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Abstract
Recent experimental study suggests that the engineered symbiotic bacteria Serra-
tia AS1 may provide a novel, effective and sustainable biocontrol of malaria. These
recombinant bacteria have been shown to be able to rapidly disseminate throughout
mosquito populations and to efficiently inhibit development of malaria parasites in
mosquitoes in controlled laboratory experiments. In this paper, we develop a climate-
based malaria model which involves both vertical and horizontal transmissions of the
engineered SerratiaAS1 bacteria in mosquito population. We show that the dynamics
of the model system is totally determined by the vector reproduction ratio Rv, and
the basic reproduction ratio R0. If Rv ≤ 1, then the mosquito-free state is globally
attractive. If Rv > 1 and R0 ≤ 1, then the disease-free periodic solution is globally
attractive. If Rv > 1 and R0 > 1, then the positive periodic solution is globally attrac-
tive. Numerically, we verify the obtained analytic result and evaluate the effects of
releasing the engineered Serratia AS1 bacteria in field by conducting a case study
for Douala, Cameroon. We find that ideally, by using Serratia AS1 alone, it takes at
least 25 years to eliminate malaria from Douala. This implies that continued long-
term investment is needed in the fight against malaria and confirms the necessity of
integrating multiple control measures.
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1 Introduction

Malaria is a mosquito-borne infectious disease caused by Plasmodium protozoan par-
asites, which is accountable for a substantial public health and economic burden across
tropics and subtropics. According to the estimates ofWorldHealthOrganization, about
216million cases and 445,000 deaths due tomalaria occurred globally in 2016, mostly
in WHO African region. Malaria is transmitted among humans by the bites of female
Anopheles mosquitoes. If a mosquito carrying the malaria parasites bites a suscep-
tible human, then the parasites may enter the blood stream of the human body and
undergo several developmental stages, infecting human liver cells and red blood cells.
Eventually, the parasites evolve into gametocytes which may be ingested by another
mosquito, leading to the infection of malaria for that mosquito. Inside the mosquito,
malaria parasites also need to complete a few stages to make the mosquito become
infectious. Once the parasites enter the salivary glands of the mosquito in the form of
sporozoites, the mosquito can inject them into another person during another blood
meal (https://www.cdc.gov/malaria/about/biology/index.html).

The use of insecticide-treated bed nets (ITNs), indoor residual spraying and other
vector control strategies have made a great contribution in malaria control, result-
ing in a dramatic reduction in infection prevalence and clinical incidence between
2000 and 2015 (Bhatt et al. 2006). However, in recent years, the benefits of these
control measures are greatly compromised by the frequent emergence of insecticide
resistance and drug resistance driven by the selective pressures of insecticides and
antimalarial drugs (Hemingway and Ranson 2000; Trape 2001). In addition, there is
no safe and effective vaccine for use in humans at the current moment (World Health
Organization 2018). Climate change also poses a vast challenge for malaria control.
It has been shown that both mosquitoes and malaria parasites are highly sensitive to
temperature (Shapiro et al. 2017). Global warming may worsen the malaria transmis-
sion case in current endemic regions and cause malaria to establish in new areas or
re-emerge in some malaria-eliminated regions (Rogers and Randolph 2000). Facing
these challenges, new sustainable strategies are urgently needed to control this deadly
disease. With the fast development of bio-technology, some artificial control methods
such as the use of symbiotic bacteria have appeared in fighting against mosquito-borne
diseases. For example, it is very promising to control dengue fever, chikungunya and
Zika disease by releasing A. aegyptimosquitoes infected by the bacteriumWolbachia
since the bacteria can limit the vectorial competence of A. aegypti (Bliman et al. 2018;
Ruang-Areerate and Kittayapong 2006).

The Johns Hopkins group led by Marcelo Jacobs-Lorena, where Sibao Wang is a
member, earlier found that the engineered bacteria Pantoea agglomerans can inhibit
the development of malaria parasites by up to 98% and reduce the proportion of
infected mosquitoes by 84% in lab setting (Wang et al. 2012). The challenge then was
to introduce and propagate recombinant bacteria in mosquito populations in the field.
Recently, Sibao Wang came up with his own engineered bacterium, tagged Serratia
AS1, that can do so (Wang et al. 2017). SerratiaAS1 is a strain of nonpathogenic bac-
teria which are able to stably colonize and persist in several mosquito organs including
midguts, hemolymphs, ovaries and accessory glands. In fact, the AS1 bacteria carry
the same anti-Plasmodium genes that the Jacobs-Lorena team added into Pantoea
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agglomerans; and, unlike other bacteria, AS1 is known to spread like “wild fire.” AS1
bacteria can be transferred from male mosquitoes to virgin females during mating.
They observed that AS1 bacteria attached to the laid eggs, floated and propagated in
the water and were ingested by the larvae that hatched from these eggs, and that AS1
continued to rapidly proliferate in the midguts of adults that emerged from these lar-
vae. To investigate the efficiencies of AS1 bacteria dissemination through a life cycle
and transmission from one generation to another, they mixed 10 AS1-infected virgin
female mosquitoes and 10 AS1-infected virgin male mosquitoes with 190 uninfected
virgin female mosquitoes and 190 uninfected virgin male mosquitoes in a laboratory
cage. They found that AS1 were present in all larvae and adults for three genera-
tions. This suggests that Serratia AS1 bacteria can be transmitted both vertically and
horizontally and are likely to exhibit long-term persistence in wild mosquito popula-
tions.Moreover, SerratiaAS1 bacteria showed no obvious negative effect onmosquito
lifespan, fecundity, fertility or blood feeding behaviors. These results indicate that the
engineered SerratiaAS1 bacteria have the potential to become a promising biocontrol
of malaria with almost no bad effect on mosquito life cycle or environment. How
well can the engineered Serratia AS1 bacteria be engaged in combating malaria in
field? How will the AS1 bacteria impact malaria transmission dynamics? Is it possi-
ble to eliminate malaria from some areas by releasing AS1 bacteria or AS1-infected
mosquitoes?We intend to seek answers to these questions by mathematical modeling.

The first malaria model was proposed by Ross (1911) and later modified by Mac-
donald (1957). Since then an increasing number of mathematical models have been
developed to study malaria transmission dynamics including different factors such as
seasonality, stage structure of mosquitoes, immunity, different parasite species, extrin-
sic incubation period, the spatial effects, the effects of various control strategies and
so on (see, e.g., Ai et al. 2012; Arino et al. 2012; Ngonghala et al. 2016; Wang and
Zhao 2017; Xiao and Zou 2013a, b, 2014 and the references therein). In the analy-
sis of these models, the basic reproduction ratio is a key parameter in determining
the disease transmission threshold dynamics. It is also one of the foremost and most
valuable ideas that mathematical thinking has brought to epidemiology. Following
the pioneering works on R0 by Diekmann et al. (1990) and van den Driessche and
Watmough (2002), there are several papers about the theory and applications of R0 for
various types of models (see, e.g., Bacaër and Ait Dads 2012; Bacaër and Guernaoui
2006; Inaba 2012; Thieme 2009; Wang and Zhao 2008; Zhao 2017 and the references
therein). In this paper, we will develop and analyze a climate-based malaria transmis-
sion model taking into account the transmission of Serratia AS1 bacteria among the
mosquito population. To analyze our model, we will identify two threshold parame-
ters: one is related to the threshold dynamics of the mosquito population, whereas the
other determines the disease transmission dynamics. We hope that our work can help
gain insights into the potential role of the engineered Serratia AS1 bacteria can play
in malaria control and hopefully provide some guidance for future field release trials.

The rest of this paper is organized as follows. In the next section, we formulate
the model. In Sect. 3, we derive two critical parameters: the vector reproduction ratio
Rv, and the basic reproduction ratio R0. Then, we show the threshold dynamics of
the model system in terms of Rv and R0. In Sect. 4, we carry out a case study for a
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Sub-Saharan African country to investigate the potential role of engineered Serratia
AS1 bacteria in malaria control. We give a brief discussion is Sect. 5.

