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a b s t r a c t

Spatiotemporal dynamics in a ratio-dependent predator–preymodelwith diffusion is stud-
ied by analytical methods. Normal forms associated with codimension-two Hopf–Turing
bifurcation are derived, which can be used to understand and classify the spatiotemporal
dynamics of themodel for values of parameters close to the Hopf–Turing bifurcation point.
In the vicinity of this degenerate point, a wealth of complex spatiotemporal dynamics are
observed. Our theoretical results are confirmed by numerical simulations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

After the pioneering works of Lotka and Volterra, the qualitative research on the dynamics of predator–prey models
has been in the focus of ecological and mathematical sciences (see, e.g., Freedman [1], Murray [2] and references therein).
Predator–prey systems are characterized by the interaction between species and their natural environments. Functional
response is proposed for modeling predator–prey interactions, which describes how the consumption rate of individual
consumers changes with respect to resource density. Traditionally, the functional response depends only on prey density
and is called a prey-dependent functional response. Following Holling [3], the prey-dependent functional responses are
generally classified into three types, which are called Holling’s type I, II and III. The qualitative study on the prey-dependent
predator–prey models is useful to help population ecologists understand the factors that influence population dynamics
and has been regarded as important contributions that mathematics had for ecology.

However, the prey-dependent predator–prey models are very controversial among ecologists up to this day because of
the following reasons: (1) it cannot explain the laboratory experiments and observations that the predators or both the
predators and prey can either go extinction or coexist in oscillatory modes depending on the initial population densities
(see [4–8]); (2) it exhibits the well known ‘paradox of enrichment’ formulated by Hairston et al. [9] and Rosenzweig [10],
which states that enriching a predator–prey system (increasing the carrying capacity) will cause an increase in the
equilibrium density of the predator but not in that of the prey, and will finally destabilize the positive equilibrium; (3) it
exhibits the so-called ‘biological control paradox’ [11], which states that we cannot have a low and stable prey equilibrium
density compared with its carrying capacity.
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Recently, there are growing explicit biological and physiological evidences that when resources are scarce relative to
predator density and predators have to search for food, the predator’s per-capita growth rate should decline with its
density [6,5,12,13]. Thus, to overcome the disadvantages of the prey-dependent predator–prey models and to fit the recent
laboratory experiments and observations, Arditi and Ginzburg [4] have suggested that amore suitable predator–prey theory
should be based on the so-called ratio-dependent theory, which can be roughly stated as that the per capita predator growth
rate should be a function of the ratio of prey to predator abundance. Based on the Holling type II function, they proposed
the following ratio-dependent predator–prey model

dN
dt

= rN

1 −

N
K


−

αNP
P + αβN

,

dP
dt

=
ηαNP

P + αβN
− γ P,

(1.1)

where N, P stand for prey and predator densities, respectively, and r, K , α, β, η, γ are positive constants that represent
prey intrinsic growth rate, environmental carrying capacity, total attack rate for predator, handling time, conversion rate
and predator death rate, respectively. System (1.1) and its more general version have been widely studied by many
authors and these studies have shown that such models exhibit much richer dynamics than the traditional prey-dependent
predator–prey model (see, for example, [14–22] and references therein). The effects of discrete and distributed delays on
dynamics of the ratio-dependent predator–prey model have also been investigated by many researchers [23–26].

In reality, the species are distributed over space and interact each other within their spatial domain. The importance of
spatial models has been recognized by the biologists for a long time and have been one of the dominant themes in both
ecology and mathematical ecology due to its universal existence and importance [27–29,2]. In this paper, we consider the
ratio-dependent predator–prey model (1.1) with diffusion. For simplicity, scaling the variables by u = αβN/(ηK), v =

αβP/(η2K),t = ηt/β and then dropping the tilde, the diffusive version of system (1.1) with Neumann boundary condition
can be taken as the following reaction–diffusion system

∂u(x, t)
∂t

= d1△u(x, t)+ au(x, t)

1 −

u(x, t)
b


−

bu(x, t)v(x, t)
bu(x, t)+ v(x, t)

,

∂v(x, t)
∂t

= d2△v(x, t)+


bu(x, t)

bu(x, t)+ v(x, t)
− c


v(x, t),

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0,

u(x, t) = φ(x, 0), v(x, t) = ψ(x, 0) ≥ 0 (≢ 0), x ∈ [0, π],

(1.2)

where d1 and d2 are the diffusion coefficients for the prey and the predator, respectively.
Here we choose the closed interval [0, π] as the spatial domain mainly for simplicity of notations in computing the

normal forms and for convenience of carrying out demonstrating numeric results. General closed interval [a, b] can be
transformed to [0, π] by a translation and rescaling. The choice of the homogeneous Neumann boundary condition accounts
for a scenario that the spatial habitat is isolated from the outside (islands and lakes/ponds are such habitats), and thus there
is no population flux on the boundary. In reality, there may be a situation in which the boundary is hostile and hence no
individuals would choose to leave there, meaning that the homogeneous Dirichlet boundary condition should be posed on
the boundary. For this case, there is no positive constant steady state. In this paper, we are only interested in the bifurcations
from the positive constant steady state, corresponding to the homogeneous Neumann boundary condition.

The local and global stability of the unique positive constant equilibrium, Turing instability, dissipation, persistence as
well as the existence of non-constant positive steady states of system (1.2) or similar systems have been studied in [30–33].
Spatiotemporal complexity, self-organized spatial patterns and chaos in the ratio-dependent predator–prey system have
also been reported in [34–36] by numerical analysis.

The past investigations have revealed that spatial inhomogeneities can have an important impact on the dynamics of
ecological populations [37–39]. This spatial inhomogeneity leads to a reaction–diffusion system, which can be used to
describe how the movement of individuals in the domain and has been shown that such systems are capable of self-
organized pattern formation (see, e.g., [40,41] and references therein). In the last decade, the focus of research has been
shifted from the study of the formation of stationary spatial patterns induced by Turing instabilities to the study of the
formation of spatio-temporal patterns. The dynamical systemmethod is an efficient technology to theoretically understand
the mechanisms of the formation of spatio-temporal patterns. Bifurcations of spatially homogeneous and inhomogeneous
periodic solutions as well as nonconstant steady state solutions in predator–prey systems with diffusion have been
recently studied by many researchers (see [42–47] and references therein). However, most of these work investigate the
codimension-oneHopf bifurcation or steady-state bifurcation,where purely spatially or temporarily periodic pattern occurs.
Interactions of the Hopf and steady-state bifurcations may bring about mixed spatiotemporal periodic patterns, domain
structures displaying bistability between spatial and temporal modes, and space–time chaos. Although there is a large body
of previous work on Hopf–Turing bifurcations of predator–prey type reaction–diffusion systems, with different levels of
details and the rich dynamics near the bifurcation point were reported (see, for example [40,48–50] and references therein),
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most of them are based on the numerical results but lack of the strictly theoretical analysis for the rich dynamics near this
kind of bifurcation point. In this paper, we study the bifurcation scenarios near a codimension-two Hopf–Turing bifurcation
point. The classification of the spatiotemporal dynamics in a neighborhood of the bifurcation point can be figured out in the
framework of the normal forms.

