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Abstract In this paper, with the assumptions that an infectious disease in a population has
a fixed latent period and the latent individuals of the population may diffuse, we formulate
an SIR model with a simple demographic structure for the population living in a spatially
continuous environment. The model is given by a system of reaction-diffusion equations
with a discrete delay accounting for the latency and a spatially non-local term caused
by the mobility of the individuals during the latent period. We address the existence,
uniqueness, and positivity of solution to the initial-value problem for this type of system.
Moreover, we investigate the traveling wave fronts of the system and obtain a critical
value c∗ which is a lower bound for the wave speed of the traveling wave fronts. Although
we can not prove that this value is exactly the minimal wave speed, numeric simulations
seem to suggest that it is. Furthermore, the simulations on the PDE model also suggest
that the spread speed of the disease indeed coincides with c∗. We also discuss how the
model parameters affect c∗.

Keywords Latent period · Diffusion · Traveling waves · Wave speed · Spread speed ·
Non-local infection

1. Introduction

Mathematical models have been extensively used to study the dynamics of infectious
diseases in population level. Most continuous time models are in the form of ordinary
differential equations (ODEs) (see, e.g., Brauer et al., 2008; Hethcote,, 2000). Such ODEs
models assume that the population are well mixed, and the transmission are instantaneous.
In reality, the environment in which a population lives is often heterogeneous making
it necessary to distinguish the locations. Also, some diseases have a latency: infected
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individuals do not infect other susceptible individuals until some time later. Taking the
human tuberculosis or bovine tuberculosis as an example, it may take months for the
infection to develop to the infectious stage (see, e.g., Anderson and Trewhella, 1985;
Barlow, 2000; Garnett et al., 2002; Thoen et al., 1984 and references therein).

In order for a model to be more realistic, the above factors should be incorporated into
the model. For the latter, in their recent work van den Driessche et al. (2007) set up an
SEIR model with a general probability function p(t) to account for the probability that an
exposed individual still remains in the exposed class t time units after entering the exposed
class. When p(t) is subject to a negatively exponentially distribution, the model reduces
to one still described by an ODEs system. The situation when p(t) is a step function is
more interesting. Indeed, when

p(t) =
{

1, 0 ≤ t ≤ τ,

0, t > τ,

where τ > 0 can be explained as the average latent period of the disease, the model be-
comes a system of delay differential equations (DDEs) with the discrete delay τ . Such a
DDEs system is much harder to analyze and may demonstrate richer dynamics such as
oscillatory dynamics (see van den Driessche et al., 2007) which is common in reality.

For the factor of spatial heterogeneity, the environment can be spatially discrete or spa-
tially continuous. In either case, a model has to contain terms that describe the mobility
of the population. The concept of patch naturally arises in the spatially discrete case, and
a patch can be a city, a town, a region, or even a country, depending on the context. For
such a patch environment, the dispersal between patches may be due to travels and migra-
tions. Along this line, there have been some works investigating the effects of population
dispersal on disease dynamics. Arino and van den Driessche (2003a, 2003b, 2006) for-
mulated epidemic models with populations traveling among cities in which the residences
of individuals are maintained. Wang and Zhao (2004, 2005) considered epidemic models
of multi-patches without tracking the residence of individuals. Wang and Zhao (2006)
proposed an epidemic model with population dispersal and infection period. Salmani and
van den Driessche (2006) discussed an SEIRS epidemic model on patches to describe
the dynamics of an infectious disease in a population in which individuals travel between
patches. Hsieh et al. (2007), Brauer and van den Driessche (2001), Castillo-Chavez and
Yakubu (2001) and Wang and Mulone (2003) are also among studies of epidemic models
of meta-populations.

When the environment is spatially continuous, random diffusion is often used to de-
scribe the mobility of the population, leading to models in the form of reaction diffusion
equations (see, e.g., Brauer et al., 2008; Murray, 2002). For such partial differential equa-
tion models for infectious diseases, much less is done. On the other hand, from such mod-
els, there arise some very important and interesting mathematical and biological problems
among which are traveling wave solutions and geographical spread speed of the disease.
Results on these topics may help one predict how fast a disease invades geographically,
and accordingly, take necessary measures in advance to prevent the disease, or at least, de-
crease possible negative consequences. It turns out that these topics are very challenging
mathematical problems due to the nature of prey-predator type interaction of the model
(see, e.g., Murray, 2002).
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There arises the nature question: how to incorporate both factors into an ODEs dis-
ease model? Would it be reasonable or acceptable if one simply combines the models
considered separately for these two factors as discussed above? In general, the answer
is no, because if individuals disperse during the latent period, an individual infected at
location A could be anywhere in the environment when he/she enters the infectious class.
In other words, the rate of gaining infectious individuals at a location at the present time
actually depends on the infections not only at this location but also at all other locations at
previous times. For patch environments, in our recent work (Li and Zou 2009a, 2009b), by
tracking the infection age and the mobility of latent individuals, we derived two models,
one without demographic structure which is a generalization of the classic Kenmark–
McKendrick model (see Li and Zou, 2009a), and the other with a simple demographical
structure (see Li and Zou,, 2009b). Analysis and numeric simulations on these two models
have given us some information on how the spatial dispersal and the length of latent period
jointly affect the disease dynamics.