2 Model Formulation

Motivated by the models in Ai et al. (2012), Lou and Zhao (2011), Wang and Zhao
(2018), we divide the female mosquito population into the larval and the adult groups.
We use Lv(t) to denote the number of female larval mosquitoes at time t . The advan-
tages of considering the larval stage mosquitoes mainly include the following three
points: (i) The dynamics of the larval stage of mosquitoes influences that of the adult
mosquito population, and hence, affects the disease transmission dynamics; (ii) it
would be helpful for investigating larval control strategies based on a model having
the larval stage; (iii) since the experiment in Wang et al. (2017) involves the transmis-
sion of SerratiaAS1 bacteria from larvae to adults, the larval stage should be included
in order to model this vertical transmission phenomenon. We divide the adult group
into malaria-susceptible mosquitoes and malaria-infective ones. Let Sv(t) and Iv(t)
be the numbers of adult female malaria-susceptible and malaria-infective mosquitoes
at time t , respectively. We assume that the total number of human population stabi-
lizes at a constant value Nh. Let Ih(t) be the number of malaria-infected humans at
time t . It follows that the number of susceptible humans at time t is Nh − Ih(t). With
the above preparation we arrive at the following climate-based malaria transmission
model without Serratia AS1 bacteria-infected mosquitoes:

dLv(t)

dt
= λ(t)(Sv(t) + Iv(t)) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dSv(t)

dt
= δ(t)Lv(t) − μv(t)Sv(t) − bβ(t)

Ih(t)

Nh
Sv(t),

dIv(t)

dt
= bβ(t)

Ih(t)

Nh
Sv(t) − μv(t)Iv(t),

dIh(t)

dt
= cβ(t)

Nh − Ih(t)

Nh
Iv(t) − (dh + ρ)Ih(t).

(1)

Here, λ(t) is the recruitment rate of larval mosquitoes, μl(t) is the natural death rate
of larval mosquitoes, α is the mortality rate of larval mosquitoes due to intraspecies
competition, δ(t) is the maturation rate of mosquitoes, and μv(t) is the mortality
rate of adult mosquitoes. The term bβ(t) Ih(t)Nh

Sv(t) represents the number of newly
occurred malaria-infected mosquitoes per unit time at time t , where b is the transmis-
sion probability of malaria from infectious humans to susceptible mosquitoes and β(t)
is the biting rate of mosquitoes. Similarly, cβ(t) Nh−Ih(t)

Nh
Iv(t) is the number of newly

occurred infected humans per unit time at time t , where c is the transmission proba-
bility from infected mosquitoes to susceptible humans. Compared with mosquitoes,
humans are much less likely affected by climate factors. Thus, we incorporate sea-
sonality into the model by considering that only the parameters related to mosquitoes
are positive, continuous and ω-periodic functions and assuming that for humans the
natural death rate dh, and the recovery rate ρ are positive constants.
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The idea of using engineered Serratia AS1 bacteria to control malaria is to make
mosquitoes incapable of transmitting malaria. Thus, we need to introduce a new vari-
able to represent the number of vectors infected with AS1 bacteria in our model. We
denote such a variable as Bv(t), that is the number of AS1 bacteria-infected adult
female mosquitoes at time t . Based on the findings in the experimental study, we pose
the following assumptions.

(i) Among all the adult mosquitoes infected with the bacteria, we assume that the
sex ratio is 1:1.

(ii) Both malaria-susceptible and malaria-infected wild mosquitoes can be infected
with Serratia AS1 bacteria through mating with AS1-infected mosquitoes.

(iii) Malaria-susceptible mosquitoes will not be infected with malaria once they are
infected with Serratia AS1 bacteria (suggested by Wang et al. (2017)).

(iv) Malaria-infected mosquitoes will not be able to transmit malaria once they are
infected with Serratia AS1 bacteria.

In the experimental study reported inWang et al. (2017), newly emerged larvae and
adult mosquitoes are all infected with AS1 bacteria. However, this may not be the case
if we release AS1 bacteria in some mosquito breeding water in field. For example, if
we release the bacteria in some location whose surface area may be so large that we
cannot guarantee every newly born mosquito get infected with the bacteria. To model
the vertical transmission of AS1 bacteria, we assume that a proportion p of larvae
are infected with AS1 and the remaining proportion 1 − p grow into adults with no
infection of AS1. From assumption (i), we know that the number of AS1-infected
adult male mosquitoes at time t is also Bv(t). We describe the horizontal transmission
of AS1 bacteria by the terms qγ

Sv(t)
Sv(t)+Iv(t)+Bv(t)

Bv(t) and qγ
Iv(t)

Sv(t)+Iv(t)+Bv(t)
Bv(t)

where q is the transmission probability of SerratiaAS1 bacteria from amale mosquito
to a female during a sexual contact and γ is the sexual contact rate of mosquitoes [see
Heffernan et al. (2014) formore details aboutmodeling of sexual transmitted diseases].
Incorporating the variable Bv(t) into (1) based on the above discussion, we obtain our
model described by the following non-autonomous system of ordinary differential
equations:

dLv(t)

dt
= λ(t)(Sv(t) + Iv(t) + Bv(t)) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dSv(t)

dt
= (1 − p)δ(t)Lv(t) − μv(t)Sv(t) − qγ

Sv(t)

Sv(t) + Iv(t) + Bv(t)
Bv(t)

− bβ(t)
Ih(t)

Nh
Sv(t),

dIv(t)

dt
= bβ(t)

Ih(t)

Nh
Sv(t) − μv(t)Iv(t) − qγ

Iv(t)

Sv(t) + Iv(t) + Bv(t)
Bv(t),

dBv(t)

dt
= pδ(t)Lv(t) − μv(t)Bv(t) + qγ

Sv(t) + Iv(t)

Sv(t) + Iv(t) + Bv(t)
Bv(t),

dIh(t)

dt
= cβ(t)

Nh − Ih(t)

Nh
Iv(t) − (dh + ρ)Ih(t).

(2)

123



2574 X. Wang, X. Zou

Table 1 Biological
interpretations for variables and
parameters of model (2)

Variable and parameter Description

Lv(t) Number of larval female mosquitoes

Sv(t) Number of malaria-susceptible adult
female mosquitoes

Iv(t) Number of malaria-infected adult
female mosquitoes

Bv(t) Number of AS1-infected adult
female (male) mosquitoes

Ih(t) Number of malaria-infected humans

λ(t) Recruitment rate of larval mosquitoes

μl (t) Mortality rate of larval mosquitoes

α Density dependent mortality rate of
larval mosquitoes

δ(t) Maturation rate of mosquitoes

μv(t) Mortality rate of adult mosquitoes

p Proportion of the larval mosquitoes
that are infected with Serratia AS1
bacteria

q Transmission probability of Serratia
AS1 bacteria from a male mosquito
to a female mosquito during a
sexual contact

γ Sexual contact rate of mosquitoes

β(t) Biting rate of mosquitoes

b Transmission probability of malaria
from infectious humans to
susceptible mosquitoes

c Transmission probability of malaria
from infectious mosquitoes to
susceptible humans

Nh Total number of humans

dh Natural death rate of humans

ρ Recovery rate of malaria-infected
humans

For readers’ convenience, we give the interpretation of all variables and parameters in
Table 1.

3 Threshold Dynamics

If p = 1, then the dynamics of the model system is trivial. From the second equation
of system (2), we have limt→∞ Sv(t) = 0. Then from the third equation of (2), it is
easy to see that limt→∞ Iv(t) = 0, and hence, from the last equation of (2) we obtain
limt→∞ Ih(t) = 0. Considering that in reality, it is impossible to guarantee p = 1,
we assume that 0 ≤ p < 1 in the rest of this section.
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Let Nv(t) = Sv(t) + Iv(t) + Bv(t). Then, system (2) is equivalent to the following
system:

dLv(t)

dt
= λ(t)Nv(t) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t),

dBv(t)

dt
= pδ(t)Lv(t) − μv(t)Bv(t) + qγ

Nv(t) − Bv(t)

Nv(t)
Bv(t)

dIv(t)

dt
= bβ(t)

Ih(t)

Nh
(Nv(t) − Bv(t) − Iv(t)) − μv(t)Iv(t) − qγ

Iv(t)

Nv(t)
Bv(t),

dIh(t)

dt
= cβ(t)

Nh − Ih(t)

Nh
Iv(t) − (dh + ρ)Ih(t).

