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Abstract
When perceiving a risk from predators, a prey may respond by reducing its reproduc-
tion and decreasing or increasing (depending on the species) itsmobility.We formulate
a patchmodel to investigate the aforementioned fear effectwhich is indirect, in contrast
to the predation as a direct effect, of the predator on the prey population. We consider
not only cost but also benefit of anti-predation response of the prey, and explore their
trade-offs together as well as the impact of the fear effect mediated dispersals of the
prey. In the case of constant response level, if there is no dispersal and for some given
response functions, the model indicates the existence of an evolutionary stable strat-
egy which is also a convergence stable strategy for the response level; and if there is
dispersal, the analysis of the model shows that it will enhance the co-persistence of the
prey on both patches. Considering the trait as another variable, we continue to study
the evolution of anti-predation strategy for the model with dispersal, which leads to a
three-dimensional system of ordinary differential equations.We perform some numer-
ical simulations, which demonstrate global convergence to a positive equilibriumwith
the response level evolving towards a positive constant level, implying the existence
of an optimal anti-predation response level.
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1 Introduction

Interactions between predator and prey species are typically very complicated, in
comparison with competitions and mutualism. This is mainly because a dynamical
system model that describes predator–prey interaction is non-monotone, and hence,
can allow very rich dynamics.

Themost classic predator–prey systemwas proposed by Lotka andVolterra, respec-
tively, in 1920s, and is of the following form:

⎧
⎪⎨

⎪⎩

du

dt
= αu − βuv,

dv

dt
= −δv + γ uv,

(1)

where u(t) and v(t) are the populations of the prey and predator, respectively, at time
t . This model allows a family of periodic orbits and is structurally unstable. Since
then, there have been numerous modifications/generalizations on (1), which can be
represented by the following more general form:

⎧
⎪⎨

⎪⎩

du

dt
= g1(u) − p(u, v)v,

dv

dt
= g2(v) + cp(u, v)v,

(2)

where g1(u) (g2(v)) represents the population dynamics of the prey (predator) in
the absence of the predator (prey). Here the predation term p(u, v)v accounts for
catching/consumption rate of prey by predator, and is a direct effect of the predator on
prey. The positive constant c explains the efficiency of biomass transfer from prey to
predator after catching and consumption, and the function p(u, v) is referred to as the
functional response. To the authors’ knowledge, almost all efforts in modifying and
generalizing (1) lie in proposing various forms for p(u, v) depending on the nature
of predation which is species specific. For example, for p(u, v) depending on u only,
there are Holling types I, II and III; for p(u, v) truly depending on both u and v,
there are Beddington–DeAngelis functional response p(u, v) = au

1+bu+cv and ratio-

dependent functional response p(u, v) = a (u/v)
c+b (u/v)

= au
bu+cv . Therefore, such efforts

are all along the line of the direct effect.
On the other hand, recent field observations and empirical results show that merely

the presence of predator can alter ecological behaviours of prey, and thereby, influence
its population size. For feeding animals, they may change their foraging periods and
locations to avoid hunting predators (Lima and Dill 1990). Such effects are indirect
and non-lethal as they are not through predation and consumption. Usually, defen-
sive actions, including avoidance, vigilance, alarm calls, grouping and even defences
against predators (Cresswell 2008) can diminish direct mortality from predation tem-
porally, but will decrease lifetime fitness as well through, for example, reduced growth
rate and fecundity due to less intake and mating opportunities.
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To study how significant such a fear effect can be, some experiments have been
designed and conducted by limiting lethal consumption. For example, Nelson et al.
(2004) surgically shortened the mouthparts of damsel bugs, so that they were unable to
consume pea aphids but could still disturb them. The growth of aphid population was
reduced by 30%. Zanette et al. (2011) conducted a field experiment on song sparrows.
They protected the birds from direct predation by using electric fences and broadcasted
playbacks of the calls and sounds of their predators. They found that number of the
bird’s offspring per year was reduced by 40%. Preisser et al. (2005) estimated the sizes
of direct and indirect effects in 166 studies from 49 published works, and their result
showed that the indirect effect size on average was similar to (more precisely it was
only slightly weaker than) the direct effect size.

The aforementioned field experimental results clearly indicate that fear effect is
indeed an important factor in predator–prey interactions. As far as mathematically
modelling fear effect is concerned (Brown et al. 1998) firstly modelled the ecology of
fear by conjoining the Rosenzweig–MacArthur model (Rosenzweig and MacArthur
1963):

⎧
⎪⎨

⎪⎩

du

dt
= ru

(
1 − u

K

)
− g(u)v,

dv

dt
= −mv + eg(u)v,

(3)

with a foraging theory in 1999, where fear was represented by the level of vigi-
lance. In a recent work, based on the field study in Zanette et al. (2011), Wang et al.
(2016) incorporated the fear effect on reducing the reproduction rate of the prey in
the Rosenzweig–MacArthur model with Holling types I and II functional responses.
In Wang and Zou (2017), Wang and Zou further discussed different effects of fear on
juvenile and adult stages of the prey by a model with age structure, in the form of a
system of delayed differential equations. Note that in Wang et al. (2016), only a cost
of the anti-predation response was considered. More recently, Wang and Zou (2020)
modified the model in Wang et al. (2016) by (i) incorporating both cost (reducing
reproduction rate) and benefit (reducing the chances of being caught and consumed
by predator) to the prey equation and (ii) introducing a time lag that accounts for
the time needed for the transfer of prey biomass to predator biomass. The analysis in
Wang and Zou (2020) has not only shown that there is a critical response level, but
also revealed how such a critical level is affected by the digestion delay. Sasmal and
Takeuchi (2020) also considered both cost and benefit due to anti-predation response
with the functional response g(u) being Holling type IV, and explored the rich dynam-
ics of the resulting ODE system. Sasmal (2018) exploredmultiple Allee effect induced
by fear effect. From the aforementioned works, it seems that the fear effect had been
largely neglected in predator–prey models, and the recent results mentioned above
suggest that many existing models deserve a revisit by incorporating the fear effect
and various factors induced by such an indirect effect in predator–prey interactions.

Besides the factors mentioned above (age structure, types of the functional
responses, digestion delay), there is also the important factor of spatial structure.
Considering the ability of species moving around, many works have already been
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done for both discrete and continuum habitats by using random dispersal or diffusion
to model the movement of individuals [for example, see Hastings (1982), Levin et al.
(1984), Jansen (2001), Okubo and Levin (2001) and the references therein]. In most
existing works, dispersal rates were postulated to be constants, independent of time,
location and population densities. However, in predator–prey interactions, some prey
perceiving a predation risk from the predator may accordingly change their dispersal
strategy to avoid encounters with predators. In most cases, animals (such as mice) are
observed to reduce their activities because moving prey is more likely to be detected
by predators; usually, this corresponds to the increased use of refuges (Lima and Dill
1990). There are also biological species, such as birds which, upon perceiving a risk
from the predators, in addition to reducing the reproduction rate, may respond to the
risk by moving more frequently and in more advantageous direction(s). For a spatially
continuum habitat, Wang and Zou (2018) proposed and analysed a reaction–diffusion
model with predator-taxis for the prey accounting for the prey’s intention of moving
away from the predator. Through the model, the role of fear effect in pattern formation
is explored in conjunction with various types of functional responses.