Incorporating these two factors into an SIR disease model in a spatially continuous
environment constitutes the main purpose of this paper. Following the main idea in Li
and Zou (2009a, 2009b) but using different techniques, we derive in Section 2, a new
model which is in the form of reaction-diffusion equations with a temporal delay and a
non-local infection term. The delay is exactly the latent period and the non-local term
is due to the random diffusion of the latent individuals. In Section 3, by an abstract set-
ting of the model system, we address the basic questions of existence, uniqueness, and
positivity of solutions to the initial value problem associated with the model system. In
Section 4, we explore traveling wave fronts of the model system that connect the disease
free equilibrium and the unique endemic equilibrium. By analyzing the behavior of so-
lutions to the wave equation near the disease free equilibrium, we find a critical value
c∗ which serves at least as a lower bound of speed for traveling wave fronts in the sense
that any traveling wave front must have speed no less than c∗. The dependence of c∗ on
the model parameters are discussed preliminarily in Section 4 and then summarized in
Section 6, which shows the joint impact of the diffusion rates and latency length on the
spread speed. We perform some numeric simulations in Section 5 for both the wave equa-
tion and the original PDE system. The simulation results suggest that c∗ is indeed the
minimal wave speed and it is also actually the geographical spread speed of the disease.
Unfortunately, we are not able to theoretically prove the above conjecture in this paper.
This is mainly because of the nature of prey-predator type interaction, as well as the pres-
ence of both the time delay and the spatially non-local term in the model. Due to these,
neither the method of monotone iteration coupled with upper-lower solutions developed
in Wu and Zou (2001) for monotone delayed reaction diffusion systems, nor the methods
used in Dunbar (1981, 1983, 1984), in Gardner (1984), and in Huang et al. (2003) can be
applied. It is also the prey-predator type interaction that makes the system non-monotone
and, therefore, the theory for asymptotic spread speed recently developed in Liang and
Zhao (2007) fails to apply. All these leave some very challenging yet important open
mathematical problems.

2. Model formulation

Consider an infectious disease that has a fixed period of latency, denote by τ . For some
diseases, the latency is not fixed: it depends on individuals and is subject to some distrib-
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utions. In such a situation, the assumption of a fixed length of latency can be considered
as an approximation of the mean latency, but would simplify the model. Assume that
the disease has full immunity after recovery (regardless of natural recovery or recov-
ery due to treatments). Following the convention, the total population is divided into four
classes: susceptible class, latent class, infectious class, and removed classed, with the sub-
populations denoted by S, L, I , and R, respectively. Susceptible class consists of those
individuals that can be infected; latent class includes those who have been exposed and
infected by the disease but can not yet infect other susceptible individuals; infectious class
consists of individuals capable of infecting others; and the removed class includes those
who are fully out of the transmission chain, consisting of, e.g., the deaths, the recovered
ones with full immunity, and possibly isolated individuals.

Assume that the population habitats in an environment that is spatially heterogeneous
yet continuous. As an initial attempt, we do not want to make things too complicated,
and hence, we only consider the one dimensional full space R = (−∞,∞) as the spatial
domain. The sub-populations in all four classes are thus tracked not only on time but also
on location, leading to the notations S = S(t, x), L = L(t, x), I = I (t, x), R = R(t, x).

Since the disease has a latency and the latent individuals may move around, for any
chosen location x, those infected in other locations may possibly have moved to this
location when they have survived the latent period and entered the infectious class. In
other words, the rate of change of infectious population at time t and location x depends
on the new infections occurred in all other locations τ time units ago. In order to determine
such a dependence, we introduce the infection age variable a. Denote by E(t, a, x) the
density (with respect to the infection age a) of the exposed population at time t and
location x. A standard argument on population with age structure and spatial diffusion
(see, e.g., Metz and Diekmann, 1986) gives

∂E(t, a, x)

∂t
+ ∂E(t, a, x)

∂a
= D(a)

∂2E(t, a, x)

∂x2
−(

σ(a)+γ (a)+d
)
E(t, a, x), (1)

where D(a), σ(a) and γ (a) are the diffusion rate, the disease-induced mortality rate and
the recovery rate at age a, respectively, and d is the natural death rate which is independent
on the infection age. Since the spatial domain R is the whole space, we need to propose
the following boundary condition:

E(t, a,±∞) < ∞. (2)

By the meanings of τ and the density, it is obvious that

I (t, x) =
∫ ∞

τ

E(t, a, x) da, (3)

and

L(t, x) =
∫ τ

0
E(t, a, x) da. (4)

Here, ∞ can be replaced by a finite number larger than τ , say T , but this is just a matter
of notation and causes no difference. Differentiating (3) with respect to t leads to
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∂I (t, x)

∂t
=

∫ ∞

τ

∂

∂t
E(t, a, x) da

=
∫ ∞

τ

(
−∂E(t, a, x)

∂a
+ D(a)

∂2E(t, a, x)

∂x2

− (
σ(a) + γ (a) + d

)
E(t, a, x)

)
da

= −
∫ ∞

τ

∂E(t, a, x)

∂a
da

+
∫ ∞

τ

(
D(a)

∂2E(t, a, x)

∂x2
− (

σ(a) + γ (a) + d
)
E(t, a, x)

)
da

= −E(t,∞, x) + E(t, τ, x)

+
∫ ∞

τ

(
D(a)

∂2E(t, a, x)

∂x2
− (

σ(a) + γ (a) + d
)
E(t, a, x)

)
da

= E(t, τ, x)

+
∫ ∞

τ

(
D(a)

∂2E(t, a, x)

∂x2
− (

σ(a) + γ (a) + d
)
E(t, a, x)

)
da,

where we have used the biologically realistic condition:

E(t,∞, x) = 0.

Similarly, from (4), we can obtain

∂L(t, x)

∂t
=

∫ τ

0

∂E(t, a, x)

∂t
da

=
∫ τ

0

(
−∂E(t, a, x)

∂a
+ D(a)

∂2E(t, a, x)

∂x2

− (
σ(a) + γ (a) + d

)
E(t, a, x)

)
da

= E(t,0, x) − E(t, τ, x)

+
∫ τ

0

(
D(a)

∂2E(t, a, x)

∂x2
− (

σ(a) + γ (a) + d
)
E(t, a, x)

)
da.

