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Abstract. This paper deals with a class of non-local second order differential

equations subject to the homogeneous Dirichlet boundary condition. The main

concern is positive steady state of the boundary value problem, especially when
the equation does not enjoy the monotonicity. Nonexistence, existence and

uniqueness of positive steady state for the problem are addressed. In particular,

developed is a technique that combines the method of super-sub solutions and
the estimation of integral kernels, which enables us to obtain some sufficient

conditions for the existence and uniqueness of a positive steady state. Two

examples are given to illustrate the obtained results.

1. Introduction. In studying the population dynamics for a single species with age
structure habitating in a spatially continuous and unbounded domain R = (−∞,∞),
So et. al. [10] derived a model containing a spatial non-local term resulting from the
mobility of immature individuals and a temporal delay accounting for the average
maturation time. The model is given by the following non-local reaction diffusion
equation with delay

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
−dw(t, x)+

∫ ∞
−∞

fα(x, y)b(w(t−τ, y))dy, t ≥ 0, x ∈ R. (1)

When the habitat is a bounded domain, e.g., Ω = [0, π], similar models were ob-
tained and numerically explored in [6] and theoretically investigated in [11, 12] by

2000 Mathematics Subject Classification. Primary: 34B18.
Key words and phrases. Non-local second order differential equation, Dirichlet boundary value

problems, positive solutions, existence, uniqueness.
Research partially supported by National Natural Science Foundation of China (No.10871053,

No.10971240) and by Natural Sciences and Engineering Research Council of Canada.

1825

http://dx.doi.org/10.3934/cpaa.2012.11.1825


1826 ZHIMING GUO, ZHICHUN YANG AND XINGFU ZOU

using a dynamical system approach. The differential equations of these models take
the same form as (1), except that the kernel function fα(x, y) would take different
forms depending on the conditions posed on the boundary. Also the kernel depends
on the parameter α ≥ 0 that measures the mobility of immature population. For
homogeneous Neumann boundary condition, the recent work [12] has shown that
the corresponding model

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
−dw(t, x)+

∫ π

0

fα(x, y)b(w(t−τ, y))dy, t ≥ 0, x ∈ (0, π)

∂

∂n
w(t, 0) =

∂

∂n
w(t, π) = 0

(2)
with non-negative initial functions only supports dynamics of converging to constant
steady state, and hence, the global dynamics can be fully determined in terms of
the model parameters.

When the homogeneous Dirichlet boundary condition is posed, the corresponding
model is given by

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
−dw(t, x)+

∫ π

0

fα(x, y)b(w(t−τ, y))dy, t ≥ 0, x ∈ (0, π)

w(t, 0) = w(t, π) = 0,
(3)

for which, Xu and Zhao [11] studied the global dynamics and obtained some results
on the global attractivity of a positive steady state by using the theory of monotone
dynamical systems in the monotone case. However, in the non-monotone case, as
pointed out by Zhao [12], it still remains an open and challenging problem to study
the uniqueness and global attractivity of a positive steady state for (3).

It is well known that positive steady states play an important role in the study of
the global dynamics of a reaction diffusion equation arising from population biology,
and global convergence of solutions to a positive steady state requires existence of
an unique positive steady state. In this paper we are concerned with the existence
and uniqueness of a positive steady state of (3), that is, existence and uniqueness
of a positive solution to the following Dirichlet boundary value problem −

d2w

dx2
+ k2w =

∫ π

0

fα(x, y)b(w(y))dy, t ≥ 0, forx ∈ (0, π)

w(0) = w(π) = 0,
(4)

Here, by the derivation of (3) in [6], α and k :=
√
d/D are positive constants and

the kernel function is given by

fα(x, y) =
2

π

∞∑
n=1

e−n
2α sinnx sinny. (5)

Since b(w) represents a birth function, as in most models for population dynam-
ics, we assume, throughout this paper, that b satisfies the following biologically
reasonable assumptions:

(H1) b(w) = wg(w), g(w) > 0 and g′(w) < 0 for all w ≥ 0;
(H2) both b(w) and b′(w) are bounded for w ≥ 0.
A typical such function is b(u) = pue−qu which corresponds to the birth function

used in the Nicholson’s blowflies equation in Gurney et al [4]. Clearly, b′(w) =
g(w) + wg′(w) ≤ g(w) for w ≥ 0 and b′(0) = g(0) > 0.
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The rest of this paper is organized as follows: We will obtain some preliminary
results in Section 2. In Section 3, we will give some results on the nonexistence,
existence and uniqueness of positive solutions to (4) in the monotone case. These
results may be deduced from [11], but for the purpose of self-containing and gradual
proceeding, we include them in this section. Our main results are presented and
proved in Section 4, where we obtain sufficient conditions to ensure the existence
and uniqueness of positive solutions to (4) in a non-monotone case. This main
theorem can also be applied to the monotone case (as a special case) to reproduce
the corresponding result in Section 3. Section 5 is devoted to the applications of
our main results to two models arising from population dynamics.

