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Abstract. A sufficient condition is established for globally asymptotic sta-
bility of the positive equilibrium of a regulated logistic growth model with a
delay in the state feedback. The result improves some existing criteria for this
model. It is in a form that is related to the number 3/2 and the coupling
strength, and thus, is comparable to the well-known 3/2 condition for the un-
controlled delayed logistic equation. The comparison seems to suggest that
the mechanism of the control in this model might be inappropriate and new
mechanism should be introduced.

1. Introduction. In a biologically meaningful model a globally stable positive
equilibrium plays a crucial rule. It is well known [2,4,7,8] that the delay logistic
equation

N ′(t) = rN(t)
[
1 − N(t − τ)

K

]
(1.1)

has a positive equilibrium K which is globally asymptotically stable if rτ ≤ 3/2.
In some situations, one may need to adjust the size of the positive equilibrium
(see, e.g., [1]). For this purpose for (1.1), Gopalsamy et al [2,3] first put forward a
mechanism of “ feedback regulation” to (1.1) by considering the following control
system 


n′(t) = rn(t)

[
1 − n(t−τ)

K − cu(t)
]

u′(t) = −au(t) + bn(t − τ)
(1.2)

where u functions as a “feedback” control variable in system (1.2), K, r, a, b, τ, c ∈
(0,∞) are constants. Due to biological reasons, (1.2) is assigned initial conditions
of the form 


n(s) = φ(s) ≥ 0, u(0) = u0 > 0

φ(0) > 0, φ ∈ C([−τ, 0], [0,∞)).
(1.3)

1991 Mathematics Subject Classification. 34K11, 34K20.
Key words and phrases. Logistic, global stability, feedback regulation.

265



266 X. H. TANG AND X. ZOU

One can easily prove, by using the method of steps, that the solution of (1.2)-(1.3)
are defined for all t ≥ 0 and remain positive for t ≥ 0.

It is easy to verify that (1.2) has a unique nontrivial steady state (n∗, u∗), where

n∗ =
aK

a + Kbc
, u∗ =

bK

a + Kbc
. (1.4)

The population component n∗ of the equilibrium given by (1.4) can be adjusted
by varying the constants a, b and c. But one needs to make sure that (n∗, u∗) is
globally asymptotically stable. Gopalsamy and Weng [3] proved that if

erτ

[
rτ

(
1 +

bcK

a

)
+

bcK

a

]
<

1
2
, (1.5)

then every solution (n(t), u(t)) of (1.2)-(1.3) satisfies

lim
t→∞(n(t), u(t)) = (n∗, u∗). (1.6)

Furthermore, they also conjectured that the conclusion (1.6) remains true if condi-
tion (1.5) is replaced by

erτ

[
rτ

(
1 +

bcK

a

)
+

bcK

a

]
< 1, (1.7)

or by

rτ

(
1 +

bcK

a

)
+

bcK

a
< 1. (1.8)

Using a completely different method, Kuang [5] confirmed the first conjecture
by giving an even better (than (1.7)) condition

rτerτ

(
1 +

bcK

a

)
< 1 − bcK

a
. (1.9)

Concerning the second conjecture, Lalli et al [6], obtained the following set of
conditions: (

rτ +
bcK

a

) [
rτ

(
1 +

bcK

a

)
+

bcK

a

]
≤ 1. (1.10)

bcK

a
erτ < 1. (1.11)

We remark that (1.10) implies (1.11). In fact, if (1.10) holds, then(
rτ +

bcK

a

)2

<

(
rτ +

bcK

a

)[
rτ

(
1 +

bcK

a

)
+

bcK

a

]
≤ 1,

and so
bcK

a
erτ <

bcK

a
e1−bcK/a < 1.

Therefore, (1.11) can be derived from (1.10), and thus it is unnecessary. Obviously,
condition (1.10) is better than (1.8). Thus the second conjecture is also confirmed
under an even weaker condition (1.10).

As pointed out in the discussion section in Kuang [5], both (1.9) and (1.10) have
much room for various improvements, and the 3/2 stability result for (1.1) should
provide at least one motivation for further improvement. This paper makes an
attempt toward this direction. More precisely, in this paper we will establish a 3/2
type criterion which further improve (1.9) and (1.10) to

rτ ≤ 3
2

(
1 − bcK

a

)
. (1.12)
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In other words, we will prove the following main theorem.

