + [a1(0)− b1]�+ a0(0)− b0 = 0

to which, the Routh-Hurwitz Theorem [9] for cubic polynomials is applicable. Note
that under ℛ0 > 1,

a2(0) =
Nks
�

+ � + � > 0,

a0(0)− b0 = �ksN − d�� = d��(ksN
d�

− 1) = ��d (ℛ0(0)− 1) > 0,

a2(0)[a1(0)− b1]− [a0(0)− b0] = (Nks
�

)2(� + �) + Nks
�

(�2 + �2 + ��) + d�� > 0.

Hence all roots of (16) have negative real parts when � = 0. Note that a root of
(16) depends continuously on � (see [3]). Notice also that the assumption (ii) of
[4] holds and this ensures that Re(�) < +∞ for any root � of (16). Therefore, as
delay � increases, a root of (16) can only enter the right-half of the complex plane
by crossing the imaginary axis. Let � = iw with w ≥ 0 be a purely imaginary root
of (16). Then,

−w3i− a2(�)w
2 + a1(�)wi + a0(�) = [b1wi + b0] e

−�wi.

Taking moduli in the above equation and grouping in terms of the powers of w gives

w6 + [a2(�)− 2a1(�)]w
4 + [a21(�) − 2a0(�)a2(�)− b21]w

2 + a20(�)− b20 = 0. (17)

Let z = w2 and denote

p(�) = a2(�)− 2a1(�),
q(�) = a21(�) − 2a0(�)a2(�)− b21,
r(�) = a20(�)− b20.

Then, Eq. (17) becomes

H(z) := z3 + p(�)z2 + q(�)z + r(�) = 0. (18)
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Straightforward calculations shows that

p(�) = �2 + �2 + ( ksN
�e��

)2 > 0,

q(�) = (�2 + �2)( ksN
�e��

)2 > 0,

r(�) = (ksN
e��

+ d�)d�(ℛ0 − 1)�2 > 0 under ℛ0 > 1.

Thus the function H(z) is monotonically increasing in z ∈ [0,∞) with H(0) =
r(�) > 0 and hence (18) has no real non-negative root. This implies that no root
can cross the imaginary axis as � increases, ensuring that under ℛ0 > 1 all roots of
(15) have negative real parts for all � ≥ 0.

Summarizing the above, we have obtained the following

Theorem 3.3. Assume ℛ0 > 1. If ℛ1 < 1 (equivalently ℛ0 < 1 + KN�b/dc�),
then the CTL-inactivated infection equilibrium E1 is asymptotically stable; if ℛ1 > 1
(equivalently ℛ0 > 1 +KN�b/dc�), then E1 becomes unstable and there occurs the
interior equilibrium E2.

3.3. Stability of the CTL-activated infection equilibrium E2. In this sub-
section, we consider the case ℛ1 > 1 (equivalently ℛ0 > 1+k�bN/dc� ) and discuss
the stability of the CTL-activated infection equilibrium E2 = (x̄, ȳ, v̄, z̄). To this
end, we linearize (5) at E2 to obtain

dx(t)

dt
= −(d+ kv̄)x(t) − kx̄v(t),

dy(t)

dt
= ke−�� v̄x(t − �) + ke−�� x̄v(t− �)− (� + pz̄)y(t)− pȳz(t),

dv(t)

dt
= N�y(t)− �v(t),

dz(t)

dt
= cz̄y(t) + (cȳ − b)z(t).

(19)

The characteristic equation of (19) is given by ∣�I − J ∣ = 0, where

J =

⎛

⎜

⎜

⎝

−d− kv̄ 0 −kx̄ 0
kv̄e−��e−�� −� − pz̄ kx̄e−��e−�� −pȳ

0 �N −� 0
0 cz̄ 0 cȳ − b

⎞

⎟

⎟

⎠

.