2. Preliminaries. Firstly, we show that the kernel fα(x, y) in (5) enjoys the fol-
lowing properties.

Lemma 2.1. For α > 0, we have,
(i) fα(0, y) = fα(π, y) = fα(x, 0) = fα(x, π) = 0, and
(ii) 0 < fα(x, y) < 2

π(eα−1) , for 0 < x, y < π.

Proof. (i) is easy to verify. The right inequality of (ii) is a direct consequence of
the following estimate:

∞∑
n=1

∣∣∣e−n2α sinnx sinny
∣∣∣ ≤ ∞∑

n=1

e−n
2α ≤

∞∑
n=1

e−nα =
1

eα − 1
.

Also by the above estimate, the infinite series defining fα(x, y) is absolutely sum-
mable, provided α > 0. Hence, we can integrate or differentiate the series using
termwise operation. Next, we fix any continuous φ(y) ≥ 0 with φ(0) = 0 and de-
fine ψ(α, x) =

∫ π
0
fα(x, y)φ(y) dy. Then ψ satisfies the heat equation ψα = ψxx.

Furthermore, ψ(0, x) = φ(x) ≥ 0 and ψ(α, 0) = ψ(α, π) = 0. Thus, ψ ≥ 0, by maxi-
mum principle (see Theorem 2 on p. 168 of [9]). This also shows that fα(x, y) ≥ 0.
To show fα(x, y) > 0 for 0 < x, y < π, we fix any y ∈ (0, π). Consider the func-
tion ξ(α, x) = fα(x, y) for α > 0 and x ∈ [0, y]. Then ξ(α, x) satisfies the heat
equation ξα = ξxx and ξ ≥ 0. Since ξ(α, y) > 0 and 0 is the minimum of ξ, there-
fore, by maximum principle, ξ(α, x) > 0 as well, for all α > 0 and 0 < x < y.
By the arbitrariness of y ∈ (0, π), we conclude that ξ(α, x) > 0 for all α > 0 and
0 < x < π.

Let X = C2(0, π)∩C[0, π], Y = C[0, π]. Then both X and Y are ordered Banach
spaces with the natural ordering, that is, for any w1, w2 ∈ X (or Y ), w1 ≤ w2 if and

only if w1(x) ≤ w2(x) for any x ∈ [0, π]. Define L : X → Y by Lw = −d
2w
dx2 + k2w

and J : Y → X by (Jw)(x) = g(0)
∫ π
0
fα(x, y)w(y)dy. Let G(x, y) be the Green

function of the operator L associated with w(0) = w(π) = 0. It can be easily
verified that

G(x, y) =


sinh(kx) sinh k(π − y)

k sinh(kπ)
, as 0 ≤ x ≤ y ≤ π,

sinh k(π − x) sinh(ky)

k sinh(kπ)
, as 0 ≤ y ≤ x ≤ π,

(6)

where sinh(x) = (ex − e−x)/2. The following theorem gives a necessary condition
for the existence of a positive solution to (4).
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Theorem 2.2. If

1 + k2 ≥ g(0)e−α, (7)

then there is no positive solution to (4).

Proof. Consider the linear eigenvalue problem −
d2w

dx2
+ k2w = λg(0)

∫ π

0

w(y)fα(x, y)dy,

w(0) = w(π) = 0.
(8)

The linear equation (8) can be rewritten as Tw = 1
λw where T = L−1J : Y → X.

By Lemma 2.1 and the property of the differential operator L, it is known (see e.g.,
[1]) that T is a strongly positive compact endomorphism in Ce[0, π], where e is the
unique solution of  −d

2w

dx2
+ k2w = 1, x ∈ (0, π),

w(0) = w(π) = 0,
(9)

and Ce[0, π] is the Banach space generated by the order unit e ∈ X with order unit
norm ‖ · ‖e (see [1]). By the famous Krein-Rutman theorem and its sharper version
for strongly positive linear operators (see Lemma 3.2 in [1]), the spectral radius
r(T ) is a simple positive eigenvalue of T having a positive eigenvector. Indeed, one
can easily determine r(T ) as

r(T ) =
g(0)

(1 + k2)eα
.

Now, assume for the sake of contradiction that w = w∗(x) is a positive solution to
(4). Then

− d2w∗

dx2
+ k2w∗ =

∫ π

0

w∗(y)g(w∗(y))fα(x, y)dy. (10)

Define J : Y → X by

(Jw)(x) =

∫ π

0

fα(x, y)g(w∗(y))w(y)dy,

and let T = L−1J : Y → X. Clearly, T is also a strongly positive compact
endomorphism of Ce[0, π]. By (H1), for any w > 0, g(w) < g(0). Thus, for any
w ∈ Ce[0, π], Tw < Tw. Again by Lemma 3.2 in [1], r(T ) < r(T ), where r(T ) is
the spectral radius of T . It follows that

r(T ) < r(T ) =
g(0)

(1 + k2)eα
≤ 1.