Theorem 1.1. If (1.12) holds, then every solution of (1.2)-(1.3) satisfies (1.6).

It is worth noting that when c = 0, (1.12) reduces to the well-known criterion
rτ ≤ 3

2 for globally asymptotic stability of the positive equilibrium of system (1.1).
But as mentioned in Kuang [5], none of the existing criteria for (1.2) can be reduced
to this condition. In other words, our result is comparable to the well-known 3/2
result for the uncontrolled delay logistic equation (1.1). A comparison seems to
suggest that the mechanism of the control in this model might be inappropriate
and new control mechanism should be introduced. For details of such a discussion,
see Section 4.

2. Preliminaries. For convenience, we define x(t), y(t), µ,A,B as follows:

x(t) =
n(t)
n∗ − 1, y(t) =

u(t)
u∗ − 1, (2.1)

µ =
bcK

a
, A =

r

1 + µ
, B = a. (2.2)

Then (1.2) and (1.3) are transformed, respectively, into


x′(t) = −A[1 + x(t)][x(t − τ) + µy(t)]

y′(t) = B [−y(t) + x(t − τ)]
(2.3)

and 


x(s) = φ(s) ≥ −1, y(0) = y0 > −1,

φ(0) > −1, φ ∈ C([−τ, 0], [−1,∞)).
(2.4)

Lemma 2.1. Let 0 < µ < 1. The system of inequalities


y ≤ (1 + µx) exp
[
(1 − µ)x − (1−µ)2

6(1+µ)x
2
]
− 1

x ≤ 1 − (1 − µy) exp
[
−(1 − µ)y − (1−µ)2

6(1+µ)y
2
] (2.5)

has a unique solution: (x, y) = (0, 0) in the region D = {(x, y) : 0 ≤ x < 1, 0 ≤
y < 1/µ}.
Proof. Let

ϕ(x) = (1 − µ)x − (1 − µ)2

6(1 + µ)
x2, ψ(y) = (1 − µ)y +

(1 − µ)2

6(1 + µ)
y2.

Then (2.5) can be written as


y ≤ (1 + µx)eϕ(x) − 1,

x ≤ 1 − (1 − µy)e−ψ(y).
(2.6)

Assume that (2.6) has another solution in the region D other than (0, 0), say
(x0, y0). Then 0 < x0 < 1 and 0 < y0 < 1/µ. Define two curves Γ1 and Γ2 as
follows:

Γ1 : y = (1 + µx)eϕ(x) − 1, Γ2 : x = 1 − (1 − µy)e−ψ(y). (2.7)
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By direct calculation, we have for curve Γ1:

dy

dx

∣∣∣∣
(0,0)

= 1,

d2y

dx2

∣∣∣∣
(0,0)

=
(1 − µ)(µ + 2)(3µ + 1)

3(1 + µ)
,

d3y

dx3

∣∣∣∣
(0,0)

=
µ(1 − µ)2(2µ + 3)

1 + µ
,

and for curve Γ2:

dy

dx

∣∣∣∣
(0,0)

= 1,
d2y

dx2

∣∣∣∣
(0,0)

=
(1 − µ)(µ + 2)(3µ + 1)

3(1 + µ)
,

d3y

dx3

∣∣∣∣
(0,0)

= −µ(1 − µ)2(2µ + 3)
1 + µ

+
(1 − µ)2(µ + 2)2(3µ + 1)2

3(1 + µ)2
.

Hence Γ2 lies above Γ1 near (0,0). The existence of (x0, y0) implies that the curves
Γ1 and Γ2 must intersect at a point in the region D besides (0, 0). Let (x1, y1) be
the first such point, i.e. x1 is smallest. Then the slope of Γ1 at (x1, y1) is no less
than the slope of Γ2 at (x1, y1), i.e.

[µ + (1 + µx1)ϕ′(x1)]eϕ(x1) ≥ 1
µ + (1 − µy1)ψ′(y1)

eψ(y1)

or

[µ + (1 + µx1)ϕ′(x1)][µ + (1 − µy1)ψ′(y1)] ≥ eψ(y1)−ϕ(x1). (2.8)

From (2.7), we have

− ln(1 − x1) = − ln(1 − µy1) + (1 − µ)y1 +
(1 − µ)2

6(1 + µ)
y2
1

=
(

µy1 +
µ2

2
y2
1 +

µ3

3
y3
1 + · · ·

)
+ (1 − µ)y1 +

(1 − µ)2

6(1 + µ)
y2
1

< y1 +
1
2
y2
1 +

1
3
y3
1 + · · ·

= − ln(1 − y1).