At E2, we have cȳ−b = 0, and kx̄ = �
�Ne−�� (�+pz̄). Let k′ = kv̄, u = d+k′ > k′ and

v = � + pz̄. Then the characteristic equation of system (5) at E2 can be calculated
as

�4 +
[

u+ (�+ v)]�3 + [u(�+ v) + �v + pcȳz̄]�2 + [u�v + pcȳz̄(u+ �)
]

�

+pcȳz̄�u− �v
[

�2 + (u − k′)�
]

e−�� = 0.
(20)

When � = 0, E2 has been proved in [11, 13] to be asymptotically stable, implying
that all roots of (20) with � = 0 have negative real parts.

Next, we show that E2 is also asymptotically stable for small � > 0. Rewrite
equation (20) as

D(�) = �4 +A3�
3 +A2�

2 +A1�+A0 − [B2�
2 +B1�]e

−�� = 0, (21)
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where
A3 = A3(�) = u+ �+ �ℛ1,
A2 = A2(�) = (�+ �ℛ1)u+ ��ℛ1 + �b(ℛ1 − 1),
A1 = A1(�) = �ℛ1�u+ b�(ℛ1 − 1)u+ b�(ℛ1 − 1)�,
A0 = A0(�) = �b�(ℛ1 − 1)u,
B2 = B2(�) = ��ℛ1,
B1 = B2(�) = d��ℛ1.

Since the characteristic equation (21) is a transcendental equation of degree four,
the discussion of the distributions of its roots becomes harder. At least, excluding
crossing of its roots over the the pure imaginary axis in the complex plane (as
was done to (10) and (15) in subsections 3.1 and 3.2) is very challenging, if not
impossible. In what follows, we choose to apply the theory developed in [20] to
obtain conditions for the stability of E2. To this end, we first introduce some
notations corresponding to Corollary 2.38 in [20].

For the characteristic function D(�) defined by (21), let R(!) and S(!) be,
respectively, the real and pure imaginary parts of D(i!), i.e.,

R(!) = ReD(i!) = !4 −A2!
2 +A0 +B2!

2 cos!� −B1! sin!�,

and

S(!) = ImD(i!) = −A3!
3 +A1! −B1! cos!� −B2!

2 sin!�.

Then, it is easy to see that

R−(!) ≤ R(!) ≤ R+(!), ! ∈ [0,+∞),

and

S−(!) ≤ S(!) ≤ S+(!), ! ∈ [0,+∞),

where
R−(!) = !4 − (A2 +B2 +B1�)!

2 +A0,
R+(!) = !4 − (A2 −B2 −B1�)!

2 +A0,
S−(!) = !(A1 −B1 −A3!

2 −B2!
2�),

S+(!) = !(A1 +B1 −A3!
2 +B2!

2�).

Note that when

� < �̄ = min

{

1

�
,
1

�
ln

kscN

c�d+ k�bN

}

, (22)

we have

A2 −B2 −B1� = �d+ (�+ �ℛ1)k
′ + �b(ℛ1 − 1) + �ℛ1d(1 − ��) > 0

and
(A2 −B2 −B1�)

2 − 4A0

= [(�+ �ℛ1)u+ �b(ℛ1 − 1)− d��ℛ1� ]
2 − 4�b�(ℛ1 − 1)u

≥ 2�[d(1− ��) + k′][�ℛ1u+ℛ1b�(ℛ1 − 1)] > 0.

Hence, R+(!) has two real positive zeros �+1 and �+2 , where

(�+1 )
2 =

(A2−B2−B1�)+
√

(A2−B2−B1�)2−4A0

2

(�+2 )
2 =

(A2−B2−B1�)−
√

(A2−B2−B1�)2−4A0

2

(23)
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Clearly, �+2 < �+1 . Similarly, if � < �̄ , we can show that R−(!) has two real positive
zeros �−2 and �−1 , where

(

�−1
)2

=
(A2+B2+B1�)+

√
(A2+B2+B1�)2−4A0

2

(

�−2
)2

=
(A2+B2+B1�)−

√
A2+B2+B1�)2−4A0

2

and �−2 < �−1 . Thus, under (22), both R−(!) and R+(!) have exactly the same
number (two) of real zeros. It is also easy to verify the following:

IR2 = [min(�−2 , �
+
2 ),max(�−2 , �

+
2 )] = [�−2 , �

+
2 ],

IR1 = [min(�−1 , �
+
1 ),max(�−1 , �

+
1 )] = [�+1 , �

−

1 ].