In order to proceed further, we make the following assumptions on those rate functions
to simplify the model to some extent:

D(a) = DI , σ (a) = σ, γ (a) = γ, for a ∈ [τ,∞). (5)

Also, notice that the new infections are due to the contact of infectious and susceptible
individuals. We adopt the mass action infection mechanism that the lost of susceptible in-
dividuals by infection is at a rate proportional to the number of infectious and susceptible
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individuals that is rSI , where r > 0 is a constant called infection rate, resulting in the
following condition:

E(t,0, x) = rI (t, x)S(t, x). (6)

We further assume that in the absence of disease, the population would settle in a
uniform steady state. One simple way to achieve this is to adopt the following simplest
demographic equation for a population N(t, x):

∂N(t, x)

∂t
= μ + D

∂2N(t, x)

∂x2
− dN(t, x), (7)

where μ > 0 is a constant recruiting rate, D is the diffusion rate and d is the natural death
rate. By the standard theory for partial differential equations on R, one can easily see that
every solution of (7) with a continuous and bounded initial function converges to the uni-
formly steady state N = μ/d . We also assume that the disease under consideration does
not transmit vertically. With these assumptions, the disease dynamics can be described by
the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS

∂2S(t, x)

∂x2
− dS(t, x) − rI (t, x)S(t, x),

∂L(t, x)

∂t
=

∫ τ

0

(
D(a)

∂2E(t, a, x)

∂x2
− (

σ(a) + γ (a) + d
)
E(t, a, x)

)
da

+ rI (t, x)S(t, x) − E(t, τ, x),

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− (σ + γ + d)I (t, x) + E(t, τ, x),

∂R(t, x)

∂t
= DR

∂2R(t, x)

∂x2
+

∫ τ

0
γ (a)E(t, a, x) da + γ I (t, x) − dR(t, x).

(8)

Here, μ is now explained as the recruitment of the susceptible individuals, and DS and
DR are constants representing the spatial diffusion rates of susceptible and removed indi-
viduals, respectively.

Note that in (8), S(t, x) is decoupled from L(t, x) and R(t, x), but I (t, x) is seemingly
affected by L(t, x) through E(t, τ, x). If we can determine E(t, τ, x) in terms of S and I ,
then the resulting S and I equations form an independent system that can be used as a
model to describe the disease dynamics. By the meaning of E(t, τ, x), it indeed gives the
rate at which location x gains the individuals who are just entering the infectious stage.

For fix s ≥ 0, let

V s(t, x) = E(t, t − s, x), for s ≤ t ≤ s + τ. (9)

By (1), we then have

∂

∂t
V s(t, x) = ∂

∂t
E(t, a, x)|a=t−s + ∂

∂a
E(t, a, x)|a=t−s

= D(t − s)
∂2

∂x2
V s(t, x) − (

σ(t − s) + γ (t − s) + d
)
V s(t, x). (10)
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This is a linear reaction-diffusion equation for V s(t, x) and can be solved explicitly ac-
cording to the corresponding boundary conditions. The boundary condition (2) directly
translates to

∣∣V s(t,±∞)
∣∣ < ∞. (11)

Applying the method of separation of variables to (10)–(11), we obtain

V s(t, x) =
∫ ∞

−∞
k(s,ω)

× exp

(
−

∫ t

s

(
ω2D(θ − s) + σ(θ − s) + γ (θ − s) + d

)
dθ

)
e−iωx dω

=
∫ ∞

−∞
k(s,ω) exp

(
−

∫ t−s

0

(
ω2D(a) + σ(a) + γ (a) + d

)
da

)
e−iωx dω.

(12)

By (6) and (9), we notice that

rI (s, x)S(s, x) = E(s,0, x) = V s(s, x) =
∫ ∞

−∞
k(s,ω)e−iωx dω.

That is, rI (s, x)S(s, x) is the Fourier transform of k(s,ω). Therefore, k(s,ω) is the in-
verse Fourier transform of rI (s, x)S(s, x), and hence

k(s,ω) = 1

2π

∫ ∞

−∞
rI (s, y)S(s, y)eiωy dy. (13)

For the infection age a ∈ [0, τ ], we distinctly denote by DL(a), σL(a), and γL(a) the
diffusion rate, the disease mortality rate, and the recovery rate, respectively. For simplicity,
we assume that these rates are all constants, that is,

D(a) = DL(a) = DL, σ(a) = σL(a) = σL,

γ (a) = γL(a) = γL, for a ∈ [0, τ ]. (14)

Let

d̄ := σL + γL + d, α :=
∫ τ

0
D(a)da = τDL, and ε := e−d̄τ . (15)

Obviously, α is a measurement of the mobility of the latent individuals and ε measures the
proportion of the infected individuals that can survive the latent period. Now by (9)–(13),
we can determine E(t, τ, x) as below:

E(t, τ, x) = V t−τ (t, x)

=
∫ ∞

−∞
k(t − τ,ω) exp

(
−

∫ t−(t−τ)

0

(
ω2DL(a) + d̄

)
da

)
e−iωx dω
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=
∫ ∞

−∞

1

2π

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)eiωy dy

× exp

(
−

∫ τ

0

(
ω2DL(a) + d̄

)
da

)
e−iωx dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)eiω(y−x)

× exp

(
−

∫ τ

0

(
ω2DL(a) + d̄

)
da

)
dy dω

= 1

2π

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)

× exp

(
−

∫ τ

0
d̄ da

)(∫ ∞

−∞
e−αω2

eiω(y−x) dω

)
dy

= 1

2π

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)e−d̄τ

√
π

α
e− (x−y)2

4α dy

= ε√
4πα

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)e− (x−y)2

4α dy. (16)

Here, we have used the fact that the Fourier transform of the function
√

π/αe−x2/4α

is e−αw2
. Plugging (16) into the I equation in (8) results in

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− (σ + γ + d)I (t, x)

+ ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy, (17)

where

fα(x) = 1√
4πα

e− x2
4α .