Compared to partial differential equation models for populations in a spatially con-
tinuous habitat, patch models for discrete habitats are sometimes more practical since
habitat fragmentation is common. For human beings, we live in cities and towns; for
animals, the land is often separated by geographical factors and human constructions.
With the above considerations, it is interesting and desirable to explore how the fear
effect reflected not only in reproduction rate but also in dispersal rate of the prey will
affect the population dynamics in predator–prey interactions. To this end, parallel to
Wang and Zou (2018), we propose in this work a predator–prey model in the form
of system of ordinary differential equations over two patches. In Sect. 2, we will
formulate and explain our model; and in subsequent Sects. 3 and 4, we will analyse
the model to gain some biological insights into the role of fear effect in conjunction
with the dispersals. We begin in Sect. 3 by considering the case without dispersal;
this will allow us to obtain some preliminary results on the fear effect on local popu-
lation dynamics and the evolution of anti-predation response level. Then, in Sect. 4,
we further explore the case when the two patches are connected through dispersals
with dispersal rates also affected by fear. Some numerical simulations are presented.
We complete the paper by Sect. 5, summarizing the main results and discussing the
biological implications and significance of the results, as well as some possible related
future research projects.

2 Model Formulation

The logistic growth of prey population in the Rosenzweig–MacArthur model (3) is
a result of constant per capita birth rate b0 together with a density independent per
capita death rate (nature death rate) d1 and a density-dependent death rate d2u: u′(t)
= b0u − d1u − (d2u)u = (b0 − d1)u[1 − u

(b0−d1)/d2
]. Based on this and the field

experiment of Zanette et al. (2011) where predation was artificially prevented, Wang
et al. (2016) proposed the following predator–prey model:
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⎧
⎪⎨

⎪⎩

du

dt
= b0 f (α, v)u − d1u − d2u

2 − g(u)v,

dv

dt
= −mu + cg(u)v,

(4)

where a specialist predator was considered and Holling types I and II for the func-
tional response function g(u) were adopted in respective analysis. Here, v denotes the
population of predators reflecting the level of risk, and α is a non-negative parame-
ter reflecting the anti-predation response level of the prey and hence, the decreasing
properties of f (α, v) in α and v posed in Wang et al. (2016) account for the effect of
the prey’s fear on reducing the prey’s reproduction rate.

Note that the demographic equation in (4) for the prey population assumes a constant
per capita birth rate, which has neglected the Allee effect for the prey species. Allee
effect reflects the fact that for some two-sex species, the per capita birth rate is also
density dependent due to the need in group defence and/or mating opportunities.
A simple dependence is b(u) = b0 + b1u, reflecting the scenario that larger the
population size is, more mating opportunities there will be and hence, more births
there will be. This simple b(u) will also lead to a logistic growth for the prey in
the absence of the predator, with the carrying capacity modified accordingly. There
has been many research on modelling Allee effect using various density-dependent
birth rate functions; see Terry (2015) and the references therein for more details on
this topic. We also point out that there are also two-sex species for which a matured
individual only mates with a fixed partner. Considering this fact and in order to avoid
making things too complicated, we will not consider Allee effect but just follow the
line of (4).

With the same consideration for the prey population as in (4), we consider a prey
species that lives on two patches and is able to move between the two patches. Let ui
and vi denote the populations of prey and predators on patch i (i = 1, 2), respectively.
We then propose the following model system:

⎧
⎪⎨

⎪⎩

du1
dt

= b1(α, v1)u1 − d1u1 − au21 − c(α, v1)u1v1 + m(α, v2)u2 − m(α, v1)u1,

du2
dt

= b2(α, v2)u2 − d2u2 − au22 − c(α, v2)u2v2 + m(α, v1)u1 − m(α, v2)u2.

(5)

Here, the Holling type I functional response is adopted for predation interactions,
and the birth rate functionsbi (α, vi ), predation rate functions c(α, vi ) anddispersal rate
functionsm(α, vi ) are assumed to depend on the perceived predation risk (represented
by the quantity of predators vi ) and vigilance level α ∈ (0,∞) (considered as an anti-
predation strategy) of the prey, for i = 1, 2. We allow spatial heterogeneity in the two
patches in resources and this leads to the adoption of patch specific birth rate functions.
On the other hand, considering that we are dealing with the same prey species living
in two different patches predated by the same predator species, we have assumed
the same predation rate function and dispersal rate function in the two patches, both
depending on predator population in the patch though. In order to focus on the prey’s
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population and for simplicity, we assume that the predator has a constant population
on each patch, meaning that v1 and v2 are positive constants. This approximately
corresponds to a scenario that the predator is a generalist species living on a wide
range of food resources and only having this prey species as a minor food resource.

According to the discussion in the introduction, prey reduce reproduction in
response to the perceived predation risk, and being more alert gives them higher
chances to survive through predation. To capture these biological meanings, functions
bi (α, vi ) and c(α, vi ) are assumed to satisfy the following properties which are similar
to those in Wang et al. (2016):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi (0, vi ) = bi (α, 0) = b0i ,

lim
α→∞ bi (α, vi ) = lim

vi→∞ bi (α, vi ) = 0,

c(0, vi ) = c(α, 0) = c0,

lim
α→∞ c(α, vi ) = lim

vi→∞ c(α, vi ) = 0,

∂bi (α, vi )

∂α
≤ 0,

∂bi (α, vi )

∂vi
≤ 0,

∂c(α, vi )

∂α
≤ 0,

∂c(α, vi )

∂vi
≤ 0,

i = 1, 2. (6)

InWang et al. (2016), the authors presented three examples of such function satisfying
the above conditions:

h1(α, v) = a1e
−b1αv, h2(α, v) = a2

1 + b2αv
and

h3(α, v) = a3
1 + b3αv + c3(αv)2

.

As for the dispersal rate function m(α, vi ), it is species specific: when perceiving
predation risk, some species may tend to move more frequently (e.g., birds), while the
others may reduce their movement to avoid being captured (e.g., mice which typically
have refuges). We consider the latter in this work by assuming that the dispersal rate
function is decreasing with respect to α and vi :

⎧
⎪⎨

⎪⎩

m(0, vi ) = m(α, 0) = m0, lim
α→∞m(α, vi ) = lim

vi→∞m(α, vi ) = 0,

∂m(α, vi )

∂α
≤ 0,

∂m(α, vi )

∂vi
≤ 0.

(7)

Let Fi (α, vi ) = bi (α, vi ) − di − c(α, vi )vi for i = 1, 2. Note that Fi (α, vi ) can be
used as a measure of fitness for the species on patch i . Then, the model (5) is rewritten
as:

⎧
⎪⎨

⎪⎩

du1
dt

= u1 [F1(α, v1) − au1] + m(α, v2)u2 − m(α, v1)u1,

du2
dt

= u2 [F2(α, v2) − au2] + m(α, v1)u1 − m(α, v2)u2.
(8)
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According to the basic theory of ordinary differential equations, there exists a unique
solution to system (8) for any given initial values u1(0) and u2(0). Using the propo-
sition given by Chepyzhov and Vishik in their book (Chepyzhov and Vishik 2002,
Proposition 1.1), one can easily check that R2+ is invariant for (8). Moreover, setting
F̄ = max{F1(α, v1), F2(α, v2) : α ≥ 0, v1 ≥ 0, v2 ≥ 0}, we have

d

dt
(u1 + u2) ≤ (u1 + u2)

[
F̄ − a

2
(u1 + u2)

]
.