(3)

Note that the first two equations of system (3) is decoupled from the other three
equations. Thus, we first study the following system:

dLv(t)

dt
= λ(t)Nv(t) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t).

(4)

Linearizing system (4) at (0, 0), we obtain the following linear cooperative system:

dLv(t)

dt
= λ(t)Nv(t) − (μl(t) + δ(t))Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t).

(5)

We rewrite system (5) as dv
dt = (F̃(t) − Ṽ (t))v, where

F̃(t) =
[
0 λ(t)
0 0

]
, Ṽ (t) =

[
μl(t) + δ(t) 0

−δ(t) μv(t)

]
.

Let Ỹ (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −Ṽ (t)y,

which is represented as a 2×2 matrix. That is, for each s ∈ R, the 2×2 matrix Ỹ (t, s)
satisfies

d

dt
Ỹ (t, s) = −Ṽ (t)Ỹ (t, s), ∀t ≥ s, Ỹ (s, s) = I ,

where I is the 2 × 2 identity matrix.
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Let Cω be the ordered Banach space of all ω-periodic functions from R to R
2,

equipped with the maximum norm and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥

0,∀t ∈ R}. According to Wang and Zhao (2008, Sect. 2), we assume that φ(s) ∈ Cω

is the initial distribution of mosquitoes. Then, F̃(s)φ(s) is the distribution of new
larval mosquitoes produced by the adults introduced at time s. Given t ≥ s, then
Ỹ (t, s)F̃(s)φ(s) gives the distribution of those mosquitoes who were newly born into
the larvalmosquito compartment at time s and remain alive (either as larvalmosquitoes
or as adult ones) at time t . It follows that

ψ(t) :=
∫ t

−∞
Ỹ (t, s)F̃(s)φ(s)ds =

∫ ∞

0
Ỹ (t, t − a)F̃(t − a)φ(t − a)da

is the distribution of accumulative new larval and adult mosquitoes at time t produced
by all those adult mosquitoes φ(s) introduced before the time t .

We define a linear operator L̃ : Cω → Cω by

(L̃φ)(t) =
∫ ∞

0
Ỹ (t, t − a)F̃(t − a)φ(t − a)da, ∀t ∈ R, φ ∈ Cω.

It then follows from Wang and Zhao (2008) that the vector reproduction ratio is
Rv := ρ(L̃), the spectral radius of L̃ . Let r1 be the principal Floquét multiplier of
system (5), that is, the spectral radius of the Poincaré map associated with system (5).
By Wang and Zhao (2008, Theorem 2.2), Rv − 1 has the same sign as r1 − 1. As a
straightforward consequence of Zhao (2003, Theorem 3.1.2), we have the following
result.

Lemma 1 The following statements are valid:

(i) If Rv ≤ 1, then (0, 0) is globally attractive for system (4) in R2+;
(ii) If Rv > 1, then system (4) admits a unique positive ω-periodic solution

(L∗
v(t), N

∗
v (t)), which is globally attractive for system (4) in R2+ \ {(0, 0)}.

Let W = {(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ R
5+ : ϕ2 > 0, ϕ2 ≥ ϕ3, ϕ2 ≥ ϕ4, ϕ5 ≤ Nh}. We

have the following preliminary result for system (3) on the invariance of W .

Lemma 2 For any ϕ ∈ W, system (3) has a unique nonnegative bounded solution
u(t, ϕ) on [0,∞) with u(0) = ϕ, and u(t, ϕ) ∈ W for all t ≥ 0.

Proof For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ W , we define

f̂ (t, ϕ) =

⎛
⎜⎜⎜⎜⎜⎝

λ(t)ϕ2 − μl(t)ϕ1 − αϕ2
1 − δ(t)ϕ1

δ(t)ϕ1 − μv(t)ϕ2

pδ(t)ϕ1 − μv(t)ϕ3 + qγ
ϕ2−ϕ3

ϕ2
ϕ3

bβ(t) ϕ5
Nh

(ϕ2 − ϕ3 − ϕ4) − μv(t)ϕ4 − qγ
ϕ4
ϕ2

ϕ3

cβ(t) Nh−ϕ5
Nh

ϕ4 − (dh + ρ)ϕ5

⎞
⎟⎟⎟⎟⎟⎠

.

Since f̂ (t, ϕ) is continuous in (t, ϕ) ∈ R × W , and f̂ (t, ϕ) is Lipschitz in ϕ on each
compact subset of W , it follows that system (3) has a unique solution u(t, ϕ) on its
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maximal interval [0, σϕ) of existence with u(0) = ϕ [see, e.g., Hale and Verduyn
Lunel (1993, Theorems 2.2.1 and 2.2.3)].

Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ R
4+ × [0, Nh] with ϕ2 ≥ ϕ3 and ϕ2 ≥ ϕ4 be

given. If ϕi = 0 for some i ∈ {1, 2, 3, 4, 5}, then f̂i (t, ϕ) ≥ 0. If ϕ5 = Nh, then
f̂5(t, ϕ) ≤ 0. By Smith (1995, Theorem 5.2.1 and Remark 5.2.1), it follows that for
anyϕ ∈ R

4+×[0, Nh], the unique solution u(t, ϕ) of system (3)with u(0) = ϕ satisfies
u(t, ϕ) ∈ R

4+ ×[0, Nh] for all t ∈ [0, σϕ). It is easy to see that u2(t, ϕ) ≥ u3(t, ϕ) and
u2(t, ϕ) ≥ u4(t, ϕ) for all t ∈ [0, σϕ). Clearly, 0 ≤ u5(t, ϕ) ≤ Nh for all t ∈ [0, σϕ). It
follows from Lemma 1 that there exists M1 > 0 and M2 > 0 such that u1(t, ϕ) ≤ M1
and u2(t, ϕ) ≤ M2 for all t ∈ [0, σϕ). Then, Hale and Verduyn Lunel (1993, Theorem
2.3.1) implies that σϕ = ∞.

From the second equation of system (3), we have

dNv(t)

dt
≥ −μv(t)Nv(t).

It then easily follows that u2(t, ϕ) > 0 for all t ≥ 0. This proves Lemma 2. 	

If Rv ≤ 1, by Lemma 1(i), we have

lim
t→∞ Lv(t) = lim

t→∞ Sv(t) = lim
t→∞ Bv(t) = lim

t→∞ Iv(t) = 0.

Then, the last equation of system (2) gives rise to the following limiting equation for
Ih(t):

dIh(t)

dt
= −(dh + ρ)Ih(t).

It follows that limt→∞ Ih(t) = 0.
If Rv > 1, we consider the following system

dLv(t)

dt
= λ(t)Nv(t) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t),

dBv(t)

dt
= pδ(t)Lv(t) − μv(t)Bv(t) + qγ

N∗
v (t) − Bv(t)

N∗
v (t)

Bv(t).

(6)

Linearizing system (6) at (0, 0, 0), we get the following linear cooperative system:

dLv(t)

dt
= λ(t)Nv(t) − μl(t)Lv(t) − δ(t)Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t),

dBv(t)

dt
= pδ(t)Lv(t) − (μv(t) − qγ )Bv(t).

(7)
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Let r2 be the principal Floquétmultiplier of system (7), that is, the spectral radius of the
Poincaré map associated with system (7). Note that system (6) is obtained by adding
an equation about Bv(t) to system (4) and the equation about Bv(t) is decoupled from
the other two equations of system (6). ByWang and Zhao (2008, Theorem 2.2), Rv−1
has the same sign as r2−1. As a straightforward consequence of Zhao (2003, Theorem
3.1.2), we have the following result.