The rest of the paper is organized as follows. In Section 2, the normal form for Hopf–Turing bifurcation is derived. In
Section 3, the dynamics of the normal form and the corresponding spatiotemporal dynamics are investigated, and the
analytic results are confirmed by numerical simulations. We conclude with a summary and a discussion of the results in
Section 4.

2. Existence of the Hopf–Turing bifurcation

Clearly, the positive constant equilibrium E∗
= (u∗, v∗)with

u∗
=

b(a + (c − 1)b)
a

> 0, v∗
=

b2(1 − c)(a + (c − 1)b)
ac

> 0,

exists if and only if the following condition holds

(P0) 0 < c < 1, a > b(1 − c).

For the biological meaning, in the following, we always assume that the condition (P0) holds.
The linearization of (1.2) at the equilibrium E∗ is

∂u
∂t
∂v

∂t

 = d∆

u
v


+ A


u
v


, (2.1)

with

d∆ =


d1∆ 0
0 d2∆


, A =


b(1 − c2)− a −c2

b(1 − c)2 c(c − 1)


.

For the Neumann boundary condition, define the real-valued Sobolev space

X =


(u, v)T ∈ W 2,2(0, π),

∂u
∂x

=
∂v

∂x
= 0 at x = 0, π


.

It is well known that the eigenvalues of d∆ on X are −d1k2 and −d2k2, k ∈ N0 = {0, 1, 2, . . .}, with corresponding
normalized eigenfunctions β1

k and β2
k , where

β1
k (x) =


γk(x)
0


, β2

k (x) =


0

γk(x)


, γk(x) =

cos(kx)
∥ cos(kx)∥2,2

, k ∈ N0.

Then the normalized eigenfunctions form a normalized orthogonal basis for X . The linear stability of the positive equilibrium
E∗ can be analyzed by introducing a small inhomogeneous perturbation to the system (2.1) at the zero equilibrium. The
perturbation solution of system (2.1) can be written as a spectral decomposition given by

u
v


=

∞
k=0

qTk


β1
k

β2
k


eλkt , qk =


qk1
qk2


∈ C2, (2.2)

where the spatial part is governed by thewavemodes k and the temporal part by the corresponding eigenvaluesλ describing
the growth of the perturbation and then determining the stability of the equilibrium E∗. Substituting (2.2) into (2.1) yields
the following characteristic equations

∆k = λ2 + Tkλ+ Jk = 0, (2.3)

where k ∈ N0 , {0, 1, 2, . . .} and

Tk = (d1 + d2)k2 − b(1 − c2)+ a + c(1 − c), (2.4)

Jk = d1d2k4 −

d1c(c − 1)+ d2


b(1 − c2)− a


k2 + c(1 − c)(a + b(c − 1)). (2.5)
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We call the bifurcation a Hopf–Turing bifurcation if there exist a nonnegative integer k and a positive integer n ≠ k such
that∆k = 0 has a pair of purely imaginary roots and∆n = 0 has a simple zero root, and no other roots of the characteristic
equation (2.3) have zero real parts, and the transversality condition holds. The characteristic equation (2.3) has been studied
in detail in [47]. In the following, we summarize some related results from [47] for the Hopf-Turing bifurcation analysis.

It follows from the assumption (P0) that in the absence of diffusion (d1, d2 = 0), the equilibrium E∗ is asymptotically
stable if and only if a > b(1 − c2)+ c(c − 1), and∆0 = 0 has a pair of purely imaginary roots ±

√
J0i if and only if

a = b(1 − c2)+ c(c − 1), b > 1, (2.6)

at which system (1.2) undergoes a Hopf bifurcation near the equilibrium E∗. For fixed c , denote this Hopf bifurcation straight
line in the b–a plane by H0.

Solving Jk = 0 for b, we have

a = aT (k, b) ,
d2(1 − c2)k2 + c(1 − c)2

d2k2 + c(1 − c)
b −

d1d2k4 + d1c(1 − c)k2

d2k2 + c(1 − c)
. (2.7)

Then the Turing bifurcation curve ℓ is formed by a sequence of line segments ℓk (k = 1, 2, . . .), where

ℓk : a = aT (k, b), for bk−1 < b ≤ bk, (2.8)

where bk is determined by solving aT (k + 1, b)− aT (k, b) = 0 for b and defined by

bk =
d1
d2

+
k2 + (k + 1)2

c(1 − c)
d1 +

k2(k + 1)2

c2(1 − c)2
d1d2.

By (2.6)–(2.8), we can see that H0 intersects with the straight line a = b(1− c) at b = 1 and the slope of the line segment
ℓk is less than that of the Hopf bifurcation line H0, and that the straight line ℓ1 intersects with the straight line a = b(1− c)
at

b = b0 ,
d1
d2

+
d1

c(1 − c)
. (2.9)

By (2.9), it is easy to verify that b0 ≥ 1 is equivalent to

d1 ≥ d∗

1(c, d2) ,
c(1 − c)

d2 + c(1 − c)
d2.

This implies that the diffusion does not induce the Turing instability if d1 ≥ d∗

1(c.d2).
Combining (2.6) and (2.7) yields

b = bHT (k) = −
d1d2

c2(1 − c)2
k4 −

d1 − d2
c(1 − c)

k2 + 1.

Noticing the fact that k is a nonnegative integer, bHT (k) has a maximum at k = nwith

n =


(d2 − d1)c(1 − c)

2d1d2


, (2.10)

where [·] is the integral function. From (2.7) and (2.8), we can conclude that the Hopf line H0 intersects with the line
segment ℓn at b = bHT (n). For simplification of notations, denote bHT (n) by b∗. Substituting b = b∗ into (2.6), we have
a = a∗ , (1 − c2)b∗

+ c(c − 1).
According to the above discussion and the qualitative theory of the dynamical system, the following results can be

obtained.

Theorem 2.1. Assume that 0 < c < 1, a > b(1 − c), 0 < d1 < d∗

1(c, d2), H0 and ℓn are defined by (2.6) and (2.8) with n
defined by (2.10), respectively.

(i) The Hopf bifurcation line H0 intersects with the line segments ℓn and a codimension-2 Turing–Hopf bifurcation occurs at the
intersect point (b∗, a∗), where

b∗
= −

d1d2
c2(1 − c)2

n4
−

d1 − d2
c(1 − c)

n2
+ 1,

a∗
= (1 − c2)b∗

+ c(c − 1).