By a comparison argument, we then conclude that

lim sup
t→∞

(u1 + u2) ≤ 2F̄

a
,

indicating that the total population (u1 + u2) is bounded. By the non-negativity of u1
and u2, both of them must be bounded. Furthermore, if F̄ is non-positive, then the
total population (u1 + u2) converges to zero.

Summarizing the above, we have obtained the following result of well-posedness
for the model.

Lemma 2.1 For any initial point [u1(0), u2(0)] ∈ R
2+, there exists a unique solution

to system (8) which is non-negative and bounded.

3 Model Analysis: Without Dispersal

We begin our analysis of the model for local population dynamics by considering the
case without dispersal: m(α, v1) = m(α, v2) = 0. Then, the model (8) reduces to a
decoupled pair of ordinary differential equations (ODEs) with each having the same
form of

du

dt
= u [F(α, v) − au] , (9)

where F(α, v) := b(α, v) − d − c(α, v)v. This is a scalar logistic ODE in terms of
the variable u and its dynamics is completely well known:

Lemma 3.1 If F(α, v) ≤ 0, then every solution of (9) with u(0) ≥ 0 converges to 0;
if F(α, v) > 0, then every solution of (9) with u(0) > 0 satisfies

lim
t→∞ u(t) = F(α, v)

a
.

Before moving on to the patch model with dispersal, we want to gain some insights
into the anti-predation strategy of prey from evolutionary perspective by using the
method of adaptive dynamics. To this end, we take the vigilance level parameter α as
the trait. Assume that a resident prey with population size u uses the strategy αu and
a mutant (or invading) prey with relatively small population size w (w � u) adopts
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a different strategy αw 	= αu , and the resident and mutant strains are ecologically
equivalent in all other aspects. Then, model (9) is naturally extended to the following
system of equations:

⎧
⎪⎨

⎪⎩

du

dt
= u[F(αu, v) − a(u + w)] =: gu(u, w),

dw

dt
= w[F(αw, v) − a(u + w)] =: gw(u, w).

(10)

Suppose that the population of resident prey has already settled at the steady state
u∗(αu, v) = F(αu ,v)

a =: P(αu, v) (assuming F(αu, v) > 0) if there is no invading
(mutant) prey competing with it. The idea of invasibility analysis (see Diekmann 2004
formore details) is to find outwhether the population ofmutant preywill growor decay
once introduced. This corresponds to the local instability/stability of the boundary
equilibrium (P(αu, v), 0) of (10). Notice that (10) is a Lotka–Volterra competition
model with the equal competition weight, and hence, the competition exclusion is the
generic consequence in the following sense:

(i) if F(αw, v) > F(αu, v), then equilibrium Ew := (0, P(αw, v)) is globally
asymptotically stable for (10);

(ii) if F(αw, v) < F(αu, v), then equilibrium Eu := (P(αu, v), 0) is globally asymp-
totically stable for (10).

Following Diekmann (2004), we introduce the invasion exponent θ(αu, αw) for the
mutant prey by

θ(αu, αw) = ∂gw(u, w)

∂w

∣
∣
∣
∣
w=0

= F(αw, v) − au∗(αu, v) = F(αw, v) − F(αu, v),

which is the relative fitness of the mutant in the environmental condition mediated by
the residents. Then, the above competition exclusion results can be restated in terms of
the sign of this invasion exponent θ(αu, αw): the mutant prey will invade and replace
the resident prey if θ(αu, αw) > 0; and the mutant prey cannot invade (establish) if
θ(αu, αw) < 0.

Next, we explore the existence of evolutionary stable strategy (ESS) and con-
vergence stable strategy (CSS) with respect to the fitness function F(α, v). An
evolutionary singular strategy αu = α∗ is a trait value at which the selection gra-
dient vanishes,

∂θ(αu, αw)

∂αw

∣
∣
∣
∣
αw=αu

= ∂F(αw, v)

∂αw

∣
∣
∣
∣
αw=α∗

= 0. (11)

If the resident prey using strategy α∗ cannot be invaded by any mutant prey using
other strategies, then α∗ is an ESS. By Day and Burns (2003) and Diekmann (2004),
this is implied by

∂2θ(αu, αw)

∂α2
w

∣
∣
∣
∣
αw=αu=α∗

= ∂2F(αw, v)

∂α2
w

∣
∣
∣
∣
αw=α∗

< 0. (12)

123



Evolution and Adaptation of Anti-predation Response of Prey… Page 9 of 27    59 

The singular point α∗ is a CSS if among any pair of strategies near α∗, the one closer
to α∗ is always the winning strategy. By Day and Burns (2003) and Diekmann (2004),
this is implied by

d

dαu

[
∂θ(αu, αw)

∂αw

∣
∣
∣
∣
αw=αu

]

αu=α∗
= ∂2F(αw, v)

∂α2
w

∣
∣
∣
∣
αw=α∗

< 0. (13)

By condition (12), a local maximum of function F(αw, v) is a local ESS. Moreover,
conditions (12) and (13) are equivalent for model (10), implying that the ESS must be
convergence stable when exists.

For a general discussion on definition and biological meanings of ESS and CSS,
readers are referred to Diekmann (2004) and Geritz et al. (1998). Here in this paper,
the abbreviation CSS is used to denote a convergence stable strategy, but in some
works, it denotes a continuously stable strategy, which is by definition a convergence
stable ESS. For convenience of associating the notions of ESS and CSS with the
stability/instability, we adopt the definitions of ESS and CSS used by De Leenheer
et al. (2017) for a setting without dispersal as below.

Definition 3.1 (Definition 3.1 in De Leenheer et al. 2017) The anti-predation strategy
α∗ ∈ [0,∞) is an ESS if the boundary equilibrium (u∗(α∗, v), 0) of system (10) is
locally asymptotically stable for all αw 	= α∗ in some neighbourhood of α∗.

Definition 3.2 (Definition 3.2 in De Leenheer et al. 2017) The anti-predation strategy
α∗ ∈ [0,∞) is a CSS if there is a neighbourhood N of α∗ such that the bound-
ary equilibrium (u∗(αu, v), 0) of system (10) is locally asymptotically stable for all
αu, αw ∈ N that satisfy αw < αu < α∗ or αw > αu > α∗ but is not locally asymptot-
ically stable when αu < αw < α∗ or αu > αw > α∗.

To proceed further to explore the possible ESS and CSS, we choose some particular
forms for the functions b(α, v) and c(α, v) as below:

b(α, v) = b0e
−s̃αv; c(α, v) = c0e

− p̃αv. (14)

Absorbing the positive constant v by letting s = s̃v and p = p̃v, the fitness function
F(α, v) is a single variable function,

F(α, v) = F(α) = b0e
−sα − d − c0ve

−pα. (15)

Analysis on F(α) distinguishes two cases: (i) p > s; and (ii) p < s, with their
respective consequences summarized below.