By (14), (15), and (16), the L equation in (8) becomes

∂L(t, x)

∂t
= DL

∂2L(t, x)

∂x2
+ rI (t, x)S(t, x) − d̄L(t, x)

− ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy. (18)
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Therefore, the full model (8) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS

∂2S(t, x)

∂x2
− dS(t, x) − rI (t, x)S(t, x),

∂L(t, x)

∂t
= DL

∂2L(t, x)

∂x2
+ rI (t, x)S(t, x) − d̄L(t, x)

− ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy,

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− (σ + γ + d)I (t, x)

+ ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy,

∂R(t, x)

∂t
= DR

∂2R(t, x)

∂t
+ γLL(t, x) + γ I (t, x) − dR(t, x).

(19)

From (19), we see that the equations for S(t, x) and I (t, x) are fully decoupled from
the equations for L(x, t) and R(t, x). Hence, we only need to consider S and I equations
which form the following sub-system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS

∂2S(t, x)

∂x2
− dS(t, x) − rI (t, x)S(t, x),

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− βI (t, x)

+ ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy,

(20)

for t > 0 and x ∈ R, where we have introduced β = σ + γ + d . Biologically, we are
more concerned about the population sizes of susceptible and infectious individuals in the
whole population.

To conclude this section, we remark that it may not be realistic to assume non-zero
recovery rate and disease induced death rate in the latent period. However, these rates
may become non-zero in later stages, and our goal is to set up a general framework that is
applicable to as wide a range of diseases as possible. On the other hand, including these
two rates in every stage in the model does not cause extra difficulty since they are all
absorbed into the parameter d̄ and β . Thus, for consideration of generality, we decide to
include these two rates in all stages. In our numeric simulations, these two rates in latent
stage are all taken to be zero. For the same consideration of generality, we start in the (1)
with general diffusion rate D depending on the infection age. In reality, there are diseases
for which the infectious individual become less mobile (e.g., influenza); there are also
diseases for which the infectious individuals actually become more mobile (e.g., rabies).
Of course, there are also diseases for which the mobility remains almost the same for
individuals in all stages. This reality justifies the need of considering structured diffusion
rate which, of course, increases the difficulty level in analyzing the model. After adopting
less general assumption that the diffusion rate is constant in each stage of infection, the
model has reduced to (20), with which we will deal in the rest of this paper.
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3. Existence, uniqueness and positivity of solutions of the Cauchy problem

Model (20) is a delayed reaction-diffusion system with a non-local reaction term on the
whole spatial domain R = (−∞,∞). Naturally, an initial condition of the delayed type
is needed for (20), as is for any other delay differential equation models. In other words,
we need to consider the following initial value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS�S(t, x) − dS(t, x) − rI (t, x)S(t, x), x ∈ R, t > 0,

∂I (t, x)

∂t
= DI�I (t, x) − βI (t, x)

+ ε

∫ ∞

−∞
rI (t − τ, y)S(t − τ, y)fα(x − y)dy, x ∈ R, t > 0,

S(θ, x) = φS(θ, x) and I (θ, x) = φI (θ, x), for x ∈ R, θ ∈ [−τ,0],

(21)

where � is the Laplacian operator on R, and φS and φI are the initial functions which
will be specified below.

For convenience of proceeding, denote by X = BUC(R,R
2) the set of all bounded and

uniformly continuous functions from R to R
2. With the usual supremum norm, X is a

Banach space. Let

X+ := {
� ∈ X : �(x) ≥ 0, for all x ∈ R

}
.

It is easy to see that X+ is a closed cone of X and X is a Banach lattice under the partial
ordering induced by X+. Let D := [DS,DI ]T with T representing the transpose of ma-
trices and vectors. From Theorem 1.5 in Daners and Medina (1992), it follows that the
X-realization D�X of D� generates an analytic semi-group T(t) on X.

Denote U(t, x) = [S(t, x), I (t, x)]T and �(x) = [φS(x),φI (x)]T . It is known that the
solution of the initial value problem

⎧⎨
⎩

∂U(t, x)

∂t
= D�U(t, x), x ∈ R, t > 0,

U(0, x) = �(x), x ∈ R,

(22)

can be expressed in terms of the heat kernel as the following:

U(t, x) = (
T(t)�

)
(x) =

⎡
⎢⎢⎣

1√
4πDSt

∫ ∞

−∞
exp

(
− (x − y)2

4DSt

)
φS(y) dy

1√
4πDI t

∫ ∞

−∞
exp

(
− (x − y)2

4DI t

)
φI (y) dy

⎤
⎥⎥⎦ ,

x ∈ R, t > 0, � ∈ X. (23)

It follows immediately from (23) that

T(t)X+ ⊂ X+.
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Let C = C([−τ,0],X) be the Banach space of continuous functions from [−τ,0] to
X with the supremum norm ‖ · ‖ and let

C+ = {
� ∈ C : �(s) ∈ X+, for all s ∈ [−τ,0]}.

Then C+ is a closed cone of C. For convenience, we identify an element � ∈ C as a
function from [−τ,0] × R into R

2 by �(s, x) = �(s)(x). For any continuous function
y(·) : [−τ, b) → X, where b > 0, we define yt ∈ C, t ∈ [0, b), by yt (s) = y(t + s), s ∈
[−τ,0]. It is well known that t �→ yt is a continuous function from [0, b) to C. The right-
hand side of (21) induces a non-linear functional F : C+ → X by

F(�)(x) =
⎡
⎢⎣

μ − dφS(0, x) − rφS(0, x)φI (0, x)

−βφI (0, x) + ε

∫ ∞

−∞
rφS(−τ, x)φI (−τ, x)fα(x − y)dy

⎤
⎥⎦ ,

x ∈ R,� ∈ C+.