1982 Y. Song, X. Zou / Computers and Mathematics with Applications 67 (2014) 1978–1997

(ii) For (b, a) = (b∗, a∗), the equation ∆0 = 0 has a pair of purely imaginary roots ±iωc and ∆n = 0 has a simple zero root,
and for Eq. (2.3), there are no other roots with zero real parts, where

ωc =


c(1 − c)(a∗ + b∗(c − 1)).

3. Normal form on the center manifold for Hopf–Turing bifurcation

In the following, we employ the similar method as in [51] to compute the normal form on the center manifold associated
with codimension-2 Hopf–Turing bifurcation such that the spatiotemporal dynamics of system (1.2) can be determined in
the neighborhood of Hopf–Turing bifurcation point.

Introduce a new parameter µ ∈ R by setting µ1 = b − b∗, µ2 = a − a∗ such that µ = 0 is the value of Hopf–Turing
bifurcation. Rewrite the positive equilibrium as a parameter-dependent form E∗

µ(u
∗(µ), v∗(µ))with

u∗(µ) =
(b∗

+ µ1) (a∗
+ µ2 + (c − 1) (b∗

+ µ1))

a∗ + µ2
,

v∗(µ) =
(b∗

+ µ1)
2 (1 − c)(a∗

+ µ2 + (c − 1) (b∗
+ µ1))

(a∗ + µ2) c
.

Setting ũ(·, t) = u(·, t) − u∗(µ), ṽ(·, t) = v(·, t) − v∗(µ), Ũ(t) = (ũ(·, t), ṽ(·, t)) and then dropping the tildes for
simplification of notation, system (1.2) can be written as the equation

∂U
∂t

= d∆U + L0(U)+ f (U, µ), (3.1)

where

d∆u =


d1∆u

d2∆v


, L0(U) =


b∗

1 − c2


− a∗


u − c2v

b∗(1 − c)2u − c(1 − c)v


,

f (U, µ) =


i+j+ℓ1+ℓ2≥2

1
i!j!ℓ1!ℓ2!

fijℓ1ℓ2u
ivjµ

ℓ1
1 µ

ℓ2
2 , fijℓ1ℓ2 =


f (1)ijℓ1ℓ2

, f (2)ijℓ1ℓ2

T
,

(3.2)

with f (k)ijℓ1ℓ2
=

∂ i+j+ℓ1+ℓ2f (n)(0,0,0)
∂ui∂vj∂µ

ℓ1
1 ∂µ

ℓ2
2

, k = 1, 2, and

f (1) (u, v, µ1, µ2) =

a∗

+ µ2
 

u + u∗(µ)
 

1 −
(u + u∗(µ))

(b∗ + µ1)


−

(b∗
+ µ1) (u + u∗(µ)) (v + v∗(µ))

(b∗ + µ1) (u + u∗(µ))+ (v + v∗(µ))
,

f (2) (u, v, µ1, µ2) =
(b∗

+ µ1) (u + u∗(µ)) (v + v∗(µ))

(b∗ + µ1) (u + u∗(µ))+ (v + v∗(µ))
− c


v + v∗(µ)


.

The linearized system of equation (3.1) at the origin is

∂U
∂t

= L (U). (3.3)

Denote by Λ = {iωc,−iωc, 0} the finite set of all eigenvalues of the linearized system (3.3) having zero real parts, with
which a stable invariant manifold is associated. Set Bk = span


ϕ(·), β i

k


β i
k| ϕ ∈ X, i = 1, 2


. Then it is easy to verify that

L0(Bk) ⊂ span

β1
k , β

2
k


, k ∈ N0.

Assume that y(t) ∈ R2 and

yT (t)


β1
k

β2
k


∈ Bk.

Then, on Bk, the linear partial differential equation (3.3) is equivalent to the ODE on R2

ẏ(t) =


−d1k2 0

0 −d2k2


y(t)+ L0(y(t)), (3.4)

where for y(t) ∈ R2, we use the same formal expression L0(y(t)) as in (3.2). Clearly, the linear ordinary differential
equation (3.4) has the same characteristic equation (2.3) as the linear partial differential equation (3.3).



Y. Song, X. Zou / Computers and Mathematics with Applications 67 (2014) 1978–1997 1983

Let

Mk =


−d1k2 + b∗


1 − c2


− a∗

−c2

b∗(1 − c)2 −d2k2 − c(1 − c)


, (3.5)

be the characteristic matrix of Eq. (3.4). ThenΛ is the finite set of all eigenvalues of the matrix (3.5) having zero real parts.
The standard adjoint theory for ODEs can be used to decompose C2 byΛ as

C2
= Pk ⊕ Qk,

where Pk is the generalized eigenspace associated with the eigenvalues in Λ and Qk =

ϕ ∈ C2

: ⟨ψ, ϕ⟩ for all ψ ∈ P∗

k


,

where P∗

k is the dual space of Pk and ⟨·, ·⟩ is the scalar product of two complex vectors defined by
ψT , ϕ


= ψTϕ, for ϕ,ψ ∈ C2

such that for dual basesΦk andΨk of Pk and P∗

k , respectively, ⟨Ψk,Φk⟩ = Imk , wheremk = dimPk and Imk is amk×mk identity
matrix.

For U1 = (u1, v1)
T ,U2 = (u2, v2)

T
∈ X , define the inner product

[U1,U2] =

 π

0
(u1u2 + v1v2) dx

such that X becomes a Hilbert space.
Notice that k = 0, n > 0 in theHopf–Turing bifurcation. By a straightforward calculation,we obtainΦ0 = (p0, p̄0) ,Φn =

pn,Ψ0 = col

qT0, q̄

T
0


,Ψn = qTn , where

p0 =

 1

b∗


1 − c2


− a∗ − iωc

c2

 , q0 =


c(1 − c)+ iωc

2iωk

−
c2

2iωc

 ,

pn =

 1

−
d1n2

− b∗


1 − c2


+ a∗

c2

 , qn =


d2n2

+ c(1 − c)
Tn

−
c2

Tn

 .
Using the above decomposition, the phase space X can be decomposed as

X = X c
⊕ X s, X c

= Imπ, X s
= Kerπ, (3.6)

where dim X c
= 3, and π : X → X c is the projection defined by

π(ϕ) =


(p0, p̄0)


qT0

q̄T0


,


ϕ, β1

0


ϕ, β2

0

T 
β1
0

β2
0


+


pn


qTn,


ϕ, β1

n


ϕ, β2

n

T 
β1
n

β2
n


.