Lemma 3 If Rv > 1, then system (6) admits a unique positive ω-periodic solution
(L̄∗

v(t), N̄
∗
v (t), B∗

v (t)), which is globally attractive for system (6) in R3+ \ {(0, 0, 0)}.
By the uniqueness of the positive ω-periodic solution in Lemma 1(ii), it follows that
L∗
v(t) = L̄∗

v(t) and N∗
v (t) = N̄∗

v (t). Suppose B̃v(t) is any solution of the following
system.

dBv(t)

dt
= pδ(t)L∗

v(t) − μv(t)Bv(t) + qγ
N∗
v (t) − Bv(t)

N∗
v (t)

Bv(t). (8)

Then, (L∗
v(t), N

∗
v (t), B̃v(t)) = (L̄∗

v(t), N̄
∗
v (t), B̃v(t)) is a solution of system (6).

According to Lemma 3, we have limt→∞(B̃v(t)−B∗
v (t)) = 0. Thus, B∗

v (t) is globally
attractive for system (8).

Consider the following system:

dLv(t)

dt
= λ(t)Nv(t) − μl(t)Lv(t) − αLv(t)

2 − δ(t)Lv(t),

dNv(t)

dt
= δ(t)Lv(t) − μv(t)Nv(t),

dBv(t)

dt
= pδ(t)Lv(t) − μv(t)Bv(t) + qγ

Nv(t) − Bv(t)

Nv(t)
Bv(t).

(9)

By the theory of chain transitive set, we have

Lemma 4 If Rv > 1, then system (9) admits a unique positive ω-periodic solu-
tion (L∗

v(t), N
∗
v (t), B∗

v (t)), which is globally attractive for system (9) in Y :=
{(ϕ1, ϕ2, ϕ3) ∈ R

3+ : ϕ2 > 0, ϕ2 ≥ ϕ3}.
Proof By similar arguments as in Lemma 2, it follows that for any ϕ ∈ Y , system (9)
has a unique nonnegative bounded solution w(t, ϕ) on [0,∞) with w(0) = ϕ, and
w(t, ϕ) ∈ Y for all t ≥ 0. Let {Φ(t)}t≥0 be the positive periodic semiflow associated
with system (9) on Y , that is, Φ(t)(ϕ) := (Lv(t, ϕ), Nv(t, ϕ), Bv(t, ϕ)) is the unique
solution of system (9) with initial value ϕ ∈ Y . Then, Φ := Φ(ω) is the Poincaré map
of system (9), and {Φn}n≥0 defines a discrete-time dynamical system on Y . For any
ϕ ∈ Y , letM be the omega limit set of the discrete-time orbit {Φn(ϕ)}n≥0. It follows
from Hirsch et al. (2001, Lemma 2.1) [see also Zhao (2003, Lemma 1.2.1)] thatM is
an internally chain transitive set for {Φn} on Y .

Since Rv > 1, by Lemma 1(ii) we have

lim
n→∞((Φn(ϕ))1, (Φ

n(ϕ))2) = (L∗
v(0), N

∗
v (0)).
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Then, there exists a subsetM1 of R such thatM = {(L∗
v(0), N

∗
v (0))}×M1. For any

given z = (z1, z2, z3) ∈ M,

Φn|M(L∗
v(0), N

∗
v (0), z3) = {(L∗

v(0), N
∗
v (0))} × Qn|M1(z3)

where {Q(t)}t≥0 is the solution semiflow associated with system (8).
Since M is an internally chain transitive set for Φn , if follows that M1 is an

internally chain transitive set for Qn .
Since B∗

v (t) is a globally attractive positive periodic solution of system (8), it
follows from Hirsch et al. (2001, Theorem 3.1) [see also Zhao (2003, Theorem 1.2.1)]
that M1 = {B∗

v (0)} and hence, M = {(L∗
v(0), N

∗
v (0), B∗

v (0))}. This implies that the
statement is true. 	


If limt→∞(Lv(t)−L∗
v(t)) = limt→∞(Nv(t)−N∗

v (t)) = limt→∞(Bv(t)−B∗
v (t)) = 0,

then the last two equations in system (3) form an asymptotically periodic system with
the following limiting system:

dIv(t)

dt
= bβ(t)

Ih(t)

Nh
(N∗

v (t) − B∗
v (t) − Iv(t)) − μv(t)Iv(t) − qγ

Iv(t)

N∗
v (t)

B∗
v (t),

dIh(t)

dt
= cβ(t)

Nh − Ih(t)

Nh
Iv(t) − (dh + ρ)Ih(t).

(10)

The following result implies that the domain G(t) := [0, N∗
v (t) − B∗

v (t)] × [0, Nh] is
positively invariant for system (10).

Lemma 5 For any ϕ = (ϕ1, ϕ2) ∈ G(0), system (10) has a unique solution v(t, ϕ)

with v(0) = ϕ and v(t, ϕ) = (Iv(t, ϕ), Ih(t, ϕ)) ∈ G(t) for all t ≥ 0.

Proof For any ϕ ∈ G(0), define

f̃ (t, ϕ) =
(
bβ(t) ϕ2

Nh
(N∗

v (t) − B∗
v (t) − ϕ1) − (μv(t) + qγ

B∗
v (t)

N∗
v (t) )ϕ1

cβ(t) Nh−ϕ2
Nh

ϕ1 − (dh + ρ)ϕ2

)
.

Since f̃ is continuous in (t, ϕ) ∈ R × G(0) and f̃ is Lipschitz in ϕ on each compact
subset ofG(0), it follows that system (10) has a unique solution v(t, ϕ)with v(0) = ϕ

on its maximal interval [0, σϕ) of existence.
Let ϕ = (ϕ1, ϕ2) ∈ G(0) be given. If ϕ1 = 0, then f̃1(t, ϕ) ≥ 0. If ϕ2 = 0, then

f̃2(t, ϕ) ≥ 0. If ϕ2 = Nh, then f̃2(t, ϕ) ≤ 0. By Smith (1995, Theorem 5.2.1 and
Remark 5.2.1), it follows that the unique solution v(t, ϕ) of system (10) with v(0) = ϕ

satisfies v(t, ϕ) ∈ R+ × [0, Nh].
It remains to prove that v1(t) ≤ N∗

v (t) − B∗
v (t) for all t ∈ [0, σϕ). Suppose this

does not hold. Then, there exists t0 ∈ [0, σϕ) and ε0 > 0 such that

v1(t0) = N∗
v (t0) − B∗

v (t0) and v1(t) > N∗
v (t) − B∗

v (t), ∀t ∈ (t0, t0 + ε0).
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Since

dv1(t0)

dt
= −

(
μv(t0) + qγ

B∗
v (t0)

N∗
v (t0)

)
v1(t0)

= −
(

μv(t0) + qγ
B∗
v (t0)

N∗
v (t0)

)
(N∗

v (t0) − B∗
v (t0))

< (1 − p)δ(t0)L
∗
v(t0) − μv(t0)(N

∗
v (t0) − B∗

v (t0))

− qγ
N∗
v (t0) − B∗

v (t0)

N∗
v (t0)

B∗
v (t0)

= d(N∗
v (t) − B∗

v (t))

dt

⏐⏐⏐⏐
t=t0

,

there exists ε1 ∈ (0, ε0) such that v1(t) ≤ N∗
v (t) − B∗

v (t) for all t ∈ (t0, t0 + ε1),
which is a contradiction. This proves that v(t, ϕ) ∈ G(t) for all t ∈ [0, σϕ). Clearly,
v(t, ϕ) is bounded on [0, σϕ), and hence, Hale and Verduyn Lunel (1993, Theorem
2.3.1) implies that σϕ = ∞. 	


Linearizing system (10) at (0, 0) gives the following linear system

dIv(t)

dt
= bβ(t)

Ih(t)

Nh
(N∗

v (t) − B∗
v (t)) −

(
μv(t) + qγ

B∗
v (t)

N∗
v (t)

)
Iv(t),

dIh(t)

dt
= cβ(t)Iv(t) − (dh + ρ)Ih(t).

(11)

We rewrite system (11) as du
dt = (F(t) − V (t))u, where

F(t) =
[

0 bβ(t)(N∗
v (t)−B∗

v (t))
Nh

cβ(t) 0

]
, V (t) =

[
μv(t) + qγ B∗

v (t)
N∗
v (t) 0

0 dh + ρ

]
.

Let Y (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −V (t)y.