This implies that

x1 < y1. (2.9)
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Using (2.9), we derive that

[µ + (1 + µx1)ϕ′(x1)][µ + (1 − µy1)ψ′(y1)]

= 1 +
[

(1 − µ)2

3(1 + µ)
− µ(1 − µ)

]
(y1 − x1) −

[
(1 − µ)2

3(1 + µ)
− µ(1 − µ)

]2

x1y1

−µ(1 − µ)2

3(1 + µ)
(x2

1 + y2
1) +

µ(1 − µ)3

3(1 + µ)

[
1 − µ

3(1 + µ)
− µ

]
x1y1(y1 − x1)

+
µ2(1 − µ)4

9(1 + µ)2
x2

1y
2
1

< 1 + (1 − µ)
(

1 − µ

3(1 + µ)
− µ

)
(y1 − x1) − µ(1 − µ)2

3(1 + µ)
(x2

1 + y2
1)

+
µ(1 − µ)4

9(1 + µ)2
x1y1(y1 − x1) +

µ2(1 − µ)4

9(1 + µ)2
x2

1y
2
1

< 1 + (1 − µ)
(

1 − µ

3(1 + µ)
− µ

)
(y1 − x1)

and

eψ(y1)−ϕ(x1) = exp
[
(1 − µ)(y1 − x1) +

(1 − µ)2

6(1 + µ)
(x2

1 + y2
1)

]

> 1 + (1 − µ)(y1 − x1) +
(1 − µ)2

6(1 + µ)
(x2

1 + y2
1).

It follows that

eψ(y1)−ϕ(x1) − [µ + (1 + µx1)ϕ′(x1)][µ + (1 − µy1)ψ′(y1)]

>

[
1 + (1 − µ)(y1 − x1) +

(1 − µ)2

6(1 + µ)
(x2

1 + y2
1)

]

−
[
1 + (1 − µ)

(
1 − µ

3(1 + µ)
− µ

)
(y1 − x1)

]

= (1 − µ)
[
1 + µ − 1 − µ

3(1 + µ)

]
(y1 − x1) +

(1 − µ)2

6(1 + µ)
(x2

1 + y2
1)

> 0,

which contradicts (2.8). The proof is complete.

Lemma 2.2. Let (x(t), y(t)) be the solution of (2.3) and (2.4). If

Aτ ≤ 3(1 − µ)
2(1 + µ)

, (2.10)

then

−1 < −1 + (1 − µM)e−3(1−µ)M/2 ≤ lim inf
t→∞ x(t) ≤ 0 ≤ lim sup

t→∞
x(t) ≤ M. (2.11)

where M = (1 + µ)e1−µ − 1.

Proof. By the method of steps, it is easy to prove that (x(t), y(t)) is defined for
all t ≥ 0 and satisfies

x(t) > −1, y(t) > −1, t ≥ 0. (2.12)
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Substituting (2.12) into the first equation in (2.3) we get

x′(t) ≤ A[1 + x(t)][−x(t − τ) + µ] ≤ A(1 + µ)[1 + x(t)], t ≥ t1. (2.13)

There are two possibilities: x(t) is oscillatory about µ or x(t) is nonoscillatory about
µ.

If x(t) is not oscillatory about µ, then there exists a t2 > t1 such that

either x(t) ≥ µ for t ≥ t2 or x(t) ≤ µ for t ≥ t2. (2.14)

Similar to the proof of Lemma 3.1 in [3], using (2.13) and (2.14) we can derive that

x(t) ≤ (1 + µ)e1−µ − 1 = M for large t. (2.15)

Indeed, if the second alternative in (2.14) holds, then (2.15) is obviously true (noting
that (1.12) implies µ < 1 and hence µ < M). Suppose x(t) ≥ µ for t ≥ t2. Then,
by (2.13), x′(t) ≤ 0 for t ≥ t2 + τ . It follows that the limit limt→∞ x(t) = x0 exists
and x0 ≥ µ. From (2.12)-(2.13), it is easy to show that x0 = µ < M and so (2.15)
also holds.