(i) Assume p/s > 1, then

(i)-1 if p
s < b0

c0v
, then F ′(α) < 0 for all α > 0 and there is no critical point for

F(α);
(i)-2 if p

s > b0
c0v

, then F(α) has a unique critical point α∗ > 0 at which F(α)

attains a maximum;
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Fig. 1 Function F(α) has a global maximum if and only if p/s > max{b0/(c0v), 1}: a F(0) > 0; b
F(0) < 0 but F(α∗) > 0 (color figure online)

(ii) Assume p/s < 1, then

(ii)-1 if p
s < b0

c0v
, then F(α) has a unique critical point α∗ > 0 at which F(α)

attains a minimum;
(ii)-2 if p

s > b0
c0v

, then F ′(α) > 0 for all α > 0 (hence, F(0) < F(α) < F(∞)

= −d < 0 for all α > 0, which should be excluded).

From the above, we can see that only (i)-2 (i.e., p/s > max{b0/(c0v), 1}) offers
the scenario of local interior value α∗ given by

α∗ = 1

p − s
ln

(
pc0v

sb0

)

(16)

at which the fitness function F(α) attains its global maximum. By the definition of
ESS and CSS, it is easy to see that such strategy α∗ is an ESS which is convergence
stable. One can also check that both conditions (12) and (13) are satisfied. Lemma 3.1
implies that the persistence of prey’s population requires F(α) to be positive. If F(0)
= b0−d−c0v>0, then themaximum F(α∗)>0; and even if F(0) = b0−d−c0v < 0
meaning that the prey will go to extinction without any anti-predation response, it is
possible to have F(α∗) > 0 which shows that an anti-predation response can help the
prey survive. See Fig. 1a, b for a demonstration.

We can interpret the above mathematical results from biological point of view.
Note that the ratio p/s measures the relative effect of the anti-predation response on
surviving the predation (benefit) as opposed to that on reducing the reproduction (cost).
Thus, when p/s is small (large s and small p), the effect of reducing the predation is
not as significant as the effect of reducing the reproduction, and hence, it seems to be
preferable for the prey to take less response; this corresponds to the cases (i)-1 and (ii)-
1 in which the maximum of F(α) is attained at α = 0. When p/s is sufficiently large
(i.e., p/s > max{b0/(c0v), 1}), the effect of reducing the predation is more significant
than the effect of reducing the reproduction, and hence, a positive and relatively larger
response level should be favoured, and this corresponds to the cases (i)-2 and (ii)-2.
Moreover, when the population grows to the steady state F(α∗)/a after the prey strain
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with the ESS/CSS α∗ having occupied the patch, it is also the maximal population
size the species can reach.

Apparently, the value b0/(c0v) plays an important role in determining the popula-
tion dynamics of prey, which is the ratio of per capita birth rate to per capita death rate
due to predation without anti-predation response. When the ratio is smaller than one,
the existence of positive convergence stable ESSonly requires p/s > 1.When the ratio
is greater than one, the condition becomes p/s > b0/(c0v) > 1. If a species popula-
tion is able to produce more offspring (meaning larger b0), anti-predation behaviours
are less likely to be developed.Moreover, the ratio b0/(c0v) depends on the population
of predator, while p/s = ( p̃v)/(s̃v) = p̃/s̃ is only related to the prey species. When
the number of predators is sufficiently small, indicating that the existence of predators
does not threaten the survival of prey, such fear will not change the behaviours of prey.
If there are too many predators meaning that predation risk is relatively high, the prey
species will be driven/forced to develop some anti-predation strategies.

In this model, co-existence is impossible since θ(αw, αu) and θ(αu, αw) cannot
be positive simultaneously. A successful invasion of mutant prey always leads to
the extinction of resident prey and the mutant prey becomes new resident prey. This
means that trait substitution occurs. In reality, evolution dynamics is typically much
slower than the population dynamics. Thus, we further assume that the duration of the
inter-strain (or inter-species) competitive interaction is much shorter than the mutation
process, so that the population has approached a steady state before the appearance of
newmutant. Repeating the trait substitution generates a sequence of trait values which
converges to the ESS/CSS. Biologically speaking, an optimal anti-predation strategy
is developed by mutation and natural selection.

The information concerning the adaptive dynamics of anti-predation strategy α

can be illustrated graphically in the pairwise invasibility plot (PIP). See Fig. 2 for an
example when a positive convergence stable ESS exists with the chosen parameter
values satisfying p/s > b0/(c0v) > 1. The αu − αw plane is divided by the curves
where θ(αu, αw) = 0. In the blue regions θ(αu, αw) is positive, corresponding to
successful invasion by mutant, whereas in the white regions the invader fails since
θ(αu, αw) is negative. The point where two curves intersect is consistent with the
value given by (16). Such a strategy is both an ESS and a CSS.

Fig. 2 Pairwise invasibility plot
for model (10) with trait α.
Function F(α, v) is in the form
of (15) and b0 = 5, d = 0.5,
c0v = 3.5, s = 1, p = 3. The
mutant can invade in the blue
regions but the invader fails in
the white regions. The
intersection of two curves gives
a convergence stable ESS
α∗ = 0.37 (color figure online)
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4 Model Analysis: With Dispersal

In this section, we consider the full model (8) with dispersals which are also affected
by fear.

4.1 Equilibria and Stability

Firstly, we consider the trait α as a constant. System (8) admits only two equilibria:
E0 = (0, 0) and E+ = (u∗

1, u
∗
2), with u

∗
1 and u∗

2 satisfying:

u∗
1 = au∗

2

m(α, v1)

[

u∗
2 − F2(α, v2) − m(α, v2)

a

]

=: Π1(u
∗
2),

u∗
2 = au∗

1

m(α, v2)

[

u∗
1 − F1(α, v1) − m(α, v1)

a

]

=: Π2(u
∗
1).

(17)

The first quadratic function Π1 has two roots

u2 = 0 and u2 = F2(α, v2) − m(α, v2)

a
=: û2,

and the second function Π2 also has two roots

u1 = 0 and u1 = F1(α, v1) − m(α, v1)

a
=: û1.

These two parabolas intersect at the origin. Moreover, when û1 ≥ 0 or û2 ≥ 0, the
two curves always have a unique intersection in the interior of the first quadrant. When
û1 < 0 and û2 < 0, there is an interior intersection in the first quadrant if and only if
the slopes of two curves at the origin satisfy Π ′

1(0) · Π ′
2(0) < 1, which is equivalent

to F1(α, v1)F2(α, v2) < F1(α, v1)m(α, v2)+ F2(α, v2)m(α, v1). Hence, we have the
following result on the existence of co-persistence equilibrium.

Theorem 4.1 The system (8) has a unique positive equilibrium if and only if one of
the following conditions holds:

(i) F1(α, v1) ≥ m(α, v1),
(ii) F2(α, v2) ≥ m(α, v2),
(iii) F1(α, v1)<m(α, v1), F2(α, v2)<m(α, v2), and F1(α, v1)F2(α, v2)< F1(α, v1)

m(α, v2) + F2(α, v2)m(α, v1).