That is, for each s ∈ R, the 2 × 2 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I ,

where I is the 2 × 2 identity matrix.
We assume that ϕ(s) ∈ Cω is the initial distribution of infectious mosquitoes and

infectious humans. Then, F(s)ϕ(s) is the distribution of new infections produced
by the infectious mosquitoes and infectious humans who were introduced at time s.
Given t ≥ s, Y (t, s)F(s)ϕ(s) gives the distribution of those infectious mosquitoes
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and infectious humans who were newly infected at time s and remain in the infected
compartments at time t . It follows that

∫ t

−∞
Y (t, s)F(s)ϕ(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)ϕ(t − a)da

is the distribution of accumulative new infections at time t produced by all those
infectious mosquitoes and infectious humans ϕ(s) introduced at previous time to t .

We define a linear operator L : Cω → Cω by

(Lϕ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)ϕ(t − a)da, ∀t ∈ R, ϕ ∈ Cω.

It then follows from Wang and Zhao (2008) that the basic reproduction ratio is R0 :=
ρ(L), the spectral radius of L .

Lemma 6 Assume Rv > 1, then the following statements are valid:

(i) If R0 ≤ 1, then (0, 0) is globally attractive for system (10) in G(0);
(ii) If R0 > 1, then system (10) admits a unique positive ω-periodic solution

(I ∗
v (t), I ∗

h (t)), which is globally attractive for system (10) in G(0) \ {(0, 0)}.

Proof Let S(t) be the solution maps of system (10), that is, S(t)(Iv(0), Ih(0)) =
(Iv(t), Ih(t)), t ≥ 0, where (Iv(t), Ih(t)) is the unique solution of system (10) with
(Iv(0), Ih(0)) ∈ G(0). It follows from Lemma 5 that S(t) maps G(0) into G(t), and
S := S(ω) : G(0) → G(ω) = G(0) is the Poincaré map associated with system (10).

Let (ȳ1(0), ȳ2(0)) ≥ (y1(0), y2(0)). Let (ȳ1(t), ȳ2(t)) and (y1(t), y2(t)) be the
solutions of system (10) with initial values (ȳ1(0), ȳ2(0)) and (y1(0), y2(0)), respec-
tively. Then, the comparison theorem for cooperative ordinary differential systems
implies that (ȳ1(t), ȳ2(t)) ≥ (y1(t), y2(t)),∀t ≥ 0, that is, S(t) : G(0) → G(t) is
monotone for each t ≥ 0.

Next, we show that S(t) : G(0) → G(t) is strongly monotone for each t > 0. Sup-
pose (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)). Then, the comparison theorem for cooperative
ordinary differential systems implies that

(ȳ1(t), ȳ2(t)) > (y1(t), y2(t)), ∀t ≥ 0.

We proceed with two cases.
Case 1 ȳ1(0) > y1(0).

Let

g1(y) := bβ(t)
y2(t)

Nh
(N∗

v (t) − B∗
v (t) − y) −

(
μv(t) + qγ

B∗
v (t)

N∗
v (t)

)
y.
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Since

d ȳ1(t)

dt
= bβ(t)

ȳ2(t)

Nh
(N∗

v (t) − B∗
v (t) − ȳ1(t)) −

(
μv(t) + qγ

B∗
v (t)

N∗
v (t)

)
ȳ1(t)

≥ bβ(t)
y2(t)

Nh
(N∗

v (t) − B∗
v (t) − ȳ1(t)) −

(
μv(t) + qγ

B∗
v (t)

N∗
v (t)

)
ȳ1(t)

= g1(ȳ1(t)),

we have

d ȳ1(t)

dt
− g1(ȳ1(t)) ≥ 0 = dy1(t)

dt
− g1(y1(t)), ∀t ≥ 0.

Since ȳ1(0) > y1(0), Walter (1997, Theorem 4) implies that ȳ1(t) > y1(t) for all
t ≥ 0.

To prove ȳ2(t) > y2(t) for all t > 0, we first prove that for any ε > 0, there exists
an open interval (a1, b1) ⊂ [0, ε] such that Nh > ȳ2(t) for all t ∈ (a1, b1). Otherwise,
there exists ε0 > 0 such that Nh = ȳ2(t) for all t ∈ (0, ε0). It then follows from the
second equation of system (10) that 0 = −(dh + ρ)Nh, which is a contradiction. Let

f1(y) := cβ(t)
Nh − y

Nh
y1(t) − (dh + ρ)y.

Then, we have

d ȳ2(t)

dt
= cβ(t)

Nh − ȳ2(t)

Nh
ȳ1(t) − (dh + ρ)ȳ2(t)

> cβ(t)
Nh − ȳ2(t)

Nh
y1(t) − (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ∈ (a1, b1),

and hence,

d ȳ2(t)

dt
− f1(ȳ2(t)) > 0 = dy2(t)

dt
− f1(y2(t)), ∀t ∈ (a1, b1).

Since ȳ2(0) ≥ y2(0), it follows fromWalter (1997, Theorem 4) that ȳ2(t) > y2(t) for
all t > 0.
Case 2 ȳ1(0) = y1(0).

Since

d ȳ2(t)

dt
= cβ(t)

Nh − ȳ2(t)

Nh
ȳ1(t) − (dh + ρ)ȳ2(t)

≥ cβ(t)
Nh − ȳ2(t)

Nh
y1(t) − (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ≥ 0,
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we have

d ȳ2(t)

dt
− f1(ȳ2(t)) ≥ 0 = dy2(t)

dt
− f1(y2(t)), ∀t ≥ 0.

Since (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)) and ȳ1(0) = y1(0), we have ȳ2(0) > y2(0). It
follows from Walter (1997, Theorem 4) that ȳ2(t) > y2(t) for all t > 0.

To prove ȳ1(t) > y1(t) for all t > 0, we first show that for any ε > 0, there exists
(a2, b2) ⊂ [0, ε] such that ȳ1(t) < N∗

v (t) − B∗
v (t) for all t ∈ (a2, b2). Otherwise,

there exists ε1 > 0 such that ȳ1(t) = N∗
v (t) − B∗

v (t) for all t ∈ (0, ε1). By the first
equation of system (10), we have

d(N∗
v (t) − B∗

v (t))

dt

= d ȳ1(t)

dt

= −μv(t)(N
∗
v (t) − B∗

v (t)) − qγ
N∗
v (t) − B∗

v (t)

N∗
v (t)

B∗
v (t), t ∈ (0, ε1),

which contradicts the fact that

d(N∗
v (t) − B∗

v (t))

dt

= (1 − p)δL∗
v(t) − μv(t)(N

∗
v (t) − B∗

v (t)) − qγ
N∗
v (t) − B∗

v (t)

N∗
v (t)

B∗
v (t).

Since

d ȳ1(t)

dt
= bβ(t)

ȳ2(t)

Nh
(N∗

v (t) − B∗
v (t) − ȳ1(t)) − μv(t)ȳ1(t) − qγ

B∗
v (t)

N∗
v (t)

ȳ1(t)

> bβ(t)
y2(t)

Nh
(N∗

v (t) − B∗
v (t) − ȳ1(t)) − μv(t)ȳ1(t) − qγ

B∗
v (t)

N∗
v (t)

ȳ1(t)

= g1(ȳ1(t)), ∀t ∈ (a2, b2),

we have

ȳ1(t)

dt
− g1(ȳ1(t)) > 0 = dy1(t)

dt
− g1(y1(t)), ∀t ∈ (a2, b2).

Since ȳ1(0) = y1(0), Walter (1997, Theorem 4) implies that ȳ1(t) > y1(t) for all
∀t > 0. Consequently, S(t) : G(0) → G(t) is strongly monotone for each t > 0.

For any given x = (x1, x2) ∈ G(0), λ ∈ [0, 1], let v(t, x) and v(t, λx) be the
solutions of system (10) satisfying v(0) = x and v(0) = λx , respectively. Denote
u(t) = λv(t, x) and z(t) = v(t, λx). Define f by

f (t, x) =
[
bβ(t) x2

Nh
(N∗

v (t) − B∗
v (t) − x1) − μv(t)x1 − qγ x1

N∗
v (t) B

∗
v (t)

cβ(t) Nh−x2
Nh

x1 − (dh + ρ)x2

]
.
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Note that for any ψ ∈ G(t) and λ ∈ [0, 1], we have f (t, λψ) ≥ λ f (t, ψ). Then,

du(t)

dt
= λ

dv(t, x)

dt
= λ f (t, v(t, x)) ≤ f (t, λv(t, x)) = f (t, u(t)).