Moreover, we know that the restriction of the product function g(x, y) = xy to [0,∞) ×
[0,∞) is positive and locally Lipschitz continuous, thus

lim
h→0

d
(
�(0) + hF(�),X+) := lim

h→0
inf

{∣∣�(0) + hF(�) − ξ
∣∣
X

: ξ ∈ X+} = 0,

for � ∈ C+,

and for any R > 0, there exists LR > 0 such that∣∣F(�) − F(�)
∣∣
X

≤ LR‖� − �‖, if �,� ∈ C+, and ‖�‖,‖�‖ ≤ R.

Consequently, from Martin Jr and Smith (1990) (or Corollary 1.3 on p. 270 of Wu, 1996),
we know that for each � ∈ C+ there exists a unique non-continuable solution W on
[0, t�), for some t� > 0, of the following initial-value problem for the abstract integral
equation:⎧⎨

⎩W = T(t)W(0) +
∫ t

0
T(t − s)F(Ws) ds,

W0 = � ∈ C+,

(24)

which satisfies W(t) ∈ X+ for all t ∈ [0, t�). This solution is called the mild solution
of (21). Since the semi-group T(t) is analytic, the mild solution of (21) must also be a
classical solution of (21) for t > τ (see Corollary 2.5 on p. 50 in Wu, 1996). Therefore,
we have proved that if the initial functions φS(θ, x) and φI (θ, x) in (21) are bounded,
uniformly continuous, and non-negative, then (21) has a unique solution which is non-
negative.

4. Traveling wave solution of (20)

In this section, we investigate the traveling wave solution of (20) which may arise due to
the diffusion effect as well as the interaction between susceptible and infectious individu-
als. A traveling wave solution of (20) is a special solution of the form S(t, x) = φ(x + ct)
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and I (t, x) = ψ(x + ct), with c > 0 being the wave speed. If (20) has two constant steady
states U− = (S−, I−) and U+ = (S+, I+) such that the profile functions φ and ψ satisfy
φ(−∞) = S−, ψ(−∞) = I−, φ(+∞) = S+ and ψ(+∞) = I+, then the traveling wave
solution is called a traveling wave front connecting the two equilibria U− and U+. Bio-
logically, a traveling wave front connecting U− and U+ accounts for the transition from
equilibrium U− to equilibrium U+ as time goes, and the wave speed may explain the
spatial spread speed of the disease, and thus may measure how fast the disease invades
geographically. Therefore, the traveling wave front is a very important topic for disease
models with spatial heterogeneity.

We first identify possible constant steady states (also called equilibria). It is easily seen
that (S0, I 0) = (μ/d,0) is the disease free equilibrium for (20). Furthermore, under the
additional assumption that

μεr − βd > 0, (25)

the model (20) has one and only one endemic equilibrium given by (S∗, I ∗) =
(β/rε,με/β − d/r).

As we mentioned above, a biologically and mathematically interesting and important
problem is the existence of a traveling wave solution connecting (S0, I 0) and (S∗, I ∗).
Substituting

S(t, x) = φ(z), I (t, x) = ψ(z), z = x + ct,

into (20) gives the following system of delayed ordinary differential equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cφ′(z) = μ + DSφ
′′(z) − dφ(z) − rφ(z)ψ(z),

cψ ′(z) = DIψ
′′(z) − βψ(z)

+ ε

∫ +∞

−∞
rφ(z − y − cτ)ψ(z − y − cτ)fα(y) dy,

(26)

where the prime denotes differentiation with respect to z. We need to determine values
of c > 0 for which the DDE system (26) has a positive solution satisfying the following
so-called asymptotic boundary conditions:

φ(−∞) = μ

d
, φ(+∞) = β

rε
and ψ(−∞) = 0, ψ(+∞) = με

β
− d

r
.

(27)

Thus, this is essentially an eigenvalue problem. Note that the second equation in (26) con-
tains a non-local term in the form of integral over R, this is indeed a non-trivial (actually
very hard) problem.

To proceed further, we linearize (26) at (S0, I 0) = (μ/d,0) to obtain some information
about solutions of (26) near (S0, I 0). The linearization is⎧⎪⎪⎨

⎪⎪⎩
cφ̄′(z) = DSφ̄

′′(z) − dφ̄(z) − rμ

d
ψ̄(z),

cψ̄ ′(z) = DIψ̄
′′(z) − βψ̄(z) + εrμ

d

∫ +∞

−∞
ψ̄(z − y − cτ)fα(y) dy.

(28)
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Plugging the trial functions [φ̄(z), ψ̄(z)]T = [K1e
λz,K2e

λz]T into (28), where [K1,K2]
is an arbitrary non-trivial constant vector, we obtain the characteristic equation for the
linearization (28) as follows:

(
DSλ

2 − cλ − d
)(

DIλ
2 − cλ − β + εrμ

d

∫ +∞

−∞
e−λ(y+cτ)fα(y) dy

)
= 0. (29)

Let

�1(λ) � DSλ
2 − cλ − d,

�2(λ) � DIλ
2 − cλ − β + εrμ

d

∫ +∞

−∞
e−λ(y+cτ)fα(y) dy.

The equation �1(λ) = 0 always have two real roots given by

λ1 = c − √
c2 + 4DSd

2DS

< 0, λ2 = c + √
c2 + 4DSd

2DS

> 0.