Hence, the intervals IR2 and IR1 are disjoint.
Furthermore, when � < �̄ , we have

A3 −B2� = u+ �+ �ℛ1(1− ��) > 0

and

A1 −B1 = �ℛ1�k
′ + b�(ℛ1 − 1)u+ b�(ℛ1 − 1)� > 0.

Hence, S+(!) only has one positive zero �+ =
√

A1+B1

A3−B2�
, and S−(!) also only has

one positive zero �− =
√

A1−B1

A3+B2�
, with �− < �+ if � < �̄ .

Combining the above, we see that Corollary 2.38 in [20] is applicable, provided
that one can verify the following two conditions

: (i) R−(0) > 0 ;
: (ii) S−(!) > 0 for ! ∈ IR2.

Obviously, R−(0) = A0 = �b�(ℛ1 − 1)u > 0 (since ℛ1 > 1). Moreover, S−(!) =
!(A1−B1−A3!

2−B2!
2�) > 0 when ! ∈ (0, �−). Note that IR2 = [�−2 , �

+
2 ]. Thus,

if �+2 ≤ �−, then S−(!) > 0 for ! ∈ IR2. From (23) and the formula for �−, we
know that �+2 ≤ �− is equivalent to Δ > 0, where

Δ = Δ(�) = (A1 −B1)(A3 +B2�)(A2 −B2 −B1�)− (A1 −B1)
2 −A0(A3 +B2�)

2.

Therefore, by Corollary 2.38 in [20], we have established the following

Theorem 3.4. Assume ℛ1 > 1 (or equivalently ℛ0 > 1+kN�b/dc�) and (22)(i.e.,
� < �̄) hold. If Δ(�) > 0, then E2 is locally asymptotically stable.

4. Numerical simulations. In the conditions of Theorem 3.4, (22) is an explicit
one for � , but Δ(�) > 0 is an implicit inequality with respect to � . In order
to illustrate feasibility of the results of Theorem 3.4, we perform some numerical
simulations by using the software Matlab.

Consider system (5) with s = 5, d = 0.03, k = 0.0014453, � = 0.32, N = 480, � =
1.8, p = 0.05, c = 0.2, b = 0.3. For the parameters chosen, ℛ1 = 7.167, Δ =
4.452 > 0 when � = 0.5. Numeric simulations confirm that the CTL-activated
infection equilibrium E2 is asymptotically stable. See Figure 1 .

Also in Theorem 3.4, Δ(�) > 0 is a sufficient condition needed to ensure that
the condition (ii) is satisfied so that Corollary 2.38 can be applied. Our numeric
simulations show that even if Δ(�) < 0, E2 may still be asymptotically stable,
as is shown in Figure 2, where the parameters are set to � = 0.3, s = 5, d =
0.03, k = 0.001, � = 0.32, N = 50, � = 3, p = 0.05, c = 0.2, b = 0.3 leading to
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�̄ = 0.333, ℛ1 = 1 + 0.267, and Δ = −0.0087657 < 0. We conjecture that the
stability of E2 is indeed implied by the condition (22).

5. Conclusions. We have studied a HIV-1 infection model with cell-mediated im-
mune response and intracellular delay, that is, model (5). By combining the analysis
of the characteristic equation and the Lyapunov-LaSalle method, we have proved
that the infection-free equilibrium E0, corresponding to the absence of virus, is
globally asymptotically stable when the basic reproduction number ℛ0 < 1. In this
case the virus is unable to maintain the infection and will go extinct ( the uninfected
cell population will converge to the value s

d
). When ℛ0 > 1, E0 becomes unstable

and there occurs the CTL-inactivated infection equilibrium E1. The stability of E1

depends on how much ℛ0 is larger than 1: when R0 ∈ (1, 1 + kN�b/cd�), E1 is
asymptotically stable; when ℛ0 > 1 + kN�b/cd�, E1 becomes unstable and there
occurs the third biologically meaningful equilibrium, that is, the CTL-activated in-
fection equilibrium E2. We have proved and numerically confirmed the stability of
E2 under additional conditions (22) and Δ(�) > 0. For the case Δ(�) < 0 under
(22), we are unable to make a conclusion, but numeric simulations have shown the
possibility that E2 may still be stable.