On the other hand, (10) implies that 1 is an eigenvalue of T corresponding to a
positive eigenvector w∗, contradicting r(T ) < 1. The proof is completed.

Remark 1. It is interesting to compare (4) with the corresponding Neumann BVP −
d2w

dx2
+ k2w =

∫ π

0

f (N)
α (x, y)b(w(y))dy

w′(0) = w′(π) = 0,
(11)

where

f (N)
α (x, y) =

1

π
+

2

π

∞∑
n=1

e−n
2α cosnx cosny. (12)
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Recently it is shown in [12] that (11) has no positive solution if and only if k2 ≥ g(0).
Note that k2 ≥ g(0) would lead to 1 + k2 > k2 ≥ g(0) > g(0)e−α. Thus when the
Neumann BVP (11)-(12) has no positive solution, then the corresponding Dirichlet
BVP (4)-(5) has no positive solution too. However, the reverse may not be true,
because the conditions (1 + k2)eα > g(0) > k2 are feasible.

3. Existence and uniqueness of positive solution to (4)—monotone case.
When b(w) = wg(w) satisfies certain monotonicity coupled with some other condi-
tions, (4) has a unique positive solution as stated in the theorem below.

Theorem 3.1. Assume that 1+k2 < g(0)e−α. Suppose there is a positive constant
M0, such that

(i) b′(w) ≥ 0 for any w ∈ [0,M0];
(ii) g(M0)γ ≤ k2, where

γ = max
x∈[0,π]

∫ π

0

fα(x, y)dy = max
x∈[0,π]

4

π

+∞∑
n=1

e−(2n−1)
2α sin(2n− 1)x

2n− 1
. (13)

Then (4) has a unique positive solution w(x) satisfying 0 < w(x) ≤ M0 for
x ∈ (0, π).

Proof. Since 1 + k2 < g(0)e−α, for sufficiently small ε, we have 1 + k2 < g(ε)e−α.
Let w(l)(x) = ε sinx, ε > 0. Thus, when ε is sufficiently small we have

−d
2w

dx2

(l)

(x) + k2w(l)(x)−
∫ π

0

fα(x, y)b(w(l)(y))dy

= ε[(1 + k2) sinx]− ε
∫ π

0

fα(x, y)(sin y)g(ε sin y)dy

≤ ε[(1 + k2) sinx]− εg(ε)

∫ π

0

fα(x, y)(sin y)dy

= ε[(1 + k2)− g(ε)e−α] sinx

≤ 0 for x ∈ (0, π),

implying that w(l) is a sub-solution to (4).
Next, we show that w(u)(x) ≡M0 is a super-solution to (4). Indeed,

−d
2w

dx2

(u)

(x) + k2w(u)(x)−
∫ π

0

fα(x, y)b(w(u)(y))dy

≥M0[k2 − g(M0)

∫ π

0

fα(x, y)dy]

= M0[k2 − g(M0)γ] ≥ 0.

Now we consider the nonlinear operator S : Y → X defined by

(Sw)(x) = L−1
(∫ π

0

fα(x, y)b(w(y))dy

)
,∀w ∈ Y.

For a constant K, denote by K̂ the constant function on [0, π] taking the value K.
By the monotonicity of b in the interval [0,M0], we know that S is strongly increasing

in the order interval [0̂, M̂0]. By a standard argument of sub and super solutions
(e.g., [2, 8]), we conclude that there is a positive solution w0 to (4) satisfying
w(l)(x) ≤ w0(x) ≤ w(u)(x) for x ∈ [0, π]. The uniqueness follows from an argument
similar to that in Hess [5].
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Theorem 3.1 confirms that there exists a unique positive solution within the order
interval [0̂, M̂0], but it does not answer if (4) has any positive solution that does
not belong to this order interval. The corollary below addresses this question.

Corollary 1. Suppose that the assumptions of Theorem 3.1 hold. Further assume
that b(w) ≤ b(M0) for w > M0. Then (4) has a unique positive solution.

Proof. We only need to show that there is no positive solution to (1) beyond the

order interval [0̂, M̂0]. Assume, for the sake of contradiction, that w̄ is a positive
solution to (4) satisfying maxx∈[0,π] w(x) > M0. Let x0 ∈ (0, π) be such that
w̄(x0) = maxx∈[0,π] w(x). Then

−d
2w̄

dx2
(x0) + k2w̄(x0)−

∫ π

0

fα(x0, y)b(w̄(y))dy

> k2M0 − b(M0)

∫ π

0

fα(x0, y)dy ≥M0(k2 − g(M0)γ) > 0,

a contradiction. The proof is completed.

