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Generic Quasi-Convergence for Essentially
Strongly Order-Preserving Semiflows

Taishan Yi and Xingfu Zou

Abstract. By employing the limit set dichotomy for essentially strongly order-preserving semiflows

and the assumption that limit sets have infima and suprema in the state space, we prove a generic

quasi-convergence principle implying the existence of an open and dense set of stable quasi-convergent

points. We also apply this generic quasi-convergence principle to a model for biochemical feedback

in protein synthesis and obtain some results about the model which are of theoretical and realistic

significance.

1 Introduction

Hirsch [2] showed that almost all orbits of a cooperative and irreducible system of
ordinary differential equations tend to the set of equilibria. Such a generic quasi-

convergence property was extended by Hirsch [3] to strongly monotone semiflows
in strongly ordered spaces. Matano [7, 8] obtained results parallel to Hirsch’s. The

results of Hirsch and Matano were later improved by Poláčik [9], Smith and Thieme

[14,15] and Takáč [16]. For a semiflow, the generic quasi-convergence property usu-
ally requires two types of conditions on the system:

(I) a certain type of monotonicity on the semiflow;
(II) some compactness assumption on the semiflow.

Along the direction of (I), Yi and Huang [18] recently considered a class of the
so-called essentially strongly order-preserving semiflows, and extended several prin-

ciples for strongly order-preserving semiflows to this class of semiflows. By these
principles and certain compactness hypotheses, they were able to obtain some results

on convergence, quasi-convergence, and stability for such semiflows. When applying

the results to a quasi-monotone system of delay differential equations, they observed
an obvious advantage: this new order-preserving property for the systems (i.e., es-

sentially strongly order-preserving property) neither requires a dedicated choice of

state space nor the technical ignition assumption required in the classical works (see,
e.g., Smith [13] for details).

For (II), Hirsch and Smith [4] have recently shown that the strong compactness
assumptions on strongly order-preserving semiflows required for the proof of the

generic quasi-convergence principle in the aforementioned works can be replaced by
the assumption that limit sets have infima and suprema in the state space. As pointed
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out by Hirsch and Smith [4], every compact subset of the space of continuous func-
tions on a compact set with the usual ordering has an infimum and a supremum.

Hence, the assumption that limit sets have infima and suprema in the state space is
automatically satisfied when the generic quasi-convergence principle in Hirsch and

Smith [4] is applied to cooperative and irreducible systems of delay differential equa-

tions in the sense of Smith [12]. This means that the difficulty in verifying compact-
ness assumptions in previous works (i.e., Smith and Thieme [15]) can be avoided for

systems with bounded delays. For details on this topic, we refer to the monographs

by Hirsch and Smith [5], Smith [13] and Wu [17].

This work is motivated by [4] and [18]. The goal is to investigate whether or

not the generic quasi-convergence property still holds for essentially strongly order-

preserving if the compactness condition is in the sense of [4]. More precisely, we
employ the limit set dichotomy for essentially strongly order-preserving semiflows

and the assumption that limit sets have infima and suprema in the state space to

prove a generic quasi-convergence principle, which naturally has the advantages of
both [4] and [18], and thus is of theoretical and realistic significance for various

systems with bounded delays.

The rest of this paper is organized as follows. In Section 2, we state some pre-
liminary results from Yi and Huang [18], which also serve as preparation for the

statement and proof of the main result. In Section 4, we establish a new generic

quasi-convergence principle for essentially strongly order-preserving semiflows. As
an illustration, in Section 4 we apply our generic quasi-convergence principle to a

model of biochemical feedback in protein synthesis.

2 Preliminary Results

Let X be an ordered metric space with metric d and a closed partial order relation
R ⊆ X × X. For any x, y ∈ X, we write x ≤ y if and only if (x, y) ∈ R, and x < y if

and only if (x, y) ∈ R and x 6= y. Given two subsets A and B of X, we write A ≤ B

(A < B, respectively) whenever x ≤ y (x < y, respectively) for each choice of x ∈ A

and y ∈ B. For x ∈ X and A ⊂ X, we have x ≤ A if and only if x ≤ a for every a ∈ A.