If x(t) is oscillatory about µ, then we can choose an arbitrary local maximum
point t∗ of x(t) such that x′(t∗) = 0 and x(t∗) > µ. By (2.13), x(t∗− τ) ≤ µ. Thus,
there exists ξ ∈ [t∗ − τ, t∗) such that x(ξ) = µ. For t ∈ [ξ, t∗], integrating (2.13)
from t − τ to ξ we get

− ln
1 + x(t − τ)

1 + x(ξ)
≤ A(1 + µ)(ξ + τ − t),

or
x(t − τ) ≥ −1 + (1 + µ) exp[−A(1 + µ)(ξ + τ − t)], ξ ≤ t ≤ t∗.

Substituting this into the first inequality in (2.13), we obtain

x′(t) ≤ A[1 + x(t)](1 + µ){1 − exp[−A(1 + µ)(ξ + τ − t)]}, ξ ≤ t ≤ t∗. (2.16)

Integrating (2.16) and using (2.10), we have

ln
1 + x(t∗)

1 + µ

≤ A(1 + µ)(t∗ − ξ) − A(1 + µ)
∫ t∗

ξ

exp[−A(1 + µ)(ξ + τ − t)]dt

= (1 + µ)
{

A(t∗ − ξ) − 1 − exp(−A(1 + µ)(t∗ − ξ))
1 + µ

exp[−A(1 + µ)(ξ + τ − t∗)]
}

≤ (1 + µ)
{

A(t∗ − ξ) − 1 − exp(−A(1 + µ)(t∗ − ξ))
1 + µ

× exp
[
−(1 + µ)

(
3(1 − µ)
2(1 + µ)

− A(t∗ − ξ)
)]}

≤ 3(1 − µ)
2

− 1 + e−3(1−µ)/2

< (1 − µ).

Consequently, we obtain
x(t∗) ≤ (1 + µ)e1−µ − 1.

It follows from arbitrariness of t∗ that (2.15) holds and that u ≡ lim supt→∞ x(t) ≤
M . Since µe1−µ < 1, it follows that µM < 1. Therefore, there exists a ε > 0 such
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that µ(M + ε) < 1. Let t3 > t2 such that (2.15) holds for t ≥ t3. Then, from (2.3)
and (2.15), we have again

y(t) = e−Bt

[
y(t3) + B

∫ t

t3

x(s − τ)eBsds

]

≤ e−Bt
[
y(t3)eBt3 + M

(
eBt − eBt3

)]
→ M as t → ∞.

It follows that there exists a t4 > t3 such that

y(t) < M + ε, t ≥ t4. (2.17)

Substituting (2.15) and (2.17) into the first equation in (2.3) we get

x′(t) ≥ −A[1 + x(t)][x(t − τ) + µ(M + ε)]
≥ −A(1 + µ)(M + ε)[1 + x(t)], t ≥ t4.

(2.18)

Using (2.18), one can , in a similar way of Lemma 4.1 in [4], derive that

x(t) ≥ (1 − µ(M + ε))e−3(1−µ)(M+ε)/2 − 1 > −1, for large t. (2.19)

This implies that

v ≡ lim inf
t→∞ x(t) ≥ (1 − µM)e−3(1−µ)M/2 − 1 > −1.

Next, we prove that v ≤ 0 ≤ u. If v > 0, then, similar to (2.18), we can derive that

x′(t) ≤ −A[1 + x(t)]x(t − τ), for large t.

This implies that v = limt→∞ x(t) = 0, leading to a contradiction. Therefore,
v ≤ 0. In a similar way, one can derive that u ≥ 0. The proof is complete.

3. Main Results. In this section, we prove our main result (Theorem 1.1)), which
is a direct consequence of the following theorem.
Theorem 3.1. Assume that (2.10) holds. Then every solution (x(t),y(t)) of (2.3)
and (2.4) satisfies

lim
t→∞(x(t), y(t)) = (0, 0). (3.1)

Proof. Set
lim inf
t→∞ x(t) = −v and lim sup

t→∞
x(t) = u. (3.2)

In view of Lemma 2.2,
0 ≤ v < 1, 0 ≤ u < ∞. (3.3)