According to (3.6), U = (u, v)T ∈ X can be decomposed as
u
v


=


Φ0


z1

z2

T 
β1
0

β2
0


+ (z3Φn)

T


β1
n

β2
n


+ w

= (z1p0 + z2p0) γ0(x)+ z3pnγn(x)+


w1

w2


, (3.7)

where z1, z2, z3 ∈ R, w ∈ X s. For simplicity of notations, in the rest of this section, we write
f , β1

ς



f , β2

ς

ς=n

ς=0

for 
f , β1

0


f , β2

0

 ,f , β1
n


f , β2

n

T

.
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Then, system (3.1) is equivalent to the following system
ż = Bz + Ψ


f (z, w,µ), β1

ς



f (z, w,µ), β2

ς

ς=n

ς=0

,

ẇ = L (w)+ H(z, w,µ),

(3.8)

where B = diag{iωc,−iωc, 0}, Ψ = diag{Ψ0,Ψn},

f (z, w,µ) = f


(z1p0 + z2p0) γ0(x)+ z3pnγn(x)+


w1

w2


, µ


(3.9)

and

H(z, w,µ) = f (z, w,µ)−


qT0,


f (z, w,µ), β1

0


f (z, w,µ), β2

0

 p0

+


q̄T0,


f (z, w,µ), β1

0


f (z, w,µ), β2

0

 p̄0


γ0(x)−


qTn,


f (z, w,µ), β1

n


f (z, w,µ), β2

n

 pnγn(x). (3.10)

Consider the formal Taylor expansion

f (ϕ, µ) =


j≥2

1
j!
fj(ϕ, µ),

where fj is the jth Fréchet derivative of f . Then (3.8) is written as
ż = Bz +


j≥2

1
j!
f 1j (z, w,µ),

ẇ = L (w)+


j≥2

1
j!
f 2j (z, w,µ),

(3.11)

where

f 1j (z, w,µ) = Ψ


fj(z, w,µ), β1

ς



fj(z, w,µ), β2

ς

ς=n

ς=0

, f 2j (z, w,µ) = Hj(z, w,µ). (3.12)

As for autonomous ODEs in the finite dimension space [52], by a recursive transformation of variables

(z, w) = (z,w)+
1
j!


U1
j (z, µ),U2

j (z, µ) , j ≥ 2,

where U1
j and U2

j are homogeneous polynomials of degree j inz andµ, and for simplification of notation, dropping the tilde
after each transformation of variable, then the normal form on the center manifold for (3.8) (or (3.11)) is

ż = Bz +
1
2
g1
2 (z, 0, µ)+

1
3!

g1
3 (z, 0, µ)+ o(µ|z|2),

where g1
2 and g1

3 are the second and third terms in (z, µ), respectively, given by

g1
2 (z, 0, α) = ProjKer(M1

2 )
f 12 (z, 0, µ), g1

3 (z, 0, 0) = ProjKer(M1
3 )
f̃ 13 (z, 0, µ). (3.13)

Here, 1
3! f̃

1
3 is the term of order 3 obtained after the changes of variables in the previous step given by

f̃ 13 (z, 0, µ) = f 13 (z, 0, µ)+
3
2


Dz f 12


(z, 0, µ)U1

2 (z, µ)

+

Dwf 12


(z, 0, µ)U2

2 (z, µ)−

DzU1

2 (z, µ)

g1
2 (z, 0, µ)


, (3.14)
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and the operatorsM1
j and M2

j are defined by

M1
j : V 5

j


C2

→ V 5
j


C2 ,M1

j


U1
j


=

DzU1

j (z, µ)Bkz

− BkU1

j (z, µ),

M2
j : V 5

j


X s

→ V 5
j


X s ,M2

j


U2
j


=

DzU2

j (z, µ)Bkz

− L (U2

j (z, µ)),
(3.15)

whereV 5
j (Y )denotes the space of homogeneous polynomials of degree j in 5 variables z1, z2, z3, µ1, µ2 with coefficients inY .

By (3.15) and noticing that B is a diagonal matrix, it is easy to verify from (3.15) that

M1
j (z

mµℓer) = Dz(zmµℓer)Bz − Bzmµℓer = iωc

m1 − m2 + (−1)r


zmµℓer ,

M1
j (z

mµℓe3) = Dz(zmµℓe3)Bz − Bzmµℓe3 = iωc (m1 − m2) zmµℓe3,
(3.16)

where r = 1, 2 and {e1, e2, e3} is the canonical basis of R3, m = (m1,m2,m3) ∈ N3
0, ℓ = (ℓ1, ℓ2) ∈ N2

0,m1 + m2 + m3 +

ℓ1 + ℓ2 = j. Therefore,

Ker(M1
2 ) = span


z1z3

0
0

 ,
z1µi

0
0

 ,
 0
z2z3
0

 ,
 0
z2µi

0

 ,
 0

0
z1z2

 ,
 0

0

z23

 ,
 0

0
z3µi

 ,
 0

0
µ1µ2

 ,
 0

0

µ2
i

 (3.17)

and

Ker(M1
3 ) = span


z21z2

0
0

 ,
z1z23

0
0

 ,
z1z3µi

0
0

 ,
z1µ2

i

0
0

 ,
 0

z1z22
0

 ,
 0

z2z23
0

 ,
 0
z2z3µi

0

 ,
 0

z2µ2
i

0

 ,
 0

0
z1z2z3

 ,
 0

0

z33

 ,
 0

0
z1z2µi

 ,
 0

0

z3µ2
i

 , i = 1, 2. (3.18)

In order to simply the notation, we introduce the operator H : V 5
j (C) → V 5

j (C
2) such that H (ξ1 + ξ2) = H (ξ1) +

H (ξ2), ξ1, ξ2 ∈ V 5
j (C), and

H

αzm1

1 zm2
2 zm3

3 µ
ℓ1
1 µ

ℓ2
2


=


αzm1

1 zm2
2 zm3

3 µ
ℓ1
1 µ

ℓ2
2

αzm2
1 zm1

2 zm3
3 µ

ℓ1
1 µ

ℓ2
2


, α ∈ C.

3.1. Calculation of g1
2 (z, 0, µ)

By (3.2) and a direct computation, we have f0020 = f0110 = f0002 = (0, 0)T . So,

1
2
f2(U, µ) = (f1010u + f0110v)µ1 + (f1001u + f0101v)µ2 +

1
2
f2000u2

+ f1100uv +
1
2
f0200v2, (3.19)

which, together with (3.7), leads to

1
2
f2(z, 0, µ) =

1
2
f2 ((z1p0 + z2p0) γ0(x)+ z3pnγn(x), µ)

= µ1 (((z1p01 + z2p01) γ0(x)+ z3pn1γn(x)) f1010 + ((z1p02 + z2p02) γ0(x)+ z3pn2γn(x)) f0110)
+µ2 (((z1p01 + z2p01) γ0(x)+ z3pn1γn(x)) f1001 + ((z1p02 + z2p02) γ0(x)+ z3pn2γn(x)) f0101)

+ F110γ 2
0 (x)z1z2 + F101γ0(x)γn(x)z1z3 + F011γ0(x)γn(x)z2z3,

+
1
2


F200γ 2

0 (x)z
2
1 + F020γ 2

0 (x)z
2
2 + F002γ 2

n (x)z
2
3


, (3.20)

where

F200 = p201f2000 + 2p01p02f1100 + p202f0200 = F 020,

F002 = p2n1f2000 + 2pn1pn2f1100 + p2n2f0200,

F110 = |p01|2 f2000 + 2Re {p01p̄02} f1100 + |p02|2 f0200,

F101 = p01pn1f2000 + (p01pn2 + p02pn1) f1100 + p02pn2f0200 = F 011.