We assume that Φ : X × R1
+ → X is a semiflow on X, that is, Φ is continuous and

Φt(x) ≡ Φ(x, t), satisfying

(i) Φ0(x) = x for all x ∈ X;

(ii) Φt(Φs(x)) = Φt+s(x) for all x ∈ X and t, s ∈ R1
+.

For x ∈ X, let O(x) = {Φt(x) : t ≥ 0}. If O(x) is compact, we define ω(x) =⋂
t≥0 O(Φt(x)). As is well known, ω(x) is nonempty, compact, connected, and in-

variant. Let E = {x ∈ X : Φt (x) = x, t ≥ 0} be the set of equilibria of Φ. The set

of quasi-convergent points is denoted by Q = {x ∈ X : ω(x) ⊂ E} and the set of
convergent points by C = {x ∈ X : ω(x) is a singleton set}.

The semiflow Φ is said to be a continuous monotone semiflow on X, that is, Φ is

a continuous semiflow on X and whenever x, y ∈ X with x ≤ y, we have Φt(x) ≤
Φt(y) for all t ≥ 0. For any x, y ∈ X and some constant t0 ≥ 0, we write x �t0

y if

and only if there exist x̃, ỹ ∈ X with x̃ ≤ ỹ such that Φt0
(x̃) = x and Φt0

(ỹ) = y. We

shall write “�” for “�t0
” when no confusion results. We also write x ≺ y if and only
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if x � y and x 6= y. For A, B ⊂ X, we write A � B to mean “a � b for any a ∈ A

and b ∈ B”, and A ≺ B to mean “a ≺ b for any a ∈ A and b ∈ B”.

The following definition can be found in Yi and Huang [18].

Definition 2.1 The semiflow Φ is said to be essentially strongly order-preserving

if for any x, y ∈ X with x ≺ y, there exist open sets U and V , and some constant

T0 ≥ 0 such that x ∈ U , y ∈ V and ΦT0
(U ) ≤ ΦT0

(V ).

Remark 2.2. As pointed out in [18], if T0 = 0, then a monotone and essentially

strongly order-preserving semiflow is just strongly order-preserving in the sense of

Smith and Thieme [15].

Throughout the remainder of this paper, we always assume that the semiflow Φ is
monotone and essentially strongly order-preserving on X.

The proofs of the following several results can be found in Yi and Huang [18].

Proposition 2.3 If z ∈ X, x ∈ ω(z) and x ≤ ω(z) (ω(z) ≤ x), then ω(z) = {x}.

Proposition 2.4 Let K and H be two compact subsets of X satisfying K ≺ H. Then

there are two open sets U and V , K ⊂ U , H ⊂ V , and T0 ≥ 0, ε > 0 such that

ΦT0+s(U ) ≤ ΦT0
(V ) and ΦT0

(U ) ≤ ΦT0+s(V ), 0 ≤ s ≤ ε.

Theorem 2.5 (Limit set dichotomy) Let x, y ∈ X satisfy x ≺ y. Then one of the

following holds:

(i) ω(x) < ω(y);

(ii) ω(x) = ω(y) ⊂ E.

3 Generic Quasi-Convergence

Assume that A ⊆ X and denote by L = {x ∈ X : x ≤ A} the set of the lower bounds
of A in X. If there exists u ∈ X such that u ∈ L with L ≤ u, then u is the infimum

of A and we denote it by inf A. Similarly, we can define the supremum of A, namely,

sup A. It should be pointed out that inf A and sup A do not necessarily exist. For
x ∈ X, we say that x can be essentially approximated from below (above) in X if for

any neighborhood U of x, there exists y ∈ U such that y ≺ x (x ≺ y). For p ∈ E, we

define C(p) = {x ∈ X : ω(x) = {p}}. One can observe that C =
⋃

p∈E C(p).
Throughout the rest of this paper, we always assume that every orbit of the semi-

flow Φ has compact closure in X. Moreover, we introduce the following assumptions.
(ELI) There exists an open and dense subset X0 of X such that every point of X0

can be essentially approximated from below and its omega limit set has the infimum.