Clearly, dz(t)
dt = f (t, z(t)) and u(0) = λv(0, x) = λx = z(0). By the comparison

principle, we have u(t) ≤ z(t) for all t ≥ 0, that is, λv(t, x) ≤ v(t, λx) for all t ≥ 0.
This shows that the solution map S(t) : G(0) → G(t) is subhomogeneous.

Next, we prove that for any t > 0, S(t) : G(0) → G(t) is strictly subhomogeneous.
For any given x ∈ G(0) with x � 0 and λ ∈ (0, 1), let

f2(r) := cβ(t)
Nh − r

Nh
z1(t) − (dh + ρ)r ,

g2(r) := cβ(t)
Nh − r

Nh
.

Since g2(r) is strictly decreasing in r and λv1(t, x) ≤ v1(t, λx) = z1(t), v2(t, x) >

λv2(t, x) = u2(t),∀λ ∈ (0, 1),∀t > 0, it follows that

du2(t)

dt
= λ

dv2(t, x)

dt

= λcβ(t)
Nh − v2(t, x)

Nh
v1(t, x) − (dh + ρ)λv2(t, x)

< cβ(t)
Nh − u2(t)

Nh
z1(t) − (dh + ρ)u2(t)

= g2(u2(t))z1(t) − (dh + ρ)u2(t)

= f2(u2(t)),

and hence,

du2(t)

dt
− f2(u2(t)) < 0 = dz2(t)

dt
− f2(z2(t)), ∀t > 0.

Note that u2(0) = λv2(0, x) = λx = v2(0, λx) = z2(0). By Walter (1997, Theorem
4), we obtain u2(t) < z2(t),∀t > 0. Thus, λv(t, x) < v(t, λx),∀t > 0.

Let P be the Poincaré map associated with system (11) on R
2 and r(P) be its

spectral radius. By the continuity and differentiability of solutions with respect to
initial values, it follows that S is differentiable at zero and the Frechét derivative
DS(0) = P. By Zhao (2003, Theorem 2.3.4), as applied to S, we have the following
result:

(a) If r(P) ≤ 1, then (0, 0) is globally attractive for system (10) in G(0);
(b) If r(P) > 1, then system (10) admits a unique positive ω-periodic solution

(I ∗
v (t), I ∗

h (t)), which is globally attractive for system (10) in G(0) \ {(0, 0)}.
By Wang and Zhao (2008, Theorem 2.2), R0 − 1 has the same sign as r(P) − 1.
Therefore, we have the desired threshold type result in terms of R0. 	
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Next, we use the theory of chain transitive sets [see Hirsch et al. (2001 and Zhao 2003,
Chapter 1)] to lift the threshold type result for system (10) to system (3).

Theorem 1 The following statements are valid:

(i) If Rv > 1 and R0 ≤ 1, then (L∗
v(t), N

∗
v (t), B∗

v (t), 0, 0) is globally attractive for
system (3) in W;

(ii) If Rv > 1 and R0 > 1, then (L∗
v(t), N

∗
v (t), B∗

v (t), I ∗
v (t), I ∗

h (t)) is globally attrac-
tive for system (3) in W \ (R3+ × {(0, 0)}).

Proof Let {Ψ (t)}t≥0 be the periodic semiflow associated with system (3) on W , that
is,

Ψ (t)(x) := (Lv(t, x), Nv(t, x), Bv(t, x), Iv(t, x), Ih(t, x))

is the unique solution of system (3) with initial value x ∈ W . Then, Ψ := Ψ (ω) is the
Poincaré map of system (3), and {Ψ n}n≥0 defines a discrete-time dynamical system
on W . For any given x ∈ W , let L be the omega limit set of the discrete-time orbit
{Ψ n(x)}n≥0. It follows from Hirsch et al. (2001, Lemma 2.1) [see also Zhao (2003,
Lemma 1.2.1)] that L is an internally chain transitive set for Ψ n on W .

Since Rv > 1, by Lemma 4, we have

lim
n→∞((Ψ n(x))1, (Ψ

n(x))2, (Ψ
n(x))3) = (L∗

v(0), N
∗
v (0), B∗

v (0)).

Then, there exists a subset L1 of R2 such that

L = {(L∗
v(0), N

∗
v (0), B∗

v (0))} × L1.

For any given z = (z1, z2, z3, z4, z5) ∈ L, there exists a sequence nk → ∞ such
that Ψ nk (x) → z as k → ∞. Since 0 ≤ (Ψ nk (x))4 = Iv(nkω, x) ≤ Nv(nkω, x) −
Bv(nkω, x) and 0 ≤ (Ψ nk (x))5 = Ih(nkω, x) ≤ Nh for all x ∈ W , letting nk → ∞,
we obtain 0 ≤ z4 ≤ N∗

v (0) − B∗
v (0), 0 ≤ z5 ≤ Nh. It then follows that L1 ⊂

[0, N∗
v (0) − B∗

v (0)] × [0, Nh] = G(0). It is easy to see that

Ψ n|L(L∗
v(0), N

∗
v (0), B∗

v (0), z4, z5) = {(L∗
v(0), N

∗
v (0), B∗

v (0))} × Sn|L1(z4, z5),

where S is the Poincaré map associated with system (10). Since L is an internally
chain transitive set for Ψ n , it follows that L1 is an internally chain transitive set for
Sn .

In the case R0 ≤ 1, by Lemma 6(i) and Hirsch et al. (2001, Theorem 3.1) [see
also Zhao (2003, Theorem 1.2.1)], it follows that L1 = {(0, 0)}, and hence, L =
{(L∗

v(0), N
∗
v (0), B∗

v (0), 0, 0)}. This implies that statement (i) is valid.
In the case R0 > 1, by Lemma 6(ii) and Hirsch et al. (2001, Theorem 3.2) [see also

Zhao (2003, Theorem 1.2.2)], it follows that

either L1 = {(0, 0)} or L1 = {(I ∗
v (0), I ∗

h (0))}.
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We further claim that L1 = {(0, 0)}. Suppose, by contradiction, that L1 =
{(0, 0)}. Then, we have L = {(L∗

v(0), N
∗
v (0), B∗

v (0), 0, 0)}. Thus, limt→∞(Iv(t, x),
Ih(t, x)) = (0, 0) uniformly for x ∈ W , and for any ε > 0, there exists T = T (ε) > 0
such that

|(Lv(t, x), Nv(t, x), Bv(t, x)) − (L∗
v(t), N

∗
v (t), B∗

v (t))| < ε

for all t ≥ T and x ∈ W . Then for any t ≥ T , we have

dIv(t)

dt
≥ bβ(t)

Ih(t)

Nh
(N∗

v (t) − B∗
v (t) − 2ε − Iv(t)) − μv(t)Iv(t)

− qγ
Iv(t)

N∗
v (t) − ε

(B∗
v (t) + ε),

dIh(t)

dt
= cβ(t)

Nh − Ih(t)

Nh
Iv(t) − (dh + ρ)Ih(t).

(12)

Let rε be the spectral radius of the Poincaré map associated with the following linear
system:

d Īv(t)

dt
= bβ(t)

Īh(t)

Nh
(N∗

v (t) − B∗
v (t) − 2ε) − μv(t) Īv(t)

− qγ
Īv(t)

N∗
v (t) − ε

(B∗
v (t) + ε),

d Īh(t)

dt
= cβ(t) Īv(t) − (dh + ρ) Īh(t).