1986 Y. Song, X. Zou / Computers and Mathematics with Applications 67 (2014) 1978–1997

Thus, from (3.12), (3.13), (3.17) and (3.20), we obtain

1
2
g1
2 (z, 0, µ) =

1
2
ProjKer(M1

2 )
f 12 (z, 0, µ)

=


H ((B11µ1 + B21µ2)z1 + B101z1z3)

(B13µ1 + B23µ2) z3 + B110z1z2 + B002z23


, (3.21)

where

B11 = p01

qT0 f1010


+ p02


qT0 f0110


, B21 = p01


qT0 f1001


+ p02


qT0 f0101


,

B13 = pn1

qTn f1010


+ pn2


qTn f0110


, B23 = pn1


qTn f1001


+ pn2


qTn f0101


,

B101 = qT0F101

 π

0
γ 2
0 (x)γn(x)dx = 0, B110 = qTnF110

 π

0
γ 2
0 (x)γn(x)dx = 0,

B002 = qTnF002

 π

0
γ 3
n (x)dx = 0.

3.2. Calculation of g1
3 (z, 0, µ)

Since g1
2 (z, 0, 0) = 0, it follows from (3.14) that the third term g1

3 (z, 0, 0) can be determined as follows. By (3.12), (3.13)
and (3.18), we have

g1
3 (z, 0, µ) = ProjKer(M1

3 )
f 13 (z, 0, µ)

= ProjS1f 13 (z, 0, 0)+ O(|z||µ|
2
+ |z|2|µ|), (3.22)

where

S1 = span


z21z2

0
0

 ,
z1z23

0
0

 ,
 0

z1z22
0

 ,
 0

z2z23
0

 ,
 0

0
z1z2z3

 ,
 0

0

z33

 .
Here,f 13 (z, 0, 0) is determined by (3.14) with

U1
2 (z, 0) = (M1

2 )
−1ProjIm(M1

2 )
f 12 (z, 0, 0) (3.23)

and 
M2

2U
2
2


(z, 0) = f 22 (z, 0, 0).

Next we compute the third order term g1
3 (z, 0, 0) = ProjS f̃ 13 (z, 0, 0) step by step in terms of (3.13) and (3.14).

Step 1. The calculation of ProjS f 13 (x, 0, 0). Notice that π

0
γ 4
0 (x)dx =

 π

0
γ 2
0 (x)γ

2
n (x)dx =

1
π
,

 π

0
γ 4
n (x)dx =

3
2π
.

It follows from (3.2) and (3.12) that

1
3!

ProjS1 f
1
3 (z, 0, 0) =


H

C210z21z2 + C102z1z23


C111z1z2z3 + C003z33


, (3.24)

where

C210 =
1
π
qT0F210, C102 =

1
π
qT0F102,

C111 =
1
π
qTnF111, C003 =

3
2π

qTnF003,

with

F210 =
1
2


f3000 |p01|2 p01 + f0300 |p02|2 p02 + f2100


p201p02 + 2 |p01|2 p02


+ f1200


p202p01 + 2 |p02|2 p01


,

F102 =
1
2


f3000p01p2n1 + f0300p02p2n2 + f2100


p02p2n1 + 2p01pn1pn2


+ f1200


p01p2n2 + 2p02pn1pn2


,
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F111 =

f3000 |p01|2 pn1 + f0300 |p02|2 pn2 + f2100


|p01|2 pn2

+ 2pn1Re {p01p02})+ f1200

|p02|2 pn1 + 2pn2Re {p02p01}


,

F003 =
1
3!


f3000p3n1 + f0300p3n2


+

1
2


f2100p2n1pn2 + f1200pn1p2n2


.

Step 2. The calculation of ProjS

Dxf 12


(z, 0, 0)U1

2 (z, 0)

. It follows from (3.12) and (3.20) that

f 12 (z, 0, 0) =
1

√
π
Ψ


F200z21 + F020z22 + F002z23 + 2F110z1z2

2F101z1z3 + 2F011z2z3


, (3.25)

where we have used the fact that

ckj =

 π

0
γ 2
k (x)γj(x)dx =



1
√
π
, j = k = 0,

1
√
π
, j = 0, k ≠ 0,

1
√
2π
, j = 2k ≠ 0,

0, otherwise.

By (3.23) and (3.25), we obtain

U1
2 (z, 0) = (M1

2 )
−1ProjIm(M1

2 )
f 12 (z, 0, 0)

=
1

iωc
√
π


qT0


F200z21 −

1
3
F020z22 − F002z23 − 2F110z1z2



q̄T0


1
3
F200z21 − F020z22 + F002z23 + 2F110z1z2


qTn (2F101z1z3 − 2F011z2z3)

 .

So,

1
3!

ProjS1

Dz f 12 (z, 0, 0)U

1
2 (z, 0)


=


H

D210z21z2 + D102z1z23


D111z1z2z3 + D003z33


, (3.26)

where

D210 =
1

3πωc i


−

qT0F200

 
qT0F110


+

1
3

qT0F0202 + 2
qT0F1102 ,

D102 =
1

3πωc i


−

qT0F200

 
qT0F002


+

qT0F110

 
qT0F002


+ 2


qT0F002

 
qTnF101


,

D111 = −
4

3πωc
Im


qT0F110
 

qTnF101

,

D003 = −
2

3πωc
Im


qT0F002
 

qTnF101

.

Step 3. The calculation of ProjS

Dwf 12


(z, 0, 0)U2

2 (z, 0)

.

Let

U2
2 (z, 0) : h(z) =


j≥0

(hj(z))T

β1
j

β2
j


,

with

hj(z) =

h(1)j (z)

h(2)j (z)

 =


m1+m2+m3=2

h(1)jm1m2m3

h(2)jm1m2m3

 zm1
1 zm2

2 zm3
3 .
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From (3.9) and (3.12), we get

(Dwf 12 )(z, 0, 0)(h) = Ψ




Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


(h), β1

ς



Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


(h), β2

ς




n

ς=0

= Ψ




Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


j=0,n

hT
j


β1
j

β2
j


, β1

ς



Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


j=0,n

hT
j


β1
j

β2
j


, β2

ς




n

ς=0

+Ψ




Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


j≠0,n

hT
j


β1
j

β2
j


, β1

ς



Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


j≠0,n

hT
j


β1
j

β2
j


, β2

ζ




n

ς=0

.