From the theoretical and numeric results summarized above, we see that the
basic reproduction number ℛ0 determines the dynamics of the model. Considering
ℛ0 = ℛ0(�) = ksN

d�
e−�� as a function of � , we see that it is decreasing in � with

ℛ0(∞) = 0. An implication of this observation is that the intracellular delay �
plays a positive role in preventing the virus, because with all other parameters
fixed, larger � can bring ℛ0 to a level lower than 1 (regardless of either ℛ0(0) < 1
or ℛ0(0) > 1), making the infection free equilibrium globally asymptotically stable.

We point out that ℛ0 is independent of the CTLs related parameters b, c and p,
meaning that CTLs does not help eliminate the virus. However, the activation of
CTLs does help reduce the virus load and increase the healthy cell population, the
latter being crucial because when the population of healthy CD+

4 cells drops below
certain level (e.g.,[18] ), an HIV carrying person becomes an AIDS patient. This can
be seen by comparing the virus load components and the healthy cell population
components in the immune-inactivated infection equilibrium E1 = (x1, y1, v1, 0) and
the immune-activated infection equilibrium E2 = (x̄, ȳ, v̄, z̄): under the condition
ℛ0 > 1 + kN�b/dc�, simple calculations show that

v1 =
sN

�e��
− d

k
> v̄ =

N�b

c�

and

x1 =
�e��

Nk
< x̄ =

sc�

c�d+ kN�b
.

Notice that v1 and x1 are independent of c and b, while x̄ is increasing in c and
decreasing in b, and v̄ is decreasing in c and increasing in b. These dependence and
independence explicitly explain, both qualitatively and quantitatively, the positive
role of CTLs in maintaining the level of the healthy cells as well as in controlling
the load of HIV virus.
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valuable comments on the first version of the manuscript which have led to an
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Figure 1. The interior equilibrium E2 is asymptotically stable
when (22) holds and Δ(�) > 0, where delay � = 0.5, s = 5, d =
0.03, k = 0.0014453, � = 0.32, N = 480, � = 1.8, p = 0.05, c =
0.2, b = 0.3 and Δ = 4.452 > 0, with (a) for x(t); (b) for y(t); (c)
for v(t) and (d) for z(t).
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[6] A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear

model for the delayed celluar immune response, Physica A, 342 (2004), 234–241.
[7] R. Culshaw, S. Ruan and R. Spiteri, Optimal HIV treatment by maximising immune response,

J. Math. Biol., 48 (2004), 545–562.
[8] B. Fuchs and B. Levin, “Functions of a Complex Variable and Some of Their Applications,”

Pergamon Press, 1961.
[9] F. Gantmacher, “The Theory of Matrices,” Vol.2, Chelsea, New York, 1959.

[10] J. Hale and S. M. Verduyn Lunel, “Introduction to Functional Differential Equations, Applied
Mathematical Science,” Vol.99, Springer-Verlag, New York, 1993.

[11] T. Kajiwara and T. Sasaki, A note on the stability analysis of pathogen-immune interaction

dynamics, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 615–622.
[12] Y. Kuang, “Delay Differential Equations with Applications in Population Dynamics,” Aca-

demic Press, San Diego, 1993.

http://www.ams.org/mathscinet-getitem?mr=1206227&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1897706&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2067116&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0132818&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0107649&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1243878&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2073965&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1218880&return=pdf


524 HUIYAN ZHU AND XINGFU ZOU

0 200 400 600 800 1000 1200 1400 1600 1800
20

40

60

80

100

120

140

160

time t

so
lu

tio
n 

x

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

14

16

18

time t

so
lu

tio
n 

y

(b)

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

time t

so
lu

tio
n 

v

(c)

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

time t

so
lu

tio
n 

z

(d)

Figure 2. The interior equilibrium E2 is asymptotically stable
when (22) holds but Δ(�) > 0 does not hold, where � = 0.3, s =
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