In what follows, we show that v and u satisfy the inequalities

1 + u ≤ (1 + µv) exp
[
(1 − µ)v − (1 − µ)2

6(1 + µ)
v2

]
(3.4)

and

1 − v ≥ (1 − µu) exp
[
−(1 − µ)u − (1 − µ)2

6(1 + µ)
u2

]
. (3.5)

First, we prove that (3.4) holds. If u ≤ µv, then (3.4) obviously holds. Therefore,
we will prove (3.4) only in the case when u > µv. For any ε ∈ (0,min{(1− v), (u−
µv)}/4), it follows from (3.2) and (3.3) that there exist a t1 > t0 such that

−(v1 − ε) ≡ −v − ε < x(t − τ) < u + ε ≡ u1 − ε, t ≥ t1. (3.6)
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Then, from (2.3), we have

y(t) = e−Bt

[
y(t1)eBt1 + B

∫ t

t1

x(s − τ)eBsds

]

≤ e−Bt
[
y(t1)eBt1 + (u1 − ε)(eBt − eBt1)

]
→ u1 − ε as t → ∞

and

y(t) ≥ e−Bt
[
y(t1)eBt1 − (v1 − ε)(eBt − eBt1)

]
→ −(v1 − ε) as t → ∞.

Hence, we can choose a t2 > t1 such that

−v1 < y(t) < u1, t ≥ t2. (3.7)

Substituting (3.6) and (3.7) into the first equation in (2.3) we obtain

x′(t) ≤ A[1 + x(t)][−x(t − τ) + µv1] ≤ Av2[1 + x(t)], t ≥ t2 (3.8)

and

−x′(t) ≤ A[1 + x(t)][x(t − τ) + µu1] ≤ Au2[1 + x(t)], t ≥ t2. (3.9)

where v2 = (1+µ)v1 and u2 = (1+µ)u1. Since u > µv1, we cannot have x(t) ≤ µv1

eventually. On the other hand, if x(t) ≥ µv1 eventually, then it follows from the
first inequality in (3.8) that x(t) is nonincreasing and u = limt→∞ x(t) = µv1. This
is also impossible. Therefore, we assume that x(t) oscillates about µv1.

Let {pn} be an increasing sequence such that pn ≥ t2 + τ, x′(pn) = 0, x(pn) ≥
µv1, limn→∞ pn = ∞ and limn→∞ x(pn) = u. By (3.8), x(pn − τ) ≤ µv1. Thus,
there exists ξn ∈ [pn − τ, pn] such that x(ξn) = µv1. For t ∈ [ξn, pn], integrating
(3.8) from t − τ to ξn we get

− ln
1 + x(t − τ)
1 + x(ξn)

≤ Av2(ξn + τ − t),

or

x(t − τ) ≥ −1 + (1 + µv1) exp[−Av2(ξn + τ − t)], ξn ≤ t ≤ pn.

Substituting this into the first inequality in (3.8), we obtain

x′(t) ≤ A[1 + x(t)](1 + µv1){1 − exp[−Av2(ξn + τ − t)]}, ξn ≤ t ≤ pn.

Combining this with (3.8), we have

x′(t)
1 + x(t)

≤ min{Av2, A(1+µv1){1−exp[−Av2(ξn+τ−t)]}}, ξn ≤ t ≤ pn. (3.10)

To prove (3.4), we consider the following two possible cases.
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Case 1. A(pn − ξn) ≤ − 1
v2

ln[1 − (1 − µ)v1]. Then by (2.10) and (3.10)

ln
1 + x(pn)
1 + µv1

≤ A(1 + µv1)(pn − ξn) − A(1 + µv1)
∫ pn

ξn

exp[−Av2(ξn + τ − t)]dt

= (1 + µv1) {A(pn − ξn)

− 1
v2

exp[−Av2(ξn + τ − pn)][1 − exp(−Av2(pn − ξn))]
}

≤ (1 + µv1)
{

A(pn − ξn) − 1 − exp(−Av2(pn − ξn))
v2

× exp
[
−v2

(
3(1 − µ)
2(1 + µ)

− A(pn − ξn)
)]}

.