Since limε→0+ rε = r(P) > 1, we can fix ε small enough such that rε > 1 and
ε < 1

2 mint∈[0,ω](N∗
v (t) − B∗

v (t)). By a result similar to Lemma 3, we see that the
Poincaré map of the following system

d Īv(t)

dt
= bβ(t)

Īh(t)

Nh
(N∗

v (t) − B∗
v (t) − 2ε − Īv(t)) − μv(t) Īv(t)

− qγ
Īv(t)

N∗
v (t) − ε

(B∗
v (t) + ε),

d Īh(t)

dt
= cβ(t)

Nh − Īh(t)

Nh
Īv(t) − (dh + ρ) Īh(t)

(13)

admits a globally attractive fixed point ( Ī ∗
v (0), Ī ∗

h (0)) � 0. In view of (12) and (13),
the comparison principle implies that

lim inf
n→∞ (Iv(nω, x), Ih(nω, x)) ≥ ( Ī ∗

v (0), Ī ∗
h (0)) � 0,
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which contradicts limt→∞(Iv(t, x), Ih(t, x)) = (0, 0). It then follows that L1 =
{(I ∗

v (0), I ∗
h (0))}, and hence,L = {(L∗

v(0), N
∗
v (0), B∗

v (0), I ∗
v (0), I ∗

h (0))}. This implies
that statement (ii) is valid. 	


Since system (2) is equivalent to (3), we have the following result on the global
dynamics of the model system.

Theorem 2 The following statements are valid:

(i) If Rv ≤ 1, then limt→∞(Lv(t), Sv(t), Iv(t), Bv(t), Ih(t)) = (0, 0, 0, 0, 0), that
is, the mosquito-free state (0, 0, 0, 0, 0) is globally attractive for system (2) in
U := {(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ R

5+ : ϕ2 + ϕ3 + ϕ4 > 0, ϕ5 ≤ Nh}.
(ii) If Rv > 1 and R0 ≤ 1, then the disease-free periodic solution (L∗

v(t), N
∗
v (t) −

B∗
v (t), 0, B∗

v (t), 0) is globally attractive for system (2) in U;
(iii) If Rv > 1 and R0 > 1, then the positive periodic solution (L∗

v(t), N
∗
v (t)− I ∗

v (t)−
B∗
v (t), I ∗

v (t), B∗
v (t), I ∗

h (t)) is globally attractive for system (2) inU \(R2+×{0}×
R+ × {0}).

Note that in our model we do not consider disease-induced human death rate. If we
incorporate disease-induced death rate and still assume that the total human population
size stabilizes at a constant Nh, then there is no impact on the theoretical result since
the disease-induced death rate is a constant parameter just like the human recovery
rate. Then, the model with disease-induced mortality will have the same form as the
model system (2) if we combine the recovery rate and the disease-induced death rate.
However, if we allows the total human population size to vary with time t , then we
need to explicitly write down the equation for susceptible human population or the
total human population. In that case, the model with disease-induced human death rate
may have different dynamical behaviors.

4 A Case Study

In this section, we study the effect of Serratia AS1 on the malaria transmission
dynamics in Douala, Cameroon by using the available data in Douala and apply-
ing our theoretical results obtained in Sect. 3. According to the records from the
Cameroon Ministry of Health, malaria accounts for 30% to 35% of the total deaths in
Cameroon every year (Ndo et al. 2011). Malaria species in Cameroon consist of P. fal-
ciparum (> 85%), P. ovale (5−10%), P. vivax (rare) (https://www.cdc.gov/malaria/
about/biology/index.html). Douala locates on the estuary of Wouri River and has
tropical climate, which is favorable for mosquito breeding and growth. Malaria trans-
mission in Douala is endemic and seasonal with Anopheles gambiae being the main
vector (Craig et al. 1999).

We carry out the numerical simulations by using ode45 and the Curve Fitting
Toolbox in MATLAB. First, we need to estimate the parameter values. Douala has a
population of 1,338,082 (see http://worldpopulationreview.com/countries/cameroon-
population/cities/), which can be chosen as the value of Nh. The life expectancy of
Cameroon is 59 years (see https://www.who.int/countries/cmr/en/). Using this num-
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Table 2 Parameter values

Parameters Values Units References

α 0.000001 Dimensionless Estimated

p [0, 1] Dimensionless

q [0, 1] Dimensionless

γ Varied month−1

b 0.2 Dimensionless Chitnis et al. (2008)

c 0.011 Dimensionless Chitnis et al. (2008)

Nh 1,338,082 Dimensionless See text

dh 1/(59 × 12) month−1 See text

ρ 0.0187 month−1 Chitnis et al. (2008)

β(t) To be evaluated month−1 See text

λ(t) To be evaluated month−1 See text

δ(t) To be evaluated month−1 See text

μl (t) To be evaluated month−1 See text

μv(t) To be evaluated month−1 See text

Table 3 Monthly mean temperature for Douala, Cameroon (in ◦C)

Month Jan Feb Mar Apr May June

Temperature 27.44 28.3 28.29 27.98 27.29 26.2

Month Jul Aug Sept Oct Nov Dec

Temperature 25.34 25.21 25.92 26.49 27.16 27.52

ber, we estimate the human natural death rate as dh = 1
59×12 = 0.0014 month−1. The

values of all the constant parameters are listed in Table 2.
Since temperature plays a major role in mosquito life cycle and activities, we

evaluate the periodic parameters by using the monthly mean temperatures of Douala
from 1991 to 2015 (obtained from Climate Change Knowledge Portal website: http://
sdwebx.worldbank.org/climateportal), as shown in Table 3.

According to Paaijmans et al. (2009), the temperature-dependent mosquito biting
rate can be expressed as

β(T ) = 30.4 × 0.000203T (T − 11.7)
√
42.3 − T month−1, (14)

where and hereinafter T is the temperature in ◦C . Considering T as a function of the
time variable t (in month) and using (14) and the data set in Table 3, the biting rate of
mosquitoes in Douala can then be fitted by
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β(t) = β(T (t))

= 0.4504 cos(2π t/12) + 0.8635 sin(2π t/12) − 0.09128 cos(4π t/12)

− 0.2758 sin(4π t/12) − 0.0354 cos(6π t/12) − 0.009206 sin(6π t/12)

+ 0.03871 cos(8π t/12) − 0.06943 sin(8π t/12) + 0.04601 cos(10π t/12)

− 0.05516 sin(10π t/12) + 9.907 month−1.

(15)

It follows from Rubel et al. (2008) that the birth rates of larval mosquitoes, the mat-
uration rate of mosquitoes and the death rate of larval mosquitoes can be, respectively,
given by

λ(T ) = 2.325β(T ), (16)

δ(T ) = λ(T )

10
, (17)

and

μl(T ) = 30.4 × (0.0025T 2 − 0.094T + 1.0257) month−1. (18)

Equations (16) and (17) together with (14) and (15) directly give approximations of
λ and δ as functions of t . For μl , again by (18) and the data set in Table 3, it can be
fitted by

μl(t) = 0.7474 cos(2π t/12) + 1.529 sin(2π t/12) − 0.2234 cos(4π t/12)

− 0.4017 sin(4π t/12) − 0.0348 cos(6π t/12) − 0.0671 sin(6π t/12)

+ 0.0568 cos(8π t/12) − 0.1369 sin(8π t/12) + 0.09603 cos(10π t/12)

− 0.1006 sin(10π t/12) + 9.423 month−1.

(19)

According toMartens et al. (1995), Ngarakana-Gwasira et al. (2014), the death rate
of adult mosquitoes is evaluated as

μv(T ) = 30.4

−0.03T 2 + 1.31T − 4.4
month−1. (20)

Then by (20) and the data set in Table 3, μv can be approximated, as a function of t ,
by

μv(t) = 0.06434 cos(2π t/12) + 0.1396 sin(2π t/12) − 0.02537 cos(4π t/12)

− 0.03013 sin(4π t/12) − 0.001558 cos(6π t/12) − 0.01003 sin(6π t/12)

+ 0.0046 cos(8π t/12) − 0.01353 sin(8π t/12) + 0.009855 cos(10π t/12)

− 0.009518 sin(10π t/12) + 3.348 month−1.