The Jacobian matrix for system (8) is given by

J =
(
F1(α, v1) − m(α, v1) − 2au1 m(α, v2)

m(α, v1) F2(α, v2) − m(α, v2) − 2au2

)

. (18)

At the trivial equilibrium E0, it becomes

J(E0) =
(
F1(α, v1) − m(α, v1) m(α, v2)

m(α, v1) F2(α, v2) − m(α, v2)

)

. (19)
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Fig. 3 The solid curve is
implicitly defined by
F1(α, v1)F2(α, v2)

= F1(α, v1)m(α, v2)

+ F2(α, v2)m(α, v1) for
F1(α, v1) < m(α, v1), below
which E0 is asymptotically
stable. The region above this
curve is where the trivial
equilibrium E0 is unstable
which is the same region for
(F1, F2) where the positive
equilibrium E+ exists (color
figure online)

Thus, the trivial equilibrium E0 is locally asymptotically stable if

tr(J(E0)) = F1(α, v1) − m(α, v1) + F2(α, v2) − m(α, v2) < 0,

det(J(E0)) = F1(α, v1)F2(α, v2)−F1(α, v1)m(α, v2)−F2(α, v2)m(α, v1)>0.

(20)

As shown graphically in Fig. 3, this condition represents the region under the solid
curve defined by the equation

F1(α, v1)F2(α, v2) = F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1), (21)

or written in the explicit form,

F2(α, v2) = m(α, v1)m(α, v2)

F1(α, v1) − m(α, v1)
+ m(α, v2), (22)

for F1(α, v1) < m(α, v1) on the F1–F2 plane. It is not difficult to observe that con-
ditions in (20) is precisely the conditions that exclude the existence of a positive
equilibrium.

Remark 4.1 Notice that the tangent line of the curve at (F1(α, v1), F2(α, v2)) = (0, 0)
is F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1) = 0, shown as the thick solid straight line
in Fig. 3. Hence, the condition in Theorem 4.1 for the existence of positive equilibrium
can be equivalently stated as

either (A) F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1) ≥ 0,

or (B) 0 > F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1) > F1(α, v1)F2(α, v2).

(23)

The advantage of these equivalent statements is that they are expressed in terms
of the weighted total fitness F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1), which is the
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total of the two local fitness functions mediated by the dispersal strengths. Such a
weighted total obviously combines the local fitness and the dispersal effect, and is
thus a biologically meaningful measure for the total fitness of the prey on the two
patches.

As for the positive equilibrium E+ = (u∗
1, u

∗
2), recall that u

∗
1 and u∗

2 satisfy (17)
which can be written as

m(α, v1)u∗
1

u∗
2

= au∗
2 − (F2(α, v2) − m(α, v2)),

m(α, v2)u∗
2

u∗
1

= au∗
1 − (F1(α, v1) − m(α, v1)).

Using these to rewrite the diagonal entries of J(E+), we have

J(E+) =

⎛

⎜
⎜
⎝

−m(α, v2)u∗
2

u∗
1

− au∗
1 m(α, v2)

m(α, v1) −m(α, v1)u∗
1

u∗
2

− au∗
2

⎞

⎟
⎟
⎠ (24)

with

tr(J(E+)) = −m(α, v2)u∗
2

u∗
1

− au∗
1 − m(α, v1)u∗

1

u∗
2

− au∗
2 < 0,

det(J(E+)) = am(α, v2)(u∗
2)

2

u∗
1

+ am(α, v1)(u∗
1)

2

u∗
2

+ a2u∗
1u

∗
2 > 0.

Hence, the positive equilibrium is always locally asymptotically stable as long as it
exists.

Indeed, we can prove that for this model system (8), the local asymptotic stability
of an equilibrium also implies the global asymptotic stability. To this end, we just need
to show that there is no periodic solution of system (8) by using the Dulac criterion.
Set B(u1, u2) = 1/(u1u2), then we have

G1(u1, u2) := B(u1, u2)
du1
dt

= F1(α, v1) − m(α, v1) − au1
u2

+ m(α, v2)

u1
,

G2(u1, u2) := B(u1, u2)
du2
dt

= F2(α, v2) − m(α, v2) − au2
u1

+ m(α, v1)

u2
.

Since

∂G1

∂u1
+ ∂G2

∂u2
= − a

u2
− m(α, v2)

u21
− a

u1
− m(α, v1)

u22

is not identically zero and does not change sign in R
2+, there is no periodic orbit.

Hence, by the Poincaré–Bendixson theory of planar dynamical systems, a locally
asymptotically stable equilibrium is also globally asymptotically stable.
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Summarizing the above analysis, we have obtained the following global threshold
result.

Theorem 4.2 The following statements hold:

(i) If condition (20) holds, then for any initial point [u1(0), u2(0)] ∈ R
2+, the corre-

sponding solution of (8) satisfies limt→∞ u1(t) = limt→∞ u2(t) = 0.
(ii) If condition (20) is violated [i.e., (23) holds], then the trivial equilibrium becomes

unstable, and there is a unique positive equilibrium E+ (representing the prey’s
co-persistence on both patches) which is globally asymptotically stable.

Recall that in the absence of dispersal, the species survives in both patches if and
only if F1(α, v1) > 0 and F2(α, v2) > 0. However, with the dispersal, the range of
F1(α, v1) and F2(α, v2) for co-persistence of the species in both patches has obviously
been enlarged, as shown in Fig. 3. Particularly, co-existence in both patches is also
possible even if one of the fitness functions is negative, and this clearly and explicitly
shows the positive role of dispersal on maintaining the population persistence.

Although dispersal can enhance the chance to survive, it does not necessarily
mean that higher dispersal rate is always better. When the dispersal rates are greater
than the corresponding linear net growth rates (i.e., when m(α, vi ) > Fi (α, vi ) for
i = 1, 2), there are ranges for parameters within which the species will be driven
to extinction. See the region under the solid curve and located in the two stripes
F1(α, v1) ∈ (0,m(α, v1)) and F2(α, v2) ∈ (0,m(α, v2)) in the F1–F2 plane as shown
in Fig. 3. Or to be more explicit, we consider a special case where dispersal rate is
independent of the populations of predator, denoted as m(α). Then, the conditions
in (23) for the persistence of prey on both patches are simplified to

either (A*) F1(α, v1) + F2(α, v2) ≥ 0,

or (B*) F1(α, v1)+F2(α, v2)<0 and 0 < m(α)<
F1(α, v1)F2(α, v2)

F1(α, v1)+F2(α, v2)
.

(25)

In Case (B*), there is an explicit upper bound for the dispersal strength m(α). There-
fore, in such a special case, when the total fitness is positive, the species always persists
on both patches even if one local fitness is negative (patch quality is very poor), as long
as there is dispersal (m(α) > 0) regardless of how small and how large it is. However,
if the total fitness is negative, the species will eventually die out on both patches if the
dispersal rate exceeds the threshold given in (25), but will persist if the prey maintains
a mild dispersal rate.