Analysis of the roots of �2(λ) = 0 is much complicated. Firstly, noting that α = τDL

and ∫ +∞

−∞
e−λ(y+cτ)fα(y) dy = 1√

4πα

∫ +∞

−∞
e−λ(y+cτ)e− y2

4α dy

= 1√
4πα

∫ +∞

−∞
e− 1

4α
(y+2αλ)2

dy eαλ2−λcτ

= eαλ2−λcτ ,

the equation �2(λ) = 0 can be rewritten as

εrμ

d
eτDLλ2−λcτ = −DIλ

2 + cλ + β. (30)

Let

g(λ, c) = εrμ

d
eτDLλ2−λcτ and h(λ, c) = −DIλ

2 + cλ + β. (31)

By fundamental calculus, it is easy to see that there is a c∗ > 0 such that when c < c∗, all
roots of (30) are complex; when c > c∗, (30) will have two real positive roots. Indeed, c∗

is determined by the original Eq. (30) and an extra tangent condition:

g(λ, c) = h(λ, c) and g′
λ(λ, c) = h′

λ(λ, c). (32)

See Figs. 1, 2, and 3 for a demonstration for the case DI = DL. Therefore, for c < c∗, (26)
can not have a positive solution satisfying (27), because a solution of (26) near (μ/d,0)

oscillates about (μ/d,0), and thus the ψ component of the solution of (26) will take
negative values.
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Fig. 1 minλ g(λ, c) > maxλ h(λ, c) with parameters values: μ = 5, d = 0.5, r = 0.5, σL = γL = 0,
σ = 0.25, γ = 0.25, τ = 1, DS = DL = DI = 10, c = 4.5. For these parameter values, c∗ = 4.9974.

More information about c∗ is helpful but not easy to obtain in general. In the sequel,
we focus on a special situation when DL = DI . In such a case, for any c > 0, both m(c) �
minλ g(λ, c) and M(c) � maxλ h(λ, c) are attained at the same value of λ: λ = c

2DI
, giving

m(c) = min
λ

g(λ, c) = g

(
c

2DL

,c

)
= εrμ

d
e

− c2τ
4DL = εrμ

d
e

− c2τ
4DI ,

and

M(c) = max
λ

h(λ, c) = h

(
c

2DI

, c

)
= c2

4DI

+ β.

Therefore, (30) has real roots if and only if

m(c) < M(c) i.e.
εrμ

d
e

− c2τ
4DL <

c2

4DI

+ β. (33)

Denote by z∗ the unique positive solution of

εrμ

d
e−τz = z + β, (34)

under the condition (25) (see Fig. 4). It follows from (33) and the preceding discussion
that c∗ can be obtained by solving c2

4DI
= z∗, that is,

c∗ = 2
√

DIz∗. (35)
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Fig. 2 minλ g(λ, c) = maxλ h(λ, c) with parameters values: μ = 5, d = 0.5, r = 0.5, σL = γL = 0,
σ = 0.25, γ = 0.25, τ = 1, DS = DL = DI = 10, c = 4.9974 = c∗.

Fig. 3 minλ g(λ, c) < maxλ h(λ, c) with parameters values: μ = 5, d = 0.5, r = 0.5, σL = γL = 0,
σ = 0.25, γ = 0.25, τ = 1, DS = DL = DI = 10, c = 6 > 4.9974 = c∗.
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Fig. 4 How z∗ is determined.

Notice that z∗ > 0 depends on τ and is actually a decreasing function of τ , so is c∗. When
τ = 0, z∗ = rμ/d − β and hence c∗ can be explicitly given by c∗ = 2

√
DI(rμ/d − β).

Summarizing the above, we have obtained, under the condition (25), a lower bound
c∗ of speed for the traveling wave front connecting (S0, I 0) and (S∗, I ∗), in the sense
that when c < c∗, traveling wave fronts with speed c connecting (S0, I 0) and (S∗, I ∗) are
impossible. Unfortunately, in this project, we are unable to prove that c∗ is the minimal
wave speed in the sense that for every c ≥ c∗, there is a traveling wave front connecting
(S0, I 0) and (S∗, I ∗). This is mainly due to the prey-predator interaction nature of the
model, as well as to the presence of both the latent delay τ and integral term arising
from the non-local infection in (26). It is well known that the existence of traveling wave
fronts in a diffusive prey-predator system has been a long time challenging mathematical
problem and only very few results have been obtained but for local systems without time
delay (see, e.g., Dunbar 1981, 1983, 1984; Gardner, 1984; Huang et al., 2003). In the next
section, we will numerically investigate the existence of traveling wave fronts of (20)
connecting (S0, I 0) and (S∗, I ∗). As we will see in Section 5, the simulation results seem
to suggest that c∗ is the minimal wave speed.

5. Numerical simulations

In this section, using the results obtained in Section 4 as guidelines, we perform some
numeric simulations. We first numerically investigate the existence of positive solutions to
the system (26) satisfying the asymptotic boundary condition (27), i.e. the traveling wave
solutions of the system (20) that connect the disease free equilibrium and the endemic
equilibrium. In addition, we will also simulate solutions of the original functional partial
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differential system (20) to observe the evolution of solutions to the initial value problem
toward a traveling wave front. Note that our model contains a time delay representing the
latent period, as well as a non-local infection term due to the mobility of the individuals in
the latent period, the simulations are non-trivial at all. The details of the numeric methods
we use to perform the simulations are described in the Appendix. In this section, we only
give the simulation results.