(21)

First, we verify the obtained analytic result in the last section by investigating the
long-term behaviors of the solutions. To numerically calculate R0, we use Theorem
2.2 in Zhao (2017), Lemma 2.5 in Liang et al. (2007) and the bisection method.
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Considering that mosquitoes with greater q may have smaller γ and those with greater
γ may have smaller q, we set η = qγ . Thus, we can focus on how the dynamics varies
with η instead of q and γ in order to investigate the effect of horizontal transmission
of the bacteria. Note that another parameter we are interested in is p which is related
to vertical transmission of the bacteria. In Fig. 1a, we set p = 0.3, η = 3. In this
case, Rv = 1.3544 > 1 and R0 = 1.5067 > 1. We see that all the variables approach
positive periodic states. Biologically, this means that malaria persists and exhibits
seasonal fluctuation. In Fig. 1b, we increase the values of p and η to 0.5 and 6,
respectively. We get Rv = 1.3544 > 1 and R0 = 0.7876 < 1, and we observe
that both the population sizes of malaria-infected mosquitoes and -infective humans
approach zero eventually. In this case, malaria is eliminated from this area although
the mosquito population persists.

Next, we explore the effects of vertical and horizontal transmissions of the bacteria
in reducing R0. Figure 2 gives the graph of R0 as a function of the parameters p and
η. We see that increasing the values of p and η is helpful for reducing R0. In Fig. 3,
we consider the situation in which the vertical or the horizontal transmission of the
bacteria is relatively weak. In Fig. 3a, we let η = 2. We find that the higher value of
p is, the lower level Ih(t) can be reduced to and p needs to be high enough to make
Ih(t) approach 0. In Fig. 3b, we set p = 0.1 to represent a weak vertical transmission
of the bacteria. We observe that the greater value of η is, the lower level Ih(t) can be
decreased to and η also needs to be large enough to reduce Ih(t) to 0. These results
imply that both vertical and horizontal transmissions of the bacteria play important
roles in malaria control. Besides, it is possible to reduce R0 to be less than 1 even if
one of these two transmission modes is weak.

In the above, we have discussed the impact of p and η on the threshold parameter
R0. We now numerically explore the effects of these two parameters on the population
dynamics, particularly short time dynamics which can help us predict the malaria
dynamics in Douala in the near future. To this end, we set Bv(0) = 100,000. The
numerical results for infected human population are presented in Fig. 4 for various
combinations of p and η. When p = 0.4, η = 4, Ih(t) can be reduced to a lower level
but R0 = 1.1490 > 1. When p = 0.5, η = 5, Ih(t) can be reduced to 0 eventually,
and in this case, R0 = 0.8855 < 1. When p = 0.9, η = 10, Ih(t) can be reduced to 0
much faster and R0 = 0.2609 in this case. If we further increase the values of p and η,
say, p = 1, η = 100 or p = 1, η = 200, we find that the dynamics of Ih(t) is almost
the same with the case where p = 0.9, η = 10. Note that the maximum possible value
of p is 1; Fig. 4 tells us that when p is large enough, increasing the value of η will
not make big difference for the dynamics of malaria-infected human population. In
addition, after we change the initial values, say, Bv(0) = 0 or Bv(0) = 500,000, we
get the same result. From Fig. 4, we also see that if we use the engineered Serratia
AS1 bacteria alone to control malaria in Douala, it takes at least about 300 months
(i.e., 25 years) to eliminate malaria from this area.
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Fig. 1 Long-term behavior of the solution. a p = 0.3, η = 3, here R0 = 1.5067; b p = 0.5, η = 6, here
R0 = 0.7876 (Color figure online)
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Fig. 2 The graph of R0 as a function of p and η (Color figure online)

5 Discussion

The engineered Serratia AS1 bacteria can efficiently reduce vector competence and
rapidly disseminate through mosquito population via horizontal and vertical transmis-
sions with no obvious fitness cost to mosquitoes and therefore offers the potential to
become an effective tool in malaria control. Based on the experiment results obtained
by Wang et al. (2017), we developed a malaria transmission model incorporating the
transmission of AS1 bacteria among the mosquito population. To analyze the model,
we defined two threshold parameters: the vector reproduction ratio, Rv, and the basic
reproduction ratio, R0. First, we obtained the threshold dynamics for the mosquito
population, that is, the mosquito population will go to extinction if Rv < 1 and persist
if Rv > 1. In the case Rv > 1, we are led to a limiting system of the sub-system which
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Fig. 3 The effects of horizontal and vertical transmissions of bacteria in controlling the infected human
population size. a η = 2, p varies. b p = 0.1, η varies (Color figure online)
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Fig. 4 The effects of vertical and horizontal bacteria transmission in malaria elimination (Color figure
online)

governs the dynamics of the malaria-infective compartments (both infected humans
and infected mosquitoes). Fortunately, this limiting system is monotone so that we
can obtain the threshold dynamics in terms of R0 for the limiting system by using
the theory of monotone and subhomogeneous systems, that is, the infective compart-
ments approach zero eventually if R0 < 1, and approach positive periodic fluctuations
if R0 > 1. Finally, we lift the threshold dynamics for the limiting system to the full
model system by using the theory of chain transitive sets. Numerically, we carried
out a case study for Douala, Cameroon. We verified the obtained analytic results by
simulating the long-term behaviors of the solutions. By a graph showing how the value
of R0 varies with the parameters related to vertical and horizontal transmissions of
AS1 bacteria, we found that it is possible to eliminate malaria from Douala when both
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vertical and horizontal transmissions are strong. Furthermore, even if one of these two
transmission ways is weak it is still possible to eliminate malaria as long as the other
AS1 transmission route is extremely strong. By simulating the long-term values of the
infected human compartment, we estimated that it takes at least 25 years to eliminate
malaria from Douala.

By similar method and with more sufficient and accurate parameter values,
researchers are expected to give a better evaluation of the effects of the engineered
AS1 bacteria in malaria control in future field release trials. A suitable Monte-Carlo
sampling method (e.g., Latin Hypercube sampling approach) can be used to explain
the effect of uncertainties in the estimate of these values on the overall outcome
of the simulations. In addition, we used mean monthly temperature data to fit the
temperature-dependent parameters of the model. A more accurate estimation can be
made by incorporating daily temperature fluctuations [see Beck-Johnson et al. (2017);
Paaijmans et al. (2010) for the effect of daily temperature variation on malaria trans-
mission].

Mathematical models can be developed in future based on modified assumptions
according to new findings in the research of malaria control with AS1 bacteria. For
instance,AS1-infectedmalaria-susceptiblemosquitoesmay still acquiremalaria infec-
tion but at a reduced rate in comparison with wild mosquitoes. It is also possible that
AS1-infected malaria-infected mosquitoes are also able to transmit malaria but at a
reduced rate compared to malaria-infected wild mosquitoes. Besides, there may be
some heterogeneity in the AS1 infection of malaria-infected mosquitoes and that of
malaria-susceptible mosquitoes. Since the role of AS1 bacteria is to inhibit malaria
parasite development in the vector, it is interesting to develop a model which includes
exposed class for the vector or to construct a delay differential equations model with
the delay representing the extrinsic incubation period.

One of the advantages of the control measure with AS1 bacteria is that they can
self-propagate among wild mosquito populations. Thus, less labor is needed to con-
tinuously release AS1 bacteria or AS1-infected mosquitoes in field. Recently, Koosha
et al. (2018) carried out experiments examining delivery of genetically engineered
SerratiaAS1 bacteria to arthropods that are vectors for malaria, West Nile, Zika virus
and several other diseases. They found that bacteria can be introduced at different
points of the vector lifetime through host skin, water sipping, vertical, transstadial and
venereal acquisition. They suggested to use these routes singularly or in combination
to introduce engineered bacteria to mosquitoes in field. It is instructive to determine
conditions for the AS1-infected mosquitoes to invade the wild population and to figure
out how long this is likely to take if such an invasion could occur.

Integrated management is highly recommended in malaria control (Koenraadt and
Takken 2018; Yakob and Yan 2009). It is interesting to study the comprehensive effect
of releasing AS1 bacteria in conjunction with other control measures. For example,
if we combine the use of insecticide-treated bed nets (ITNs) with AS1 bacteria, then
hopefully, in order to eliminate malaria locally, a smaller proportion of the humans
would be needed to use ITNs. This may bring new hope for malaria eradication espe-
cially for those poor areas with limited resources where people usually use bed nets
for fishing. We leave this for future investigation.
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