Combining the above results with the dependence of Fi (α, vi ) and m(α, vi ) on α

for i = 1, 2, one then can explore the effect of the anti-predation response level α

on the prey’s population dynamics. To illustrate possible outcomes, we choose the
following particular functions,

Fi (α, vi ) = b0i e
−s̃αvi − di − c0vi e

− p̃αvi , i = 1, 2, (26)

m(α, vi ) = m0e
−q̃αvi , i = 1, 2, (27)
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Fig. 4 The effect of anti-predation response level α on the prey’s population dynamics. aThe curves defined
by (22)with different values ofα, which separate the stability region of the positive equilibrium E+ from that
of the trivial equilibrium E0. The red curve with arrow represents the trajectory of [F1(α, v1), F2(α, v2)]
when α increases from 0 to 3.5. b The dependence of stable population sizes on α, marked with the strategy
values at which the populations are maximized. Other parameter values are: b01 = 10, b02 = 5, d1 = 1,
d2 = 2, c0 = 0.04, v1 = 100, v2 = 200, s̃ = 0.01, p̃ = 0.03, m0 = 2, q̃ = 0.02, and a = 1 (color figure
online)

which satisfy all those assumptions proposed in Sect. 2. Figure 4a shows the vari-
ation of curve defined by (22) with respect to anti-predation strategy α. Recall that
this curve separates the stability region of the trivial equilibrium E0 from the region
where the positive equilibrium E+ is globally asymptotically stable.Whenα increases,
the stability region of the positive equilibrium is enlarged, and the pair of values
[F1(α, v1), F2(α, v2)] moves along the red curve from the stability region of E+ into
the stability region of E0. Consequently, the population on two patches converges to
a positive steady state for small α, but prey on both patches go to extinction when
α exceeds some critical point. The stable population sizes are plotted in Fig. 4b,
marked with the strategy values when populations reach their maxima. Enhancing
anti-predation response level is beneficial to population size when α is small, then it
becomes detrimental. Such effect is not synchronous on the two patches.

4.2 Evolution of Anti-predation Strategy

In this subsection, we move on to study the evolution of anti-predation strategy α.

4.2.1 Invasion Analysis

Due to the presence of dispersal between the patches, adopting the same invasibility
analysis as in Sect. 3 leads to a four-dimensional ODE system,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1
dt

= u1 [F1(αu, v1) − a(u1 + w1)] + m(αu, v2)u2 − m(αu, v1)u1

du2
dt

= u2 [F2(αu, v2) − a(u2 + w2)] + m(αu, v1)u1 − m(αu, v2)u2

dw1

dt
= w1 [F1(αw, v1) − a(u1 + w1)] + m(αw, v2)w2 − m(αw, v1)w1,

dw2

dt
= w2 [F2(αw, v2) − a(u2 + w2)] + m(αw, v1)w1 − m(αw, v2)w2.

(28)

The ability of the mutant to invade can be determined from the eigenvalues of the
Jacobian matrix of the augmented system at boundary equilibrium (u∗

1, u
∗
2, 0, 0) with

u∗
1 and u∗

2 being solved from (17):

J =
(
J11 J12
0 J22

)

. (29)

This is an upper triangular matrix, so the eigenvalues are simply those of the two
2× 2 block-diagonal elements J11 and J22. The matrix J11 is identical to the Jacobian
matrix J(E+) given by (24). Since we are only interested in resident prey populations
that are at a stable positive equilibrium, the two eigenvalues of J11 must have negative
real parts. Thus, the local stability fully depends on the dominant eigenvalue of matrix

J22 =
(
A B
C D

)

,

λ = 1

2

(
A + D +

√
(A − D)2 + 4BC

)
, (30)

where

A = F1(αw, v1) − m(αw, v1) − au∗
1, B = m(αw, v2),

C = m(αw, v1), D = F2(αw, v2) − m(αw, v2) − au∗
2.

Amutant prey with strategy αw can invade the resident population with strategy αu

provided that λ > 0. Hence, we choose λ as the invasion exponent because it directly
determines whether the mutant strain, when being rare, will grow or decay (invade or
not). An evolutionary singular strategy αu = α∗ is a solution to the equation

∂λ(αu, αw)

∂αw

∣
∣
∣
∣
αw=αu

= 0. (31)

This strategy is an ESS if

∂2λ(αu, αw)

∂α2
w

∣
∣
∣
∣
αw=αu=α∗

< 0; (32)
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Fig. 5 Pairwise invasibility plot
for model (28) with trait α. The
blue areas correspond to λ > 0
when the mutant can invade, and
in the white areas λ < 0
implying that the mutant dies out
(color figure online)

and α∗ is convergence stable if

∂2λ(αu, αw)

∂α2
u

∣
∣
∣
∣
αw=αu=α∗

>
∂2λ(αu, αw)

∂α2
w

∣
∣
∣
∣
αw=αu=α∗

. (33)

See Diekmann (2004) for details. It is not easy to explore further explicitly by applying
these criteria. This is because of the complexity of λ(αu, αw)—it depends on u∗

1(αu)

and u∗
2(αu) which are determined by but cannot be explicitly solved from (17).

However, we can still gain some information about the adaptive dynamics of
anti-predation strategy α by sketching the pairwise invasibility plot numerically. An
example is illustrated in Fig. 5 using the particular functions Fi (α, vi ) and m(α, vi )

given by (26) and (27) and the same parameter values as in Fig. 4. The αu − αw plane
is partitioned according to the signs of invasion exponent λ defined by (30). We can
easily tell that the singular point at which the two curves of neutrality intersect is an
ESS. Even though the condition for mutual invasibility (Diekmann 2004),

∂2λ(αu, αw)

∂α2
u

∣
∣
∣
∣
αw=αu=α∗

> − ∂2λ(αu, αw)

∂α2
w

∣
∣
∣
∣
αw=αu=α∗

, (34)

is hard to check, it seems to be impossible since the plot in Fig. 5 is symmetric about
the line αw = αu . One may expect the dynamics to be monomorphic.

We have seen there are some shortcomings of invasibility analysis. This motivates
us to employ an alternative method, that is, considering an augmented system with the
anti-predation response level α being another variable. We explore this method in the
next subsection.

4.2.2 Adaptive Dynamics Without Time Scale Separation

Assume that the prey has complete knowledge about the surrounding environment
and always adapts its behaviour to increase fitness. Thus, the evolution of α = α(t)
with respect to time should be towards the direction of increasing the fitness of the
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prey species. This can be reflected by assuming that the relative change rate of α is
proportional to the gradient of the fitness with respect to α, that is,

dα

dt
= σα

∂Φ

∂α
, (35)

where Φ accounts for some measure of fitness for the prey and σ > 0 represents
the speed of evolution. It is easy to see that the solution to (35) remains positive,
given any positive initial value. We point out that here our trait variable α is within
[0,∞) in comparison to some previous used replicator equations of the form α′(t)
= σα(1 − α)∂Φ

∂α
where α is confined to [0, 1]. See, e.g., Takeuchi et al. 2009; Wang

et al. 2016 and some references therein.
To gain some motivation for the fitness function Φ, let us revisit the case without

dispersal discussed in Sect. 3, using this alternative idea of evolving strategy α (rather
than comparing two different constant values for α as done in Sect. 3). Then, instead
of the model (10) that describes the competition between resident prey and mutants
with different anti-predation response levels, we may consider following new system
consisting of Eq. (9) for the population and Eq. (35) for strategy:

⎧
⎪⎨

⎪⎩

du

dt
= u [F(α, v) − au] ,

dα

dt
= σα

∂Φ

∂α
,

(36)

where σ should be relatively small since speed of evolution is much slower than the
demographic process. As discussed in Sect. 3, F(α, v) is a measure of fitness for the
species and hence, is a natural candidate for Φ. With this choice of Φ = F(α, v),
the second equation in (36) is decoupled from the first equation, and hence can be
dealt with independently. Besides α = 0, all singular points of Φ such that ∂Φ

∂α
= 0

are fixed points of the strategy equation. When α(t) starting from any initial value
eventually converges to one fixed point α∗, the population approaches to its steady
state accordingly based on the sign of F(α∗, v). If F(α, v) is in the form of (15) for
p/s > max{b0/(c0v), 1} which is a one-hump function, then α∗ is the point at which
F(α, v) attains its maximum. This result is consistent withwhat we obtained in Sect. 3.

Nowwecombine the strategy equation (35)with the two-patch populationmodel (8)
with dispersals. The first and most important thing is to determine what function is
appropriate to be the fitness Φ. From the discussion in Remark 4.1, we have seen that
total fitness mediated by the dispersals, that is F1(α, v1)m(α, v2)+F2(α, v2)m(α, v1),
is of both mathematical and biological significance. Thus, similar to the choice of
Φ = F(α, v) for model (36), we may use the above quantity as a measure of fitness
for the prey in two-patch environment. Then, we are led to consider the system given
below:
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Fig. 6 The fitness function F1(α, v1) and F2(α, v2) and convergent dynamics of anti-predation response
level α(t) on the two patches which are not connected by dispersals (color figure online)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du1
dt

= u1 [F1(α, v1) − au1] + m(α, v2)u2 − m(α, v1)u1,

du2
dt

= u2 [F2(α, v2) − au2] + m(α, v1)u1 − m(α, v2)u2,

dα

dt
= σα

∂

∂α
[F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1)] .

(37)

The strategy equation is also decoupled from the population equations, and its
dynamics depends on the choices of Fi (α, vi ) and m(α, vi ), i = 1, 2. Without spec-
ifying these functions, one can hardly obtain any conclusive results. Thus, in order
to illustrate how the anti-predation response level α evolves along time, we use the
functions (26) and (27) again and conduct some numeric investigations with the same
parameter values as those used in Sect. 4.1 and σ = 0.01.

If the two patches are not connected by dispersals, the prey evolves separately
on each patch according to system (36) with different parameter values. The fitness
functions F1(α, v1) and F2(α, v2) are of the same form as (15), and hence, their
behaviours are also as demonstrated in Fig. 1with the given parameter values satisfying
p̃/s̃ > max{b0i/(c0vi ), 1} for i = 1, 2. Their maximal values are reached at different
critical points α∗

1 and α∗
2 . As shown in Fig. 6, the anti-predation response level α in

each patch evolves towards the corresponding critical points α∗
1 and α∗

2 .
In the presence of dispersals, the weighted total fitness with the same parameter

values also has a globalmaximumattained at pointα1∗, as plotted in Fig. 7a,which is in
between of α∗

1 and α∗
2 . The convergence of α(t) to α1∗ for some initial values near α1∗

is numerically demonstrated in Fig. 7b, indicating that α1∗ at least is a local attractor.
Besides the total fitness mediated by dispersals, there are other choices for the

fitness function Φ. In principle, anything that captures that biological meaning and
in the mean time, is mathematically tractable can be used to measure the fitness. For
example, as was used in Wang and Zou (2017), the instant growth rate of the total
population of the prey species,
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Fig. 7 The fitness function is taken as the total fitness mediated by dispersals. The anti-predation response
level α(t) converges to the point that maximizes this fitness function (color figure online)

Φ = du1
dt

+ du2
dt

= u1 [F1(α, v1) − au1] + u2 [F2(α, v2) − au2] .
(38)

Accordingly, the equation governing the strategy’s evolution becomes

dα

dt
= σα

[

u1
∂F1(α, v1)

∂α
+ u2

∂F2(α, v2)

∂α

]

. (39)

Unlike in the above two examples, now we have a coupled system for the strategy and
the populations. It becomes impossible to plot the fitness function since it also varies
with time. But we can still explore the dynamics of α(t) numerically. With the same
function forms in (26) and (27) and the same values of the parameters involved, the
adaptive dynamics of α(t) are illustrated in Fig. 8b. We can see that the variable α(t)
beginning within the same range for initial values used in Fig. 7 converges to a value
α2∗ which is different from α1∗. Additionally, α2∗ maximizes the limit fitness function
when the populations reach steady state, as shown in Fig. 8a. We also observe that the
convergence of α(t) is faster than that in previous example.

From the above numerical explorations, we have seen that for both choices of Φ,
the trait variable α(t) demonstrates convergent dynamics. However, the convergence
speed and the destination values α1∗ and α2∗ can be different for different Φ. This
is because those fitness functions have different emphases and hence, may not be
maximized uniformly. Moreover, none of the critical points matches the ESS obtained
from the pairwise invasibility plot shown in Fig. 5. We point out that the numerical
results on the convergence of α(t) to a critical value αi∗ demonstrated in Figs. 7b and
8b, respectively, do not depend on the initial populations.

We are also interested to the final populations of prey on both patches when optimal
strategy αi∗ is reached. With the same parameter values used for Figs. 6, 7 and 8,
numerical results for the populations are displayed in Fig. 9 which corresponds to the
scenarios illustrated above: (a) no dispersals (Fig. 6), (b) dispersal consideredwith total
fitness mediated by dispersals (Fig. 7) and (c) dispersal considered with fitness being
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Fig. 8 The fitness function is taken as the instant total growth rate of the prey on two patches given by (38)
which also varies with time. The anti-predation response level α(t) converges to a different value from that
in Fig. 7b, which maximizes the limit fitness function when populations reach steady state as shown in the
left graph (color figure online)

the instant total growth rate (Fig. 8). From the numerical results given in Fig. 9, we see
thatwhen dispersals between the two patches are not allowed, the prey’s population can
only persist in patch 1 since F1(α∗

1 , v1) > 0 and F2(α∗
2 , v2) < 0; but if the individuals

of prey are free to move between the two patches, the prey coexists on both patches
with the population size in patch 1 being higher than that in patch 2. Moreover, in
the presence of dispersal, the total population in the steady state is larger than that in
the case without dispersals, no matter which fitness function is adopted. Comparing
with the results obtained in Fig. 4, we observe that none of the optimal strategies
maximizes the population of prey. Such a phenomenon that an optimal strategy does
not necessarily maximize the total population was also observed in previous studies.
For example, in Hastings (1983), it was shown that the ESS dispersal strategy does not
maximize the total population of the species on two patches; and in Lundberg (2013),
it was also observed that the maximal population deviates from the solution with an
ESS migration probability.