As in the demonstrating figures (Figs. 1, 2, and 3) in Section 4, the following parameter
values are used here again:

μ = 5, d = 0.5, r = 0.5, σL = γL = 0,

σ = 0.25, γ = 0.25, DS = 10, DL = DI = 10.
(36)

It is easily verified that (25) is satisfied for these values. Indeed, for these values, the
disease free equilibrium is (S0, I 0) = (10,0) and the endemic equilibrium is (S∗, I ∗) =
(3.2974,2.0327).

The above parameter values belong to the case when DL = DI , corresponding to
which, c∗ is determined by (34) and (35). We have seen in Section 4 that c∗ de-
pends on τ . For the above parameter values with τ = 1, c∗ is numerically computed as
c∗ = 4.9974.

Figure 5 is the simulation result for c = 6 > 4.9974 = c∗, clearly showing the existence
of positive solution of (26) and (27), and thus supporting our conjecture in Section 4. Note
that the profile of the traveling wave front is not monotone, this seems to be due to the
feature of the prey-predator interaction. When c decreases to pass c∗, our analysis in
Section 4 concludes positive solutions of (26) and (27) become impossible, because the
ψ component of the solution will take some negative values. This conclusion is shown
in Figs. 6, 7, 8 with the observation that the further below c∗ the value of c is, the more
obvious the oscillations of ψ about I 0 are.

Next, we give some simulation results for (20), using the method described in Appen-
dix A.2. For this purpose, we truncate the spatial domain R by [−200,200]. For conve-
nience, we use the following piecewise functions as initial conditions:

S(t, x) =
{
S∗, −200 ≤ x ≤ 0, −τ ≤ t ≤ 0,

S0, 0 ≤ x ≤ 200, −τ ≤ t ≤ 0,

and

I (t, x) =
{
I ∗, −200 ≤ x ≤ 0, −τ ≤ t ≤ 0,

I 0, 0 ≤ x ≤ 200, −τ ≤ t ≤ 0.

For this part, the following parameter values will be fixed:

μ=5, d = 0.5, r = 0.5,

σL =γL = 0, σ = 0.25, γ = 0.25.
(37)

We do not fix the diffusion rates since we want to observe the impact of these rates on the
traveling wave speed c which does not appear in (20), but which we hope to be able to
observe from the simulation results.
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Fig. 5 Assuming (36) and with τ = 1 and c = 6 > c∗ = 4.9974, there is a traveling wave front with speed
c = 6.

Fig. 6 Assuming (36) and with τ = 1 and c = 3 < c∗ = 4.9974, there is no traveling wave front with
speed c = 3: ψ may take negative values.
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[p]

Fig. 7 Assuming (36) and with τ = 1 and c = 2 < c∗ = 4.9974, there is no traveling wave front with
speed c = 2: ψ may take negative values.

Fig. 8 Assuming (36) and with τ = 1 and c = 1 < c∗ = 4.9974, there is no traveling wave front with
speed c = 1: ψ may take negative values and actually oscillates about 0.
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Fig. 9 The traveling wave observed in the system (20) with parameters: μ = 5, d = 0.5, r = 0.5,
σL = γL = 0, σ = 0.25, γ = 0.25, DS = 10, DL = DI = 10 and τ = 1.0050.

We point out that for convenience of computations, we choose mesh size �t and time
interval [0, T ] to be cooperative with the size of delay τ in the sense that τ/�t is an
integer. Details of the numeric method are described in Appendix A.2.

Figure 9 is the simulation result of (20) with (37) and DS = 10,DL = DI = 10 and τ =
1.0050, clearly showing that the disease geographically spreads at a speed approximately
equal to 100/20 = 5.0 (see the right sub-figure of Fig. 9) which is very close to 4.9974,
the c∗ value for parameters satisfying (36) and τ = 1. Note that τ = 1.0050 is very close
to τ = 1.

Still assuming (37) and τ = 1.0050, but taking DS = 1,DL = DI = 1, the numeric
result is shown in Fig. 10. Note that the z∗ determined by (34) is independent of the
diffusion rates. Thus, in the case of DL = DI , by (35), when DI = DL is decreased from
10 to 1, c∗ is decreased by 1/

√
10 times, the value of c∗ for these set of parameter values

should be 4.9974/
√

10 ≈ 1.58, which seems to be the spread speed of the disease shown
in Fig. 10 (from the right sub-figure).

Figure 11 aims at comparing the impact of latent length on the spread speed. All pa-
rameters are assumed the same as for Fig. 9 except that τ is doubled now to τ = 2.0101.
As the right sub-figure clearly shows, the spread speed is less than that in Fig. 9.

We also point out that there is a difference between wave profiles in Figs. 9–10 and
Fig. 11 caused by the change of the length of latent delay: the first two have a hump in
wave profile for ψ and a corresponding dip in that for φ, but the latter dose not seem to
show these any more.
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Fig. 10 The traveling wave observed in the system (20) with parameters: μ = 5, d = 0.5, r = 0.5,
σL = γL = 0, σ = 0.25, γ = 0.25, DS = 1, DL = DI = 1 and τ = 1.0050.

6. Conclusions and discussion

In this paper, we have derived a new epidemic model to describe the dynamics of diseases
with a fixed latency carried and transmitted among the individuals living in a spatially con-
tinuous environment. Starting from the classical SIR model with a simple demographical
structure, making use of a first-order linear partial differential equation for the evolution
of diseases with infection age and time, and tracking the dispersal of latent individuals,
we have obtained the model in the form of a system of delay reaction-diffusion equations,
which in addition to the diffusion terms, contains a non-local infection term. The delay
τ > 0 represents the latency length of the disease. The non-local term reflects the mobility
of the individuals during the latent period.