By (3.19) and a direct computation, we obtain


Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


hT
j


β1
j

β2
j


, β1

ς



Dwf2


Φ0 Φn

 z1γ0(x)
z2γ0(x)
z3γn(x)


, 0


hT
j


β1
j

β2
j


, β2

ς




= 2

f2000


c0jς (z1p01 + z2p01)+ cnjς z3pn1


+ f1100


c0jς (z1p02 + z2p02)+ cnjς z3pn2


h(1)j

+ 2

f0200


c0jς (z1p02 + z2p02)+ cnjς z3pn2


+ f1100


c0jς (z1p01 + z2p01)+ cnjς z3pn1


h(2)j ,

where

c0j0 =


1

√
π
, j = 0,

0, j ≠ 0,
c0jn = cnj0 =


1

√
π
, j = n,

0, j ≠ n,

and

cnjn =



1
√
π
, j = 0,

1
√
2π
, j = 2n,

0, otherwise.

So,

(Dwf 12 )(z, 0, 0)(h) = Ψ

G0ς + Gnς

n
ς=0 ,

where

G00 =
2

√
π
((z1p01 + z2p01) f2000 + (z1p02 + z2p02) f1100) h

(1)
0

+
2

√
π
((z1p02 + z2p02) f0200 + (z1p01 + z2p01) f1100) h

(2)
0 ,

Gn0 =
2

√
π
(z3pn1f2000 + z3pn2f1100) h(1)n +

2
√
π
(z3pn2f0200 + z3pn1f1100) h(2)n ,
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G0n =
2

√
π

{(z1p01 + z2p01) f2000 + (z1p02 + z2p02) f1100} h
(1)
n

+
2

√
π

{(z1p02 + z2p02) f0200 + (z1p01 + z2p01) f1100} h
(2)
n ,

Gnn = (z3pn1f2000 + z3pn2f1100)


2
√
π
h(1)0 +

2
√
2π

h(1)2n


+ (z3pn2f0200 + z3pn1f1100)


2

√
π
h(2)0 +

2
√
2π

h(2)2n


.

So,

1
3!

ProjS1

Dwf 12 (z, 0, 0)U

2
2 (z, 0)


=


H

E210z21z2 + E102z1z23


E111z1z2z3 + E003z33


, (3.27)

where

E210 =
1

3
√
π
qT0

(p01f2000 + p02f1100) h

(1)
0110 + (p02f0200 + p01f1100) h

(2)
0110

+ (p01f2000 + p02f1100) h
(1)
0200 + (p02f0200 + p01f1100) h

(2)
0200


,

E102 =
1

3
√
π
qT0

(p01f2000 + p02f1100) h

(1)
0002 + (p02f0200 + p01f1100) h

(2)
0002

+ (pn1f2000 + pn2f1100) h
(1)
n101 + (pn2f0200 + pn1f1100) h

(2)
n101


,

E111 =
1

3
√
π
qTn

(p01f2000 + p02f1100) h

(1)
n011 + (p02f0200 + p01f1100) h

(2)
n011

+ (p01f2000 + p02f1100) h
(1)
n101 + (p02f0200 + p01f1100) h

(2)
n101


+ qTn


(pn1f2000 + pn2f1100)


1

3
√
π
h(1)0110 +

1

3
√
2π

h(1)(2n)110


+ (pn2f0200 + pn1f1100)


1

3
√
π
h(2)0110 +

1

3
√
2π

h(2)(2n)110


,

E003 = qTn


(pn1f2000 + pn2f1100)


1

3
√
π
h(1)0002 +

1

3
√
2π

h(1)(2n)002


+ (pn2f0200 + pn1f1100)


1

3
√
π
h(2)0002 +

1

3
√
2π

h(2)(2n)002


.

Clearly, we still need to compute h(1)j and h(2)j . By (3.10) and (3.20), we have


H2(z, 0, 0), β1

0


H2(z, 0, 0), β2

0

 =
1

√
π


F200 −


qT0F200p0 + q̄T0F200p̄0


z21 +

1
√
π


F020 −


qT0F020p0 + q̄T0F020p̄0


z22

+
1

√
π


F002 −


qT0F002p0 + q̄T0F002p̄0


z23 ,+

2
√
π


F110 −


qT0F110p0 + q̄T0F110p̄0


z1z2,

H2(z, 0, 0), β1
n


H2(z, 0, 0), β2

n

 =
2

√
π


F101 − qTnF101pn


z1z3 +

2
√
π


F011 − qTnF011pn


z2z3,

H2(z, 0, 0), β1
2n


H2(z, 0, 0), β2

2n

 =
1

√
2π

F002z23 .

(3.28)

In addition, by (3.15), we have

M2
2


(hj(z))T


β1
j

β2
j


=


Dz


(hj(z))T


β1
j

β2
j


Bz


− L


(hj(z))T


β1
j

β2
j


,
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which leads to

M2

2


(hj(z))T


β1
j

β2
j


, β1

j



M2

2


(hj(z))T


β1
j

β2
j


, β2

j


 = iωc


2hj200z21 + hj101z1z3 − 2hj020z22 − hj011z2z3



+ j2

d1 0
0 d2


hj(z)− L0hj(z).

Notice that

M2

2


(hj(z))T


β1
j

β2
j


, β1

j



M2

2


(hj(z))T


β1
j

β2
j


, β2

j


 =


H2, β

1
j



H2, β

2
j

 . (3.29)

So, by (3.28) and (3.29) and matching the coefficients of zm1
1 zm2

2 zm3
3 , we have

j = 0, z21 : 2iωch0200 − L0 (h0200) =
1

√
π


F200 −


qT0F200p0 + q̄T0F200p̄0


,

j = 0, z22 : −2iωch0020 − L0 (h0020) =
1

√
π


F020 −


qT0F020p0 + q̄T0F020p̄0


,

j = 0, z23 : L0 (h0002) = −
1

√
π


F002 −


qT0F002p0 + q̄T0F002p̄0


,

j = 0, z1z2 : L0 (h0110) = −
2

√
π


F110 −


qT0F110p0 + q̄T0F110p̄0


,

j = n, z1z3 : iωchn101 +

diag


d1n2, d2n2

− L0

hn101 =

2
√
π


F101 − qTnF101pn


,

j = n, z2z3 : −iωchn011 +

diag


d1n2, d2n2

− L0

hn011 =

2
√
π


F011 − qTnF011pn


,

j = 2n, z23 :

diag


4d1n2, 4d2n2

− L0

h(2n)002 =

1
√
2π

F002,

j = 2n, z1z2 :

diag


4d1n2, 4d2n2

− L0

h(2n)110 = (0, 0)T .