If A(pn − ξn) ≤ − 1
v2

ln[1 − (1 − µ)v1] ≤ 3(1 − µ)/2(1 + µ), then

ln
1 + x(pn)
1 + µv1

≤ (1 + µv1)
{
− 1

v2
ln[1 − (1 − µ)v1]

−1 − µ

1 + µ
exp

[
−v2

(
3(1 − µ)
2(1 + µ)

+
ln[1 − (1 − µ)v1]

v2

)]}

≤ (1 + µv1)
{
− 1

v2
ln[1 − (1 − µ)v1]

−1 − µ

1 + µ

[
1 − v2

(
3(1 − µ)
2(1 + µ)

+
ln[1 − (1 − µ)v1]

v2

)]}

=
1 + µv1

1 + µ

{
− 1

v1
ln[1 − (1 − µ)v1]

−(1 − µ)
[
1 − 3(1 − µ)

2
v1 − ln[1 − (1 − µ)v1]

]}

=
1 + µv1

1 + µ

{
− 1

v1
[1 − (1 − µ)v1] ln[1 − (1 − µ)v1] − (1 − µ) +

3(1 − µ)2

2
v1

}

≤ 1 + µv1

1 + µ

[
(1 − µ)2v1 − (1 − µ)3

6
v2
1

]

< (1 − µ)v1 − (1 − µ)2

6(1 + µ)
v2
1 .

In the above third inequality, we have used the following inequality

[1 − (1 − µ)v1] ln[1 − (1 − µ)v1]

≥ −(1 − µ)v1 + (1−µ)2

2 v2
1 + (1−µ)3

6 v3
1 .

(3.11)

If A(pn − ξn) ≤ 3(1 − µ)/2(1 + µ) ≤ − 1
v2

ln[1 − (1 − µ)v1], then

3
2
(1 − µ) ≤ − 1

v1
ln[1 − (1 − µ)v1] ≤ 1 − µ

1 − (1 − µ)v1

[
1 − 1 − µ

2
v1 − (1 − µ)2

6
v2
1

]
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which implies that (1 − µ)v1 > 1/2. Hence,

ln
1 + x(pn)
1 + µv1

≤ (1 + µv1)
{

3(1 − µ)
2(1 + µ)

− 1
v2

[
1 − exp

(
−3

2
(1 − µ)v1

)]}

=
1 + µv1

1 + µ

[
3
2
(1 − µ) − 1

v1

(
1 − e−3(1−µ)v1/2

)]

≤ 1 + µv1

1 + µ

{
3
2
(1 − µ) −

[
3
2
(1 − µ) − 9

8
(1 − µ)2v1 +

9
16

(1 − µ)3v2
1

− 27
128

(1 − µ)4v3
1

]}

=
(1 − µ)(1 + µv1)

1 + µ

[
9
8
(1 − µ)v1 − 9

16
(1 − µ)2v2

1 +
27
128

(1 − µ)3v3
1

]

≤ (1 − µ)(1 + µv1)
1 + µ

[
(1 − µ)v1 − 1

6
(1 − µ)2v2

1

]

< (1 − µ)v1 − (1 − µ)2

6(1 + µ)
v2
1 .

Case 2. − 1
v2

ln[1−(1−µ)v1] < A(pn−ξn) ≤ 3(1−µ)/2(1+µ). Choose ln ∈ (ξn, pn)
such that A(pn − ln) = − 1

v2
ln[1 − (1 − µ)v1]. Then by (2.10) and (3.10),

ln
1 + x(pn)
1 + µv1

≤ Av2(ln − ξn) + (1 + µv1)
{

A(pn − ln) − A

∫ pn

ln

exp[−Av2(ξn + τ − t)]dt

}

= Av2(ln − ξn) + (1 + µv1)

×
{

A(pn − ln) − 1
v2

exp[−Av2(ξn + τ − pn)][1 − exp(−Av2(pn − ln))]
}

= Av2(ln − ξn) + (1 + µv1)
{

A(pn − ln) − 1 − µ

1 + µ
exp[−Av2(ξn + τ − pn)]

}

≤ Av2(ln − ξn) + (1 + µv1)
{

A(pn − ln) − 1 − µ

1 + µ
+

1 − µ

1 + µ
Av2(ξn + τ − pn)

}

≤ Av2τ + (1 − v1)A(pn − ln) − 1 − µ

1 + µ

= Aτv2 − 1
v2

(1 − v1) ln[1 − (1 − µ)v1] − 1 − µ

1 + µ

≤ 3
2
(1 − µ)v1 − 1

1 + µ

[
−(1 − µ) +

(1 − µ)(1 + µ)
2

v1 +
(1 − µ)2(1 + 2µ)

6
v2
1

]

−1 − µ

1 + µ

= (1 − µ)v1 − (1 − µ)2(1 + 2µ)
6(1 + µ)

v2
1

< (1 − µ)v1 − (1 − µ)2

6(1 + µ)
v2
1 .
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In the above fourth inequality, we have used the following inequality

(1 − v1) ln[1 − (1 − µ)v1] ≥ −(1 − µ)v1 +
(1 − µ)(1 + µ)

2
v2
1 +

(1 − µ)2(1 + 2µ)
6

v3
1 .