Note that
+∞∑
n=1

e−(2n−1)
2α

2n− 1
sin(2n− 1)x ≤

+∞∑
n=1

1

2n− 1
e(−4n+3)α

= eα

[
+∞∑
n=1

1

n
(e(−2α))n −

+∞∑
n=1

1

2n
(e(−2α))2n

]

= eα
[
− ln(1− e−2α) +

1

2
ln(1− e−4α)

]
=

1

2
eα ln

e2α + 1

e2α − 1
.

Replacing γ by γ1 which has the explicit formula

γ1 =
2eα

π
ln
e2α + 1

e2α − 1
, (14)

we immediately have the following more convenient result.

Corollary 2. Assume that 1 + k2 < g(0)e−α. Suppose that b′(w) ≥ 0 in [0,M0]
where M0 = maxw∈[0,∞) b(w). If g(M0)γ1 < k2, then (4) has a unique positive
solution.

4. Existence and uniqueness of positive solution to (4) —Non-monotone
case. The results in Section 3 require a monotone condition: b′(w) ≥ 0 for w ∈
[0,M0], where M0 satisfies g(M0)γ ≤ k2. Noting that g(w) is decreasing in w,
there is a balancing issue: larger M0 will make the second condition easier to be
but in the mean time, will make the first condition (monotone condition) harder to
be satisfied. In this section, we develop an approach that enables us to drop the
monotone condition. As a cost, we need pose some other conditions to guarantee
the existence of a unique positive solution to (4).

By (H1) and (H2), b′(w) is bounded from below. Let η ∈ R be such that
η ≤ infw≥0 b

′(w) and set b0(w) = b(w)− ηw. Then (4) can be rewritten as −
d2w

dx2
+ k2w − η

∫ π

0

fα(x, y)w(y)dy =

∫ π

0

b0(w(y))fα(x, y)dy

w(0) = w(π) = 0,
(15)
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Clearly, b′0(w) ≥ 0 for any w ≥ 0.
Since η ≥ 0 implies b′(w) ≥ 0 for all w ≥ 0, which is the case discussed in Section

3, in the sequel we only consider the case η < 0.
Let L be as in Section 2, and define K : Y → X by

(Kw)(x) = −η
∫ π

0

fα(x, y)w(y)dy.

The following two lemmas are related to these two operators.

Lemma 4.1. If

− 4η

(1 + k2)π

1

eα − 1
< 1, (16)

then ||L−1K|| < 1.

Proof. For any w ∈ Y ,

(L−1Kw)(x) = −η
∫ π

0

G(x, u)

[∫ π

0

fα(u, y)w(y)dy

]
du

= −η
∫ π

0

[∫ π

0

G(x, u)fα(u, y)du

]
w(y)dy

= −2η

π

+∞∑
n=1

e−n
2α

∫ π

0

[∫ π

0

G(x, u) sinnudu

]
sinnyw(y)dy

= −2η

π

+∞∑
n=1

e−n
2α 1

n2 + k2
sinnx

∫ π

0

sinnyw(y)dy

≤ −4η

π

+∞∑
n=1

e−n
2α 1

n2 + k2
‖w‖

≤ − 4η

(1 + k2)π

1

eα − 1
‖w‖.

Thus, by (16), we have

‖L−1K‖ ≤ − 4η

(1 + k2)π

1

eα − 1
< 1.

Lemma 4.2. Assume that (16) holds. If

− 8η

π

sinh4 kπ
2

k3 sinh kπ

1

eα − 1
< 1, (17)

then (L+K)−1 is positive.

Proof. Noticing that if ‖L−1K‖ < 1 by Lemma 4.1, we have

(L+K)−1 = [L(I + L−1K)]−1 = (I + L−1K)−1L−1 =

+∞∑
k=0

(−L−1K)kL−1

= [I − L−1K + (L−1K)2 − (L−1K)3 + · · · ]L−1

= [I + (L−1K)2 + (L−1K)4 + (L−1K)6 + · · · ][I − L−1K]L−1

=

+∞∑
k=0

(L−1K)2k[L−1 − L−1KL−1].
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It is easy to see that
+∞∑
k=0

(L−1K)2k is positive due to the positivity of L−1 and K.

Therefore, we only need to show that L−1 − L−1KL−1 is positive. To this end, we
show that for any u ≥ 0, L−1u ≥ L−1KL−1u.