Solving these equations, we have

h0200 =
1

√
π
(2iωc I − M0)

−1 F200 −

qT0F200p0 + q̄T0F200p̄0


,

h0020 =
1

√
π
(−2iωc I − M0)

−1 F020 −

qT0F020p0 + q̄T0F020p̄0


,

h0002 = −
1

√
π

M−1
0


F002 −


qT0F002p0 + q̄T0F002p̄0


,

h0110 = −
2

√
π

M−1
0


F110 −


qT0F110p0 + q̄T0F110p̄0


,

hn101 =
2

√
π
(iωc I − Mn)

−1 F101 − qTnF101pn

,

hn011 =
2

√
π
(−iωc I − Mn)

−1 F011 − qTnF011pn

,

h(2n)002 = −
1

√
2π

M−1
2n F002, h(2n)110 = (0, 0)T .



Y. Song, X. Zou / Computers and Mathematics with Applications 67 (2014) 1978–1997 1991

Hence, by (3.30), (3.24), (3.26) and (3.27) we have

1
3!

g1
3 (z, 0, 0) =


H[B210z21z2 + B102z1z23 ]

B111z1z2x3 + B003z33


, (3.30)

with

B210 = C210 +
3
2
(D210 + E210) , B102 = C102 +

3
2
(D102 + E102) ,

B111 = C111 +
3
2
(D111 + E111) , B003 = C003 +

3
2
(D003 + E003) .

Therefore, by (3.21) and (3.30), the normal form for Hopf–Turing bifurcation reads as

ż = Bz +


H ((B11µ1 + B21µ2) z1)

(B13µ1 + B23µ2) z3


+


H

B210z21z2 + B102z1z23


B111z1z2z3 + B003z33


+ O(|z||µ|

2
+ |z|2|µ| + |z|4). (3.31)

The normal formof Eq. (3.31) can nowbewritten in real coordinatesw through the change of variables z1 = v1−iv2, z2 =

v1 + iv2, z3 = v3, and then changing to cylindrical coordinates by v1 = ρ cosΘ, v2 = ρ sinΘ, v3 = r , we obtain, truncating
at third order terms and removing the azimuthal term,

ρ̇ = α1(µ)ρ + κ11ρ
3
+ κ12ρr2,

ṙ = α2(µ)r + κ21ρ
2r + κ22r3,

(3.32)

where
α1(µ) = Re (B11) µ1 + Re (B21) µ2, α2(µ) = B13µ1 + B23µ2,

κ11 = Re(B210), κ12 = Re(B102), κ21 = B111, κ22 = B003.

By the center manifold theorem due to Carr [53] and the bifurcation theorem [52,54], the dynamics of system (1.2) near the
bifurcation value is topologically equivalent to that of the normal form near the sufficiently small neighborhood of µ = 0.
The dynamics of the normal form (3.32) in the sufficiently small neighborhood of the origin of theµ1–µ2 plane is completely
determined by the coefficients α1(µ), α2(µ), κij, i, j = 1, 2. For all possible dynamics of the normal form (3.32), refer to the
books [54,55].

4. Numerical simulations

In this section,wemake somenumerical simulations to support and extend our analytical results. Taking d1 = 0.02, d2 =

0.2, c = 0.2, the positive equilibrium E∗ exists provided that a > 0.8b. It follows from (2.6), (2.8) and (2.10) that n = 2 and

H0 : a =
24
25

b −
4
25
, b > 1; ℓ2 : a =

14
15

b −
2
25
,
27
20
< b <

147
20
.

The straight line H0 intersects with ℓ2 at the point P∗(3, 68/25) and system (1.2) undergoes Hopf–Turing bifurcation near
the positive equilibrium E∗(75/68, 1125/68) at the point P∗. According to the procedure in Section 3with n = 2, the normal
form truncated to the third order terms is

ρ̇ = (0.48µ1 − 0.5µ2) ρ − 0.0436ρ3
− 0.3027ρr2,

ṙ = (1.0182µ1 − 1.0909µ2) r − 0.3296ρ2r − 0.1953r3.
(4.1)

Notice that ρ > 0 and r is an arbitrary real number. System (4.1) has a zero equilibrium A0 = (0, 0) for all µ1, µ2,
three trivial equilibria A1 = (

√
0.48µ1 − 0.5µ2, 0) for 0.48µ1 − 0.5µ2 > 0 and A±

2 = (0,±
√
1.0182µ1 − 1.0909µ2)

for 1.0182µ1 − 1.0909µ2 > 0, and two nontrivial equilibria

A±

3 = (

2.3502µ1 − 2.5485µ2,±


1.2472µ1 − 1.2847µ2)

for 2.3502µ1 − 2.5485µ2 > 0 and 1.2472µ1 − 1.2847µ2 > 0. Define the critical bifurcation lines as follows:

H : µ2 =
24
25
µ1; T : µ2 =

14
15
µ1;

T1 : µ2 = 0.9222µ1, µ1 > 0; T2 : µ2 = 0.9708µ1, µ1 < 0.

Then, according to the results in [54], the bifurcation diagram in the (µ1, µ2) parameter plane and the corresponding
phase portraits of system (4.1) in the (ρ, r) plane can be shown in Fig. 1. The (µ1, µ2) parameter plane is divided into
six regions characterized by the phase portraits (Fig. 1). Notice that the zero equilibrium A0 of (4.1) corresponds to the
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Fig. 1. Bifurcation and phase portraits of (4.1) near the point P∗
= (3, 68/25). Here, the origin of theµ1–µ2 plane corresponds to the point P∗

= (3, 68/25)
of the b–a plane.

Fig. 2. When (µ1, µ2) lies in region ①, the positive constant equilibrium is asymptotically stable.

constant equilibrium E∗ of the original system (1.2). The equilibrium A1 in the ρ-axis of (4.1) corresponds to the spatially
homogeneous periodic solution of the original system (1.2). The equilibria A±

2 in the r-axis of (4.1) correspond to the steady
state solutions of the original system (1.2) like cos(2x) shape. While the nontrivial equilibria A±

3 generate solutions of the
original system (1.2) with spatial structure like cos(2x) shape and periodic temporal structure.

Therefore, for system (1.2), the spatiotemporal dynamics near the Hopf–Turing bifurcation point P∗ can be described
by Fig. 1. In region ①, there is only one positive constant equilibrium which is asymptotically stable, as shown in Fig. 2.
In region ②, the positive constant equilibrium becomes stable and only the Hopf bifurcation occurs. The emerging state of
system (1.2) is homogeneously periodic oscillation. For (µ1, µ2) = (0.05, 0.047) ∈ D2, Fig. 3 is the numerical simulation of
the dynamics of system (1.2) with the initial values u(x, 0) = 0.3604− 0.0001 cos(2x), v(x, 0) = 4.3974− 0.0002 cos(2x),
showing the existence of stable homogeneously periodic oscillation. In region ③, there are two spatially inhomogeneous
steady states and a homogeneous periodic solution. The spatially inhomogeneous steady states are unstable and the
homogeneous periodic solution is asymptotically stable, and there exists an orbit connecting the unstable steady state
to the stable spatially homogeneous periodic solution. For (µ1, µ2) = (0.05, 0.04612) ∈ D3 and the initial values
u(x, 0) = 0.3596 − 0.0001 cos(2x), v(x, 0) = 4.3870 − 0.0002 cos(2x) close to the unstable spatially inhomogeneous
steady state, Fig. 4 shows the existence of this connecting orbit.