Combining Case 1 with Case 2, we have proved that

ln
1 + x(pn)
1 + µv1

≤ (1 − µ)v1 − (1 − µ)2

6(1 + µ)
v2
1 , n = 1, 2, . . . .

Letting n → ∞ and ε → 0, we have

ln
1 + u

1 + µv
≤ (1 − µ)v − (1 − µ)2

6(1 + µ)
v2.

This shows that (3.4) holds. Next, we will prove that (3.5) holds as well. From
(3.4), we have

u < (1 + µ)e1−µ − 1 < 2, µu ≤ µ[(1 + µv)e(1−µ)v − 1] ≤ v < 1. (3.12)

If v ≤ µu, then (3.5) holds naturally. Thus we may assume, without loss of general-
ity, that v > µu1. In view of this and (3.9), we can show that neither x(t) ≥ −µu1

eventually nor x(t) ≤ −µu1 eventually. Therefore, x(t) oscillates about −µu1.
Let {qn} be an increasing sequence such that qn ≥ t2 + τ, x′(qn) = 0, x(qn) ≤

−µu1, limn→∞ qn = ∞ and limn→∞ x(qn) = −v. By (3.9), x(qn − τ) ≥ −µu1.
Thus, there exists ηn ∈ [qn − τ, qn] such that x(ηn) = −µu1. For t ∈ [ηn, qn],
integrating (3.9) from t − τ to ηn, we have

x(t − τ) ≤ (1 − µu1) exp[Au2(ηn + τ − t)] − 1, ηn ≤ t ≤ qn.

Substituting this into the first inequality in (3.9), we obtain

−x′(t) ≤ A[1 + x(t)](1 − µu1){exp[Au2(ηn + τ − t)] − 1}, ηn ≤ t ≤ qn.

Combining this with (3.9), we have

− x′(t)
1 + x(t)

≤ min{Au2, A(1−µu1){exp[Au2(ηn+τ−t)]−1}}, ηn ≤ t ≤ qn. (3.13)

There are two possibilities:

Case 1. A(qn − ηn) ≤ 3(1−µ)
2(1+µ) − 1

u2
ln[1 + (1 − µ)u1]. Integrating (3.13) from ηn to

qn and using the inequality

ln[1 + (1 − µ)u1] ≥ 1
2
(1 − µ)u1 − (1 − µ)2

6(1 + µ)
u2

1,

we have

− ln
1 + x(qn)
1 − µu1

≤ Au2(qn − ηn)

≤ u2

{
3(1 − µ)
2(1 + µ)

− 1
u2

ln[1 + (1 − µ)u1]
}

=
3
2
(1 − µ)u1 − ln[1 + (1 − µ)u1]

≤ (1 − µ)u1 +
(1 − µ)2

6(1 + µ)
u2

1.
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Case 2. A(qn − ηn) > 3(1−µ)
2(1+µ) − 1

u2
ln[1 + (1−µ)u1]. Choose hn ∈ (ηn, qn) such that

A(hn − ηn) =
3(1 − µ)
2(1 + µ)

− 1
u2

ln[1 + (1 − µ)u1].