(ELS) There exists an open and dense subset X0 of X such that every point of X0

can be essentially approximated from above and its omega limit set has the supre-

mum.

The following two key lemmas are an improvement of [4, Lemma 3.2].

Lemma 3.1 Assume that (ELI) holds, and let x ∈ X0 \ Q and a = infω(x). Then

ω(a) = {p} < ω(x) and x ∈ Int C(p).
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Proof Suppose that M is a neighborhood of x in X. By Proposition 2.3, we have
a < ω(x). It then follows from the invariance of ω(x) that Φt(a) ≤ ω(x), and hence

Φt(a) ≤ a for all t ∈ R1
+. So, by [13, Theorem 1.2.1], there exists an equilibrium

p ≤ a such that ω(a) = {p}. From p ≤ a < ω(x) and Proposition 2.4, it follows

that there exist a neighborhood N of ω(x) and a T0 > 0 such that p ≤ Φt(N) for all

t ≥ T0. The definition of ω(x) implies that there exists T1 > 0 such that ΦT1
(x) ∈ N

and thus, p ≤ Φt (x) for all t ≥ T0 + T1. Let

V = M ∩ (ΦT1
)−1(N).

Then V is a neighborhood of x in M and we also have p ≤ Φt (V ) for all t ≥ T0 + T1.
This implies that p ≤ ω(v) for all v ∈ V . Since x can be essentially approximated

from below, it follows that there exists y ∈ V such that y ≺ x. Applying Theorem 2.5

and the fact that x /∈ Q, we obtain ω(y) < ω(x). Therefore, by Proposition 2.4, there
exist a neighborhood Ũ of ω(y) in X and a T2 > 0 such that Φt(Ũ ) ≤ ω(x) for all

t ≥ T2. Again by the definition of ω(y), there exists T3 > 0 such that ΦT3
(y) ∈ Ũ .

Let

U = (ΦT3
)−1(Ũ ) ∩V.

Then U is a neighborhood of y in V and we also have Φt (U ) ≤ ω(x) for all t ≥
T2 + T3. So, we get ω(u) ≤ ω(x) for all u ∈ U . Thus, ω(u) ≤ a for all u ∈ U , and

hence ω(u) ≤ ω(a) = {p}. Again since p ≤ ω(v) for all v ∈ V , we have ω(u) = {p}
for all u ∈ U . Therefore U ⊆ C(p)

⋂
M, hence x ∈ Int C(p). This completes the

proof.

Arguing as in the proof of Lemma 3.1, we can also obtain the following result.

Lemma 3.2 Assume that (ELS) holds, and let x ∈ X0 \ Q and a = supω(x). Then

ω(a) = {p} > ω(x) and x ∈ Int C(p).

Applying Lemmas 3.1 and 3.2 and arguing almost precisely as in the proof of [18,

Theorem 3.1], we can obtain the following generic quasi-convergence principle.

Theorem 3.3 Assume that either (ELI) or (ELS) holds. Then X0 \ Q ⊂ Int C and the

set Int Q is dense.

Proof We may assume that (ELI) ((ELS) resp.) holds. From Lemma 3.1 (Lemma 3.2

resp.), it follows that X0 \ Q ⊆ Int C , which implies X0 ⊆ Q ∪ Int Q. This proves

X0 \ Int Q ⊆ Int Q, and hence X0 ⊆ Int Q. Therefore X = X0 ⊆ Int Q, completing
the proof.

4 An Application

In this section, as an application of Theorem 3.3, we consider a class of well-known

systems of delay differential equations.