In region ④, stable spatially inhomogeneous steady states and the homogeneous periodic solution coexist. The emerging
state of system (1.2) is therefore either the homogeneous periodic solution or spatially inhomogeneous steady states
depending on the selection of the initial values. For (µ1, µ2) = (0.05, 0.04612) ∈ D4, Figs. 5–8 illustrate the dynamics
of system (1.2) for different initial values. For these parameters, the positive constant equilibrium is E∗

= (0.3339, 4.0741).
A small constant perturbation of this positive constant equilibrium yields a stable homogeneous periodic solution, as
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Fig. 3. When (µ1, µ2) lies in region ②, the positive constant equilibrium E∗(0.3604, 4.3974) becomes unstable and there exists a stable spatially
homogeneous periodic solution.

0.361
0.3615

0.3605
0.36

0.3595

0.3585
0.359

0.358

P
re

y 
u(

x,
t)

4
3

2
1

0 0
1000

2000
3000

4000
5000

distance x time t

A

4.395

4.39

4.385

4.38

4.375

P
re

da
to

r 
v(

x,
t)

4
3

2
1

0 0
1000

2000
3000

4000
5000

distance x time t

D E 4.395

4.39

4.385

4.38

4.375

P
re

da
to

r 
v(

x,
t)

P
re

da
to

r 
v(

x,
t)

4
3

2
1

0
distance x

F

0.3596

0.3596

0.3597

0.3595

P
re

y 
u(

x,
t)

4
3

2
1

0 0
100

200
300

distance x time t

B
0.361

0.3615

0.3605
0.36

0.3595

0.3585
0.359

0.358

P
re

y 
u(

x,
t)

4
3

2
1

0 4700
4750

4850
4800

4900
4950

5000

distance x time t

4700
4750

4850
4800

4900
4950

5000

time t

C

0.3595

4.3871

4.387

4.3872

4.3869

4.3868

4
3

2
1

0 0
100

200
300

distance x time t

4.3867

Fig. 4. When (µ1, µ2) lies in region ③, the positive constant equilibrium E∗(0.3596, 4.3870) is unstable. There are unstable spatially inhomogeneous
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Fig. 5. Stable homogeneous periodic solution for (µ1, µ2) belonging to region ④, which coexists with two spatially inhomogeneous steady states as shown
in Fig. 6.
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Fig. 6. Two spatially inhomogeneous steady states for (µ1, µ2) belonging to region ④, which coexist with the stable homogeneous periodic solution as
shown in Fig. 5.
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Fig. 7. The evolution of the spatiotemporal dynamics of system (1.2) for (µ1, µ2) belonging to region ④ and the initial values close to the unstable saddle.
The system starts from a solution with certain spatiotemporal pattern and finally evolves into a stable homogeneous periodic solution.

shown in Fig. 5 with the initial values u(x, 0) = 0.3339 + 0.5, v(x, 0) = 4.0741 + 0.6. For the initial values close to
spatially inhomogeneous steady states, the system finally evolves into spatially inhomogeneous steady state like cos(2x)
shape. Fig. 6 illustrates the results for the initial values u(x, 0) = 0.3339 − 0.5 cos(2x), v(x, 0) = 4.0741 − 0.6 cos(2x)
and u(x, 0) = 0.3339 + 0.5 cos(2x), v(x, 0) = 4.0741 + 0.6 cos(2x). In addition, notice that for (µ1, µ2) belonging to
region ④ the normal form (4.1) has two unstable nontrivial equilibria A±

3 (saddle points). So, system (1.2) has unstable
states with inhomogeneous spatial structure like cos(2x) shape and periodic temporal structure. Figs. 7 and 8 illustrate the
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Fig. 8. The evolution of the spatiotemporal dynamics of system (1.2) for (µ1, µ2) belonging to region ④ and the initial values close to the unstable saddle.
The system starts from a solution with certain spatiotemporal pattern and finally evolves into a stable spatially inhomogeneous steady state.
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Fig. 9. When (µ1, µ2) lies in region ⑤, the positive constant equilibrium E∗(0.3327, 3.9259) is unstable. There are stable spatially inhomogeneous steady
states and an unstable homogeneous periodic solution and there exists an orbit connecting these two states.

spatiotemporal dynamics of system (1.2) for the initial values u(x, 0) = 0.8 + 0.2 cos(2x), v(x, 0) = 4.8 + 0.3 cos(2x), and
u(x, 0) = 0.3339 + 0.3 cos(2x), v(x, 0) = 4.0741 + cos(2x), respectively.

In region ⑤, system (1.2) has two stable spatially inhomogeneous steady states (to that shown in Fig. 6) and an unstable
homogeneous periodic solution. For the initial values u(x, 0) = 0.3427−0.0003 cos(2x), v(x, 0) = 3.9359−0.001 cos(2x)
which is sufficiently small perturbation of the constant equilibrium E∗(0.3327, 3.9259), Fig. 9 shows the existence of the
orbit connecting the unstable homogeneous periodic solution to the stable spatially inhomogeneous steady state.

In region ⑥, system (1.2) has only two stable spatially inhomogeneous steady states. For any small perturbation of the
positive constant equilibrium E∗, the system finally evolves into a stable spatially inhomogeneous steady state very similar
to that shown in Fig. 6.

5. Conclusion

In this paper, we have studied the spatiotemporal dynamics of a ratio-dependent predator–prey model with diffusion
near theHopf–Turing bifurcation point. The normal form for theHopf–Turing bifurcation has been derived. The classification
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of the spatiotemporal patterns and their stability have been determined according to the corresponding normal form.
The spatiotemporal dynamics near the Hopf–Turing bifurcation point can be explicitly classified into six scenarios: stable
constant equilibrium; purely spatially pattern (spatially inhomogeneous steady state); purely temporarily periodic pattern
(spatially homogeneous periodic solutions); coexistence of stable spatially pattern and unstable temporarily periodic
pattern; coexistence of unstable spatially pattern and stable temporarily periodic pattern; bistability between spatial and
temporal modes. In the region where the bistability occurs, there also exist the mixed spatiotemporal periodic patterns.
These six bifurcation scenarios are well confirmed quantitatively by numerical simulations.
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