5 Conclusion and Discussion

Motivated by some recent works about indirect effect on predator–prey systems, we
have proposed a mathematical model to examine the impact of fear on the popu-
lation dynamics of prey. Unlike in Wang et al. (2016) where only the cost of the
anti-predation response (reducing reproduction) was considered, here we have also
considered the benefit of such a response for surviving the predation. Both the cost
and benefit functions depend on the anti-predation response level and the population
of predator. However, in other works concerning about the evolution of predator–prey
interactions, the responses are only density independent (see Abrams 1986, 1990;
Křivan 2007; Zu and Takeuchi 2012 for examples). In addition, we also have con-
sidered the fear effect on the dispersal strategy of prey under predation risk. In other
words, we have incorporated the fear effects in three factors: reproduction, predation
and dispersion. To this end, we have considered a two-patch environment by assuming
that the habitat of a prey consists of two discrete regions with individuals being able
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Fig. 9 The dynamics of prey’s population for systems (36), (37) and (8)–(39). The initial values are
[u1(0), u2(0), α(0)] = [5, 5, 0.8] (color figure online)

to disperse between the two regions. The unaffected dispersal rates are assumed to be
symmetric since we are focused on the effect of fear and the anti-predation trait.

We start from a special case when there is no dispersal between the patches. Our
results show that the optimal anti-predation response level α depends on whether its
effect on reducing the predation is more or less significant than its effect on reducing
the reproduction. For the former, there is a continuously stable strategy (which is both
an ESS and a CSS) α∗ > 0 (see Figs. 1, 2), while for the latter, no response α = 0
should be favoured. See Sect. 3 for detailed discussion. For the case when the patches
are connected through dispersal of the prey, our results indicate that the dispersal can
enhance the co-persistence of the prey in the two patches. This is clearly and visually
demonstrated in Fig. 3 and is also discussed in detail after Theorem 4.2 in Sect. 4. If a
particular form of the dispersal function m(α, v) is given (e.g., by (27) or some other
functions satisfying (7)), one may further explore to obtain more detailed results on
how α affects the co-persistence region in the F1–F2 plane. The numerical simulation
displayed in Fig. 4 is provided as an example.

We continued to study the evolution of anti-predation response level α by inva-
sibility analysis in Sect. 4.2.1. The criteria, however, are not practically useful.
Alternatively, we let the trait α be another variable evolving with respect to time,
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which leads to a model given by a system of three ordinary differential equations. The
replicator equation governing the direction of evolution depends on a fitness function
Φ. We have considered two particular forms of thisΦ: (i) the total fitness mediated by
dispersals which comes up in our analysis for the population system (see Sect. 4.1);
(ii) the instant growth rate of the total population on both patches (motivated byWang
and Zou 2017). However, we have only numerically explored the model to see how
the response level (as a trait variable) evolves with time, and the results at least indi-
cate local convergence to a positive equilibrium of the full model with the response
level α(t) evolving towards a positive value. This implies the existence of an optimal
anti-predation response level. More rigorous and thorough analysis is still needed in
order to obtain more detailed (explicit) qualitative and quantitative results.

As we pointed out in the numerical examples, there are many choices for the fitness
functions in the extensive literatures of adaptive dynamics and evolutionary dynam-
ics, and we just tried two. Other quantities, like the basic reproduction ratio, life span
and basic depression ratio, are also often considered by researchers. When choosing
functions to measure fitness, besides themain biological feature(s), mathematical con-
venience is often a main consideration. We believe that the biological species as well
as the biological problem under consideration should also make some difference(s). It
would not be surprising to see that the strategy variable α(t) would evolve to different
positive values when different fitness functions are chosen.

In this paper, we have studied the evolutionary dynamics in two ways: adaptive
dynamics with time scale separation (in Sects. 3, 4.2.1) and adaptive dynamics without
time scale separation (in Sect. 4.2.2). By the former approach, the changes of trait are
from mutation and natural selection and the process is graphically demonstrated by
the pairwise invasibility plot. The critical strategies ESS and CSS are defined based
on invasibility, associating with the stability/instability of corresponding competition
system. The conditions for ESS and CSS have been proposed in previous works, but
direct application may hardly provide any information due to the complexity of our
model. The latter approach, however, clearly shows the direction of evolution, and the
resulted system ismore tractable inmathematics. Even though our results derived from
the two methods are not quantitatively equivalent, we believe that there exists such a
fitness function leading to the same evolutionary destination as the invasion method.

We have assumed in this paper that the fear effect decreases the mobility of the
prey, reflected by the assumption (7) for the dispersal function m(α, vi ), and this
assumption has those species that have refuges as prototypes of the prey species. On
the other hand, there are prey species that have moving advantages (such as birds), for
which, perceived predation risk would increase their dispersal rates (actively escaping
from predators, or predator-taxis). For such species, in contrast to (7), the dispersal
function m(α, vi ) would be an increasing function of both α and vi . We will explore
this case in another work. For the spatially continuum case, a predator-taxis diffusion
mechanism has been discussed in Wang and Zou (2018).

Finally, we remark that in our model in this paper, the population of predators is
assumed to remain constant. Although there are numerous situations that fit in such a
scenario (e.g., when the predator is a generalist), a case where the predator population
is not a constant may intrigue further extensions. This will increase the dimension of
the model system and consequently, increase the difficulty level of analysis. In the
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meanwhile, the model may present richer dynamics. Considering a specialist predator
living in both patches, its populations decay exponentially in the absence of prey,
governed by the following equations,

⎧
⎪⎨

⎪⎩

dv1
dt

= ξc(αu, v1)u1v1 + ξc(αw, v1)w1v1 − dvv1,

dv2
dt

= ξc(αu, v2)u2v2 + ξc(αw, v2)w2v2 − dvv2,

(40)

where ξ > 0 denotes ingestion efficiency and dv > 0 is the natural death rate. Assume
that predators are not able tomove between the patches. Combining these two predator
equations with model system (28) and using the particular functions (26) and (27),
numerical examples of population dynamics are shown in Figs. 10 and 11, correspond-
ing to one-patch and two-patch environment, respectively. Unlikemodels (10) and (28)
with constant predator populations showing monomorphic dynamics, co-existence of
prey using different strategies is observed in the augmented model. Hence, evolution-
ary branching is possible. We leave this for future research projects.

Fig. 10 Population dynamics in
an isolated patch for the case of
a specialist predator. The
parameter values are a = 1,
b0 = 5, d = 0.5, c0 = 0.35,
s̃ = 0.1, p̃ = 0.3, αu = 0.1,
αw = 0.7, dv = 0.3, ξ = 0.2;
and the initial point is
[u(0), w(0), v(0)] = [5, 5, 5]
(color figure online)

Fig. 11 Population dynamics in a two-patch environment for the case of a specialist predator. The
parameter values are a = 1, b01 = 10, b02 = 5, d1 = 0.5, d2 = 0.3, c0 = 0.4, s̃ = 0.1,
p̃ = 0.3, m0 = 2, q̃ = 0.02, αu = 0.1, αw = 0.3, dv = 0.2, ξ = 0.2; and the initial point is
[u1(0), u2(0), w1(0), w2(0), v1(0), v2(0)] = [5, 5, 5, 5, 5, 5] (color figure online)
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