For any w ∈ C[0, π],

(L−1w)(x) =

∫ π

0

G(x, y)w(y) dy,

and by the Fubini theorem,

(L−1KL−1w)(x) = −
∫ π

0

G(x, v)

{
η

∫ π

0

fα(v, u)

[∫ π

0

G(u, y)w(y)dy

]
du

}
dv

= −
∫ π

0

{∫ π

0

G(x, v)

[
η

∫ π

0

fα(v, u)G(u, y)du

]
dv

}
w(y)dy.

Thus, we only need to show that for any x, y ∈ [0, π],

−
∫ π

0

G(x, v)

[
η

∫ π

0

fα(v, u)G(u, y)du

]
dv ≤ G(x, y). (18)

Note that∫ π

0

fα(v, u)G(u, y)du =
2

π

+∞∑
n=1

e−n
2α sinnv

[∫ π

0

sinnuG(u, y)du

]
.

It is known that the boundary value problem −
d2w

dy2
+ k2w = sinny

w(0) = w(π) = 0,
(19)

has a unique solution which is given by

w(y) =

∫ π

0

sinnuG(u, y) du

On the other hand, one can easily verify that w(y) = 1
n2+k2 sinny satisfies (19).

Thus, ∫ π

0

sinnuG(u, y)du =
1

k2 + n2
sinny,

and therefore, ∫ π

0

fα(v, u)G(u, y)du =
2

π

+∞∑
n=1

e−n
2α

k2 + n2
sinnv sinny. (20)

This leads to

−
∫ π

0

G(x, v)

[
η

∫ π

0

fα(v, u)G(u, y)du

]
dv

= −η
∫ π

0

G(x, v)

[
2

π

+∞∑
n=1

e−n
2α

k2 + n2
sinnv sinny

]
dv

= −2η

π

+∞∑
n=1

e−n
2α

k2 + n2
sinny

∫ π

0

G(x, v) sinnvdv

= −2η

π

+∞∑
n=1

e−n
2α

(k2 + n2)2
sinnx sinny.
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Since∫ π

0

G(u, y)du =

∫ π

0

G(y, u)du =
1

k2 sinh kπ
[sinh kπ − sinh ky − sinh k(π − y)],

we have

1

k2 + n2
sinnx =

∫ π

0

sinnuG(u, x)du ≤
∫ π

0

G(u, x)du

=
1

k2 sinh kπ
[sinh kπ − sinh kx− sinh k(π − x)].

Therefore,

−
∫ π

0

G(x, v)

[
η

∫ π

0

fα(v, u)G(u, y)du

]
dv

≤ −2η

π

1

k4 sinh2 kπ
[sinh kπ − sinh kx− sinh k(π − x)]

·[sinh kπ − sinh ky − sinh k(π − y)]

+∞∑
n=1

e−n
2α.

Set

c =

√√√√−2η

π

1

k3 sinh kπ

+∞∑
n=1

e−n2α.

We now prove that for any x, y ∈ [0, π],

c[sinh kπ − sinh kx− sinh k(π − x)] ≤ sinh kx, (21)

and

c[sinh kπ − sinh kx− sinh k(π − x)] ≤ sinh k(π − x). (22)

Let h(c, x) = (c + 1) sinh kx + c sinh k(π − x) − c sinh kπ. Simple calculations give
h′x(c, x) = k(c + 1) cosh kx − kc cosh k(π − x) and h′′x(c, x) = k2(c + 1) sinh kx +
k2c sinh k(π − x) ≥ 0 for all x ∈ [0, π]. Note that by (17) and Lemma 2.1-(ii), we
have

c =

√√√√−2η

π

1

k3 sinh kπ

+∞∑
n=1

e−n2α <

√
−2η

π

1

k3 sinh kπ

1

eα − 1
<

1

2 sinh2 kπ
2

,

which implies that h′x(c, 0) ≥ 0. This together with h′′x(c, x) ≥ 0 further leads to
h′x(c, x) ≥ 0 for all x ∈ [0, π]. From this and the fact that h(c, 0) = 0, it follows
that h(c, x) ≥ 0 for all x ∈ [0, π], confirming (21).

By a similar argument, we can prove (22). Therefore, we have proved that
(18) holds, and thus, the operator L−1 − L−1KL−1 (hence (L + K)−1) is positive,
completing the proof.

Remark 2. The conditions (16) and (17) can hold simultaneously. To see this, we
note that

lim
k→0

sinh kπ

kπ
= 1.

Thus, for any η < 0, we may take α such that

−ηπ
2

2
< eα − 1.
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Then,

−8η

π

sinh4 kπ
2

k3 sinh kπ

1

eα − 1
→ −ηπ

2

2

1

eα − 1
< 1, as k → 0

and

− 4η

(1 + k2)π

1

eα − 1
→ −4η

π

1

eα − 1
< −ηπ

2

2

1

eα − 1
< 1, as k → 0,

implying that (16) and (17) both hold when k > 0 is sufficiently small.