Then by (2.10),(3.13) we have

− ln
1 + x(qn)
1 − µu1

≤ Au2(hn − ηn) + (1 − µu1)
{

A

∫ qn

hn

exp[Au2(ηn + τ − t)]dt − A(qn − hn)
}

= Au2(hn − ηn) + (1 − µu1)

×
{

1
u2

[exp(Au2(ηn + τ − hn)) − exp(Au2(ηn + τ − qn))] − A(qn − hn)
}

= Au2(hn − ηn) − A(1 − µu1)(qn − hn)

+
1 − µu1

u2
eAτu2

{
[1 + (1 − µ)u1] exp

(
−3(1 − µ)

2(1 + µ)
u2

)
− e−Au2(qn−ηn)

}

≤ Au2(hn − ηn) − A(1 − µu1)(qn − hn)

+
1 − µu1

u2

{
1 + (1 − µ)u1 − exp

[
u2

(
3(1 − µ)
2(1 + µ)

− A(qn − ηn)
)]}

≤ Au2(hn − ηn) − A(1 − µu1)(qn − hn)

+
1 − µu1

u2

{
(1 − µ)u1 − (1 + µ)u1

[
3(1 − µ)
2(1 + µ)

− A(qn − ηn)
]}

= (1 + u1)A(hn − ηn) − 1 − µ

2(1 + µ)
(1 − µu1)

=
3(1 − µ)
2(1 + µ)

(1 + u1) − (1 + u1) ln[1 + (1 − µ)u1]
(1 + µ)u1

− 1 − µ

2(1 + µ)
(1 − µu1)

≤ 1 − µ

1 + µ
u1 +

(1 − µ)2(1 + 2µ)
6(1 + µ)

u2
1

≤ (1 − µ)u1 +
(1 − µ)2

6(1 + µ)
u2

1.

In the above fourth inequality, we have used the following inequality

(1 + u1) ln[1 + (1 − µ)u1] ≥ (1 − µ)u1 +
(1 − µ)(1 + µ)

2
u2

1 −
(1 − µ)2(1 + 2µ)

6
u3

1.

Combining Case 1 with Case 2, we have shown that

− ln
1 + x(qn)
1 − µu1

≤ (1 − µ)u1 +
(1 − µ)2

6(1 + µ)
u2

1, n = 1, 2, . . . .

Letting n → ∞ and ε → 0, we have

− ln
1 − v

1 − µu
≤ (1 − µ)u +

(1 − µ)2

6(1 + µ)
u2,

which implies that (3.5) holds. In view of Lemma 2.1, it follows from (3.4) and
(3.5) that u = v = 0. Thus, limt→∞(x(t), y(t)) = (0, 0). The proof is complete.

As a corollary of Theorem 3.1, we immediately obtain Theorem 1.1.
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4. Discussion. We establish a criterion (1.12) for the global stability of the the
positive equilibrium of system (1.2), which improves the existing ones. Another
merit of our main result is that it is related to the well-known 3/2 stability criterion
for the uncontrolled system (1.1). Although it remains open if 3/2 serves as the
benchmark for rτ for the global asymptotic stability of (1.1), it is acknowledged to
be the best bound for rτ so far obtained. When it comes to (1.2), to the best of our
knowledge, (1.12) gives the best estimate for rτ in the same context. Note that the
bound in (1.2) reduces to 3/2 when bc = 0 (uncontrolled), but is actually lower than
3/2 when bc > 0 which means more restrictive for rτ . This seems to suggest that
the introduction of the control mechanism as in (1.2) is a failure. A further look
at this model, we see that the control term is introduced into the model in such a
way that it serves as a term in the per capita growth function, and in reality this is
almost impossible to implement, and thus, makes little sense. More reasonable way
might be to think the control as an inhibiting term, and replace the first equation
of (1.2) by

n′(t) = rn(t)
[
1 − n(t − τ)

K

]
− u(t). (4.1)

This would enable us to interpret the second equation of (1.2) as: the change rate
of control force = the need of control that is proportional to the density of n(t− τ)
- the cost of the control (assuming it costs a for each unit of control force). This
is, of course, a completely different model and may require very different methods
of analysis. We have to leave it as a future project.

On the other hand, the population component n∗ of the equilibrium of (1.2) (see
(1.4)) is also lower than the equilibrium K of the un-controlled system (1.1), and
this is not desirable if the population under consideration is a favorable species.
This also suggests consideration of other new control mechanism.

Also, it has been suggested that a proper single species growth model should
identify the birth and death processes, that is N ′(t) = birth rate -death rate.
Typically, the birth rate is a delayed term b(N(t−τ)), due to the maturation of the
species, such as N(t − τ)e−αN(t−τ) as is used in the Nicholson’s blowflies model,
where r is the specific birth rate of an adult, and α is the so-called through-stage
survival rate, and τ is the maturation delay; or other one hump shape functions for
b(·).
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