Let r > 0 be given and let C(n)
= C([−r, 0],Rn) be the Banach space of continuous

mappings from [−r, 0] into Rn, equipped with the usual supremum norm. Define

C(n)
+ = C([−r, 0],Rn

+). Note that C(n)
+ is an order cone in C(n) and induces the usual
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pointwise ordering: for ϕ, ψ ∈ C(n), we denote

(i) ϕ ≤ ψ if and only if ψ − ϕ ∈ C(n)
+ ;

(ii) ϕ < ψ if and only if ϕ ≤ ψ and ϕ 6= ψ;
(iii) ϕ≪ ψ if and only if ψ − ϕ ∈ Int(C(n)

+ .

If σ > 0 and ϕ = (ϕ1, . . . , ϕn) ∈ C([−r, σ],Rn), then for any t ∈ [0, σ], we let
ϕi,t ∈ C([−r, σ],Rn) be defined by ϕi,t(θ) = ϕi(t + θ), −r ≤ θ ≤ 0. Consider the

following biochemical feedback system

(4.1)

{
x ′

1(t) = f (xn,t ) − α1x1(t),

x ′
i (t) = Li−1(xi−1,t) − αixi(t), 2 ≤ i ≤ n,

where αi > 0, Li(φ) =
∫ 0

−r
φ(θ)dηi (θ), ηi : [−r, 0] → R1 is nondecreasing,

ηi(−r) = 0, and ηi(0) > 0.

We say that f is essentially cooperative and irreducible on the ordered Banach
space (C(1),C(1)

+ ) in the sense of Yi and Huang [18] if f satisfies the following condi-

tions.

(i) For any ϕ ∈ C(1)
+ with ϕ(0) = 0, f ′(ψ)(ϕ) ≥ 0 for all ψ ∈ C(1).

(ii) f ′(ψ)1̂ > 0, where 1̂ is a constant equal to 1 in C(1).

We can verify that system (4.1) satisfies the assumptions (H) and (I) in Smith [11]
but generally fails to satisfy the ignition assumption (R) in [11] (see [18] for more

related discussion and example). However, system (4.1) is essentially cooperative

and irreducible in the sense of Yi and Huang [18].
In what follows, we assume that for every initial function ϕ ∈ C(n), (4.1) has a

unique solution satisfying the initial condition and existing on R1
+. For ϕ ∈ C(n),

we use xt(ϕ) to denote the solution of (4.1) with the initial value x0(ϕ) = ϕ. By

[18, Theorem 2.1], xt( · ) generates an essentially strongly order-preserving semiflow,

that is, if ϕ, ψ ∈ C(n), ϕ < ψ and t ≥ r, then either xt (ϕ) = xt (ψ) or xt(ϕ) ≪ xt (ψ).
Moreover, if ϕ≪ ψ, then xt(ϕ) ≪ xt (ψ) for all t ≥ r. Hence, every point of C(n) can

be essentially approximated from above (below).

System (4.1) has been used to model biochemical feedback in protein synthesis
and has been investigated by many authors (see, e.g., [1, 6, 10]). Our next result can

be considered as an improvement of a result in Smith [11] where the author showed

that choosing a state space properly is necessary for eventually strong monotonicity.
But the result established in this paper neither requires the delicate choice of state

space nor the technical ignition assumption, and hence gives more easily verifiable
conditions and a wider range of applications.

Theorem 4.1 Suppose f is completely continuous and suppose that each solution of

(4.1) is bounded. Then there exists an open and dense subset in C(n) such that each orbit

with the initial function in the subset converges to the set of equilibria of (4.1).

Proof By [18, Theorem 2.1], the solution semiflow xt(·) is essentially strongly order-

preserving. According to Hirsch and Smith [4], every compact subset has an infimum
and supremum in (C(n),C(n)

+ ). Hence the hypotheses of Theorem 4.1 are satisfied,

and the conclusion follows.
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