Remark 3. The main idea of the proof of Lemma 4.2 is essentially due to Freitas
and Sweers [3], where the authors gave a general result on the Dirichlet boundary
value problem of nonlocal elliptic equations in a bounded domain with dimension
great than or equal to 3 . By using estimates of integral kernels involved, they gave
some conditions which ensure that the monotonicity is preserved.

Now we are in a position to state and prove the main theorem of this section.

Theorem 4.3. Suppose that 1 + k2 < g(0)e−α and that there is a positive constant
M1 such that k2 > g(M1)γ1, where γ1 is given by (14). If both (16) and (17) hold,
then (4) has a unique positive solution.

Proof. By the proof of Theorem 3.1, w(l) = ε sinx is a sub-solution to (4) for

sufficiently small ε > 0. Also one can easily verify that w(u) = M̂1 is a super
solution. Define the nonlinear operator T : Y → X by

(T w)(x) = (L+K)−1
∫ π

0

fα(x, y)b0(w(y))dy, (23)

Since b′0(w) ≥ 0 for any w ≥ 0, by Lemma 2.1, the operator S̃ : Y → X is positive

and strongly monotone, where S̃ is defined by

(S̃w)(x) =

∫ π

0

fα(x, y)b0(w(y))dy,∀w ∈ Y. (24)

This together with Lemma 4.2 implies that T is positive and strongly monotone.
Employing a standard super and sub-solution argument, we know that (4) has a
maximal positive solution and a minimal positive solution in the ordered interval
[w(l), M̂1], denoted by w̄(x) and w(x) respectively.

Next, we prove the uniqueness of positive solution to (4) in the order interval

[w(l), M̂1]. Let w0 be any positive solution to (4) satisfying w(l) ≤ w0 ≤ M̂1. Then
w0(x) ≤ w̄(x) for x ∈ [0, π]. If w0 6= w̄, then w0 < w̄ in the sense of ordering in
Banach space X.

Consider the eigenvalue problem −
d2w

dx2
+ k2w = λ

∫ π

0

g(w̄(y))fα(x, y)w(y)dy

w(0) = w(π) = 0.
(25)

Let S1 : Y → X be a linear operator defined by

(S1w)(x) =

∫ π

0

g(w̄(y))fα(x, y)w(y)dy,∀w ∈ Y, (26)

and T1 : Y → X defined by T1 = L−1S1. Clearly, T1 is a strongly positive compact
endomorphism of Ce[0, π] (see the proof of Theorem 2.2). Again by Theorem 3.2
in [1], the spectral radius r(T1) is the only eigenvalue having positive eigenvector.
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It follows that r(T1) = 1 since w̄ is a positive eigenvector corresponding to the
eigenvalue 1 of the eigenvalue problem (25).

Similarly, consider the eigenvalue problem −
d2w

dx2
+ k2w = λ

∫ π

0

g(w0(y))fα(x, y)w(y)dy

w(0) = w(π) = 0.
(27)

Define the operator S2 by

(S2w)(x) =

∫ π

0

g(w0(y))fα(x, y)w(y),∀w ∈ Y, (28)

and let T2 = L−1S2. Then T2 is also a strongly positive compact endomorphism of
Ce[0, π]. Since w0 is a positive eigenvector corresponding to the eigenvalue 1 of the
eigenvalue problem (28), we get r(T2) = 1. However, since w0 < w̄, by (H1), we get
g(w0(x)) ≥ g(w̄(x)) but g(w0(x)) 6= g(w̄(x)) on [0, π]. Therefore, S2w > S1w for
any w ∈ Y , implying that T2w > T1w for any w ∈ Y . From the monotonicity of
the spectral radius, it follows that 1 = r(T2) > r(T1) = 1, which is a contradiction.
Therefore, we have w0(x) ≡ w̄(x) for all x ∈ [0, L], i.e., w0 = w̄, proving uniqueness

of positive solution of (4) in the order interval [w(l), M̂1]. Because ε > 0 is arbitrary,
we have actually shown that (4) has a unique positive solution in the order interval

[0, M̂1].
By the fact that g is decreasing, we can exclude positive solutions of (4) beyond

the interval [0, M̂1]. Otherwise, we assume that there is a positive solution to (4),
say w̃, satisfying maxx∈[0,π] w̃(x) > M1. Let M2 = maxx∈[0,π] w̃(x). Then M2 > M1

and hence g(M2)γ1 < g(M1)γ1 < k2. Replacing M1 by M2 in the above proof, we

can actually conclude that (4) has a unique positive solution in the interval [0, M̂2].

But now, both w̄ and w̃ are located in [0, M̂2], a contradiction, which implies the
uniqueness. The proof is completed.