By an abstract treatment, we have established the existence, uniqueness, and positivity
of the solution to the initial-value problem associated to this model system. Moreover,
we have explored the existence of the traveling wave solutions for this system. We have
derived a necessary condition that determines a critical value c∗, which serves at least
as a lower bound for the wave speed in the sense that when c < c∗, there is no traveling
wave front connecting the disease free equilibrium and the endemic equilibrium with the
speed c. Although we are not able to prove that this c∗ is the minimal wave speed, our
numeric simulations of the wave equation seem to support the conjecture that it is the
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Fig. 11 The traveling wave observed in the system (20) with parameters: μ = 5, d = 0.5, r = 0.5,
σL = γL = 0, σ = 0.25, γ = 0.25, DS = 10, DL = DI = 10 and τ = 2.0101.

minimal wave speed. Furthermore, the numeric simulations to the original PDE model
suggest that c∗ is indeed also the spatial spread speed of the disease.

We have seen that c∗ plays an important role in the disease spread described by the
model (20). Some information about how the model parameters affect c∗ is useful and
helpful. For the case of DL = DI , the following properties can be easily obtained from
(34) and (35):

(i) c∗ is decreasing in τ ;
(ii) c∗ is decreasing in β;

(iii) c∗ is increasing in εrμ/d ;
(iv) c∗ is independent of DS ;
(v) c∗ is proportional to

√
DI = √

DL.

An immediate observation from (i) is that the latency may cause slow wave fronts. This
is because for any given c > 0, there is a τ ∗ > 0 such that when τ > τ ∗, the correspond-
ing c∗(τ ) < c, implying that the traveling wavefront with speed c becomes possible. For
example, take parameter values used for numeric simulations resulted in Fig. 6. Then it
is seen that for c = 3, there is no traveling wavefront with this speed. However, if we in-
crease τ from τ = 1 to τ = 2, the corresponding c∗(τ ) = c∗(2) = 2.8954 < 3, and hence
the model may have a traveling wavefront with speed c = 3, as is shown in the Fig. 12.
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Fig. 12 Delay induced traveling wave fronts: simulation of (26) with parameters: μ = 5, d = 0.5, r = 0.5,
σL = γL = 0, σ = 0.25, γ = 0.25, DS = 10, DL = DI = 10, τ = 2 and c = 3.

We point out that delay induced traveling wave fronts have also been previously obtained
(see, e.g., Zou, 2002).

As we mentioned above, the numeric results for the wave equation (26) seem to con-
firm that for every c ≥ c∗, the model system (20) has a traveling wave front with speed
c; however, the numeric results directly on (20) suggest that the actual spread speed of
the disease coincide with c∗. The relation of minimal wave speed and the spread speed of
a system is an interesting and important issue, and has attracted much attention recently.
In their recent work Liang and Zhao (2007) have proved that for a class of systems with
certain monotonicity, these two speeds indeed coincide. Our numeric results seem to have
confirmed this conclusion for another class of system, not monotone though. Theoretical
proofs of this conclusion for our model system, as well as for the existence of traveling
wave fronts (usually these two topics are closely related; see, e.g., Liang and Zhao, 2007
and the references therein ) remain interesting and challenging mathematical problems.

We also have seen that the length of the latent period affects the wave profile: for short
latency, the wave profile tends to be non-monotone with a hump in the profile of infectious
component and a corresponding dip in that of susceptible component, but these seem to
disappear when the latency is longer. From this, we know that the longer the latency, the
smaller the magnitude of the disease outbreak.

To conclude this section, we point out that the same idea can be applied to the situation
where the spatial domain is bounded to derive similar models. The resulting models would
have the same form as (20) but the kernel function fα(x) will be given by an infinite series
(instead of by an integral) and it depends on the boundary condition. For example, for the
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one-dimensional domain � = [0,K], one can obtain the following model form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS

∂2S(t, x)

∂x2
− dS(t, x) − rI (t, x)S(t, x),

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− βI (t, x)

+ ε

K

∫ K

0
rI (t − τ, y)S(t − τ, y)fα(x, y) dy,

0 < x < K, t > 0, (38)

with initial conditions

S(t, x) = S0(t, x), I (t, x) = I0(t, x), for 0 < x < K, t ∈ [−τ,0]. (39)

Here, if the homogeneous Dirichlet condition at x = 0 and K is proposed, then

fα(x, y) =
∞∑

n=1

[
cos

nπ

K
(x − y) − cos

nπ

K
(x + y)

]
e−( nπ

K
)2α, (40)

and the following corresponding homogeneous Dirichlet condition should also be associ-
ated to (38)

S(t,0) = S(t,K) = 0, I (t,0) = I (t,K) = 0, for t ≥ 0. (41)

Similarly, if the homogeneous Neumann boundary condition is posed at x = 0 and K , we
should have

fα(x, y) = 1 +
∞∑

n=1

[
cos

nπ

K
(x − y) + cos

nπ

K
(x + y)

]
e−( nπ

K
)2α (42)

in (38) together with the following boundary condition:

S ′
x(t,0) = S ′

x(t,K) = 0, I ′
x(t,0) = I ′

x(t,K) = 0, for t ≥ 0. (43)

There may be other types of boundary conditions at x = 0 and K , resulting in different
forms of fα(x, y). The disease dynamics of models (38)–(39) with either (40)–(41) or
(42)–(43) totally remains open. In particular, the basic reproduction number for such a
model is a very interesting and appealing topic.

Appendix: Numeric methods

In this section, we give the details of the numeric methods based on which the numeric
simulation results in Section 5 are obtained. Appendix A.1 is devoted to the numeric
method for simulation of the wave equation (26) and the asymptotic boundary conditions
(27), while Appendix A.2 describes the method that directly numerically solves the sys-
tem (20).
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Firstly, the wave equations (26) will be discussed by using the finite difference method
coupled with the iterative technique. Secondly, the method of lines together with the finite
difference method and iterative technique will be applied to the delayed