Remark 4. In order to obtain a positive solution to (4) in the ordered interval

[w(l), M̂1], we do not need η to be the minimum of b′(w) in the whole half line
w ≥ 0. In fact, if we choose η = minw∈[0,M1] b

′(w), then the conclusion of Theorem
4.3 still holds except for the result on the global uniqueness. Also, from the proof
of Theorem 4.3, we see that this theorem is still valid if γ1 is replaced by γ. Since
γ1 has an explicit formula, here and in the sequel, we use γ1.

By Remark 4, if b is increasing in the interval [0,M0] and b(M0) = supw∈[0,∞) b(w),

we may take η = 0. Then (16) and (17) hold automatically. Furthermore, if
1 + k2 < g(0)e−α (necessary condition) and k2 > g(M0)γ1, then (4) has a unique
positive solution. This is just the conclusion of Corollary 1. Since g(w) is decreas-
ing (by (H1)), there may occur the case that k2 ≤ g(M0)γ1 but k2 ≥ g(M1)γ1 for
some M1 > M0. This is true especially when limw→∞ g(w) = 0. For such a truly
non-monotone case, we have the following corollary.

Corollary 3. Suppose that there is a positive constant M0, such that b′(w) > 0,
for w < M0 and b′(w) < 0 for w > M0. Assume, in addition to (H1), that

lim
w→+∞

g(w) = 0. If the following inequalities

− ηπ2

2

1

eα − 1
< 1, (29)

1 < g(0)e−α (30)
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hold simultaneously, then for sufficiently small k, (4) has a unique positive solution.

Proof. By (29), (30) and Remark 2, inequalities (16), (17) and 1 + k2 < g(0)e−α

hold simultaneously for sufficiently small k. Since lim
w→+∞

g(w) = 0, for such an ap-

propriately chosen k, there exists M1 > M0, such that k2 > g(M1)γ1. By Theorem
4.3, there exists a unique positive solution to (4), and the proof is completed.

5. Examples. In this section, we present two examples to illustrate the applica-
bility of our main results.

First we consider the following equation

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
−dw(t, x)+

∫ π

0

fα(x, y)b1(w(t−τ, y))dy, t ≥ 0, x ∈ (0, π)

(31)
b1(w) = εpwe−qw which is referred to as the Ricker’s birth function in population
dynamics. Here ε accounts for the probability that newly born individual can
survive the immature period of length τ , and hence is of the form ε = e−δτ with δ
being the death rate of immature population (see,[6, 10]).

Transforming the steady state equation of (31), i.e.,

−Dd
2w

dx2
+ dw =

∫ π

0

fα(x, y)b1(w(y))dy,

into the form of (4), we then obtain k =
√
d/D and b(w) = b1(w)/D = wg(w) with

g(w) = (εp/D)e−qw. Calculations show that g(0) = εp/D, b′(w) = (εp/D)(1 −
qw)e−qw, b′′(w) = (εpq/D)(qw − 2)e−qw. Thus, b′(2/q) = minw∈[0,+∞) b

′(w) =

−εp/(De2), b(1/q) = maxw∈[0,+∞) b(w) = εp/(qeD). So we can take η = −εp/(De2)
and M0 = 1/q.

Combining the above with Theorem 2.2 and Corollary 2, we have

Proposition 1. If 1 + d
D ≥

εp
D e
−α, then there is no positive steady state for (5)

subject to the homogeneous Dirichlet boundary condition; if 1 + d
D < εp

D e
−α, and

d > 2εpeα−1

π ln e2α+1
e2α−1 , then there exists a unique positive steady state.

Applying Corollary 3 to this example, we have

Proposition 2. If eα < εp
D < 2e2

π2 (eα−1), then for sufficiently small d
D , there exists

a unique positive steady state for (5) subject to the homogeneous Dirichlet boundary
condition.

The second example is the following nonlocal reaction diffusion equation

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
−dw(t, x)+

∫ π

0

fα(x, y)b2(w(t−τ, y))dy, t ≥ 0, x ∈ (0, π)

(32)
where b2(w) = pw

q+wm , m > 0, p > 0, q > 0. This nonlinear function b2(w) was

used as the production function for blood cells in [7], and has since been widely
adopted. Again, transforming the steady state equation of (5.1) into the form of

(1.4), we obtain k =
√

d
D , b(w) = wg(w), g(w) = p

D(q+wm) . Clearly, g(0) = p
qD ,

b′(w) = p
D

(1−m)wm+q
(q+wm)2 .

The parameter m > 0 has a qualitative impact on the shape of b(w). If m ≤ 1,
then b′(w) ≥ 0 for w ≥ 0. In this case, one can easily study the existence and
uniqueness of positive steady state of (32) by monotone iteration techniques.
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If m > 1, then b′(w) > 0 for w < M0 and b′(w) < 0 for w > M0 where
M0 = ( q

m−1 )1/m. Since

b′′(w) =
pmwm−1

D(m− 1)(q + wm)3

[
wm − q(m+ 1)

m− 1

]
,

the derivative function b′(w) attains its minimum at w = M1 =
(
q(m+1)
m−1

)1/m
.

Hence we can choose η = b′(M1) = − (m−1)2p
4mqD . By Theorem 2.2 and Corollary 2,

we then have the following result for (32) subject to the homogeneous Dirichlet
boundary condition.

Proposition 3. Assume that m > 1. If 1 + d
D ≥

p
qD e

−α, then there is no positive

steady state for (32) subject to the homogeneous Dirichlet boundary condition; if

1 + d
D < p

qD e
−α and d > 2p(m−1)eα

qmπ ln e2α+1
e2α−1 , then (32) has a unique positive steady

state subject to the homogeneous Dirichlet boundary condition.

Applying Corollary 3 to (32), we have

Proposition 4. Assume m > 1. If eα < p
qD < 2e2

π2 (eα − 1), then for sufficiently

small d
D , there exists a unique positive steady state for (32) subject to the homoge-

neous Dirichlet boundary condition.

Remark 5. The sufficient conditions in Proposition 1-4 are feasible in the sense
that within certain ranges of parameters, these conditions will be satisfied. For
example, one can verify that the conditions in the second half of Proposition 1
(Proposition 3 as well) are satisfied when D = 0.1, d = 0.2, α = 1 and εp = 1
(p/q = 1,∀m > 1). Feasibility of the sufficient conditions in Proposition 2 and
Proposition 4 can also be easily checked.

Acknowledgments. This work was completed when ZG and ZY were visiting the
University of Western Ontario. They would like to thank the staff in the Depart-
ment of Applied Mathematics for their friendly and helpful assistance during their
visit, and thank the university for the support from its Visiting University Scholar
Program.

REFERENCES

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,
SIAM Review, 18 (1976), 620–709.

[2] L. C. Evans, “Partial Differential Equations,” Graduate Studies in Mathematics, Vol. 19,
American Mathematical Society, Providence, RI, 1998.

[3] P. Freitas and G. Sweers, Positivity results for a nonlocal elliptic equation, Proceedings of
the Royal Society of Edinburgh, 128A (1998), 697–715.

[4] W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson’s blowflies revisited , Nature, 287
(1980), 17–21.

[5] P. Hess, On uniqueness of positive solutions to nonlinear elliptic boundary value problems,
Math. Z., 154 (1977), 17–18.

[6] D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay

on bounded fields and their numeric computations, Diff. Eqns. Dynam. Syst., 11 (2003),

117–139.
[7] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science,

197 (1977), 287–289.
[8] C. V. Pao, “Nonlinear Parablic and Elliptic Equations,” Plenum, New York, 1992.
[9] M. H. Protter and H. F. Weinberger, “Maximum Principle in Differential Equations,”

Springer-Verlag, New York, 1984.

http://www.ams.org/mathscinet-getitem?mr=MR0415432&return=pdf
http://dx.doi.org/10.1137/1018114
http://www.ams.org/mathscinet-getitem?mr=MR1625845&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1635408&return=pdf
http://dx.doi.org/10.1017/S0308210500021727
http://dx.doi.org/10.1038/287017a0
http://www.ams.org/mathscinet-getitem?mr=MR0442468&return=pdf
http://dx.doi.org/10.1007/BF01215108
http://www.ams.org/mathscinet-getitem?mr=MR2065280&return=pdf
http://dx.doi.org/10.1126/science.267326
http://www.ams.org/mathscinet-getitem?mr=MR1212084&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0762825&return=pdf


1838 ZHIMING GUO, ZHICHUN YANG AND XINGFU ZOU

[10] J. W.-H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age
structure-I. Traveling wave fronts on unbounded domains, Proc. Royal Soc. London. A, 457

(2001), 1841–1853.

[11] D. Xu and X.-Q. Zhao, A nonlocal reaction diffusion population model with stage structure,
Canadian Applied Mathematics Quarterly, 11 (2003), 303–319.

[12] X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with
delay, Canad. Appl. Math. Quart., 17 (2009), 271–281.

Received March 2011; revised September 2011.

E-mail address: guozm@gzhu.edu.cn

E-mail address: zhichy@yahoo.com.cn

E-mail address: xzou@uwo.ca

http://www.ams.org/mathscinet-getitem?mr=MR1852431&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2132202&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2681422&return=pdf
mailto:guozm@gzhu.edu.cn
mailto:zhichy@yahoo.com.cn
mailto:xzou@uwo.ca

	1. Introduction
	2. Preliminaries
	3. Existence and uniqueness of positive solution to (4)�monotone case
	4. Existence and uniqueness of positive solution to (4) �Non-monotone case
	5. Examples
	Acknowledgments.
	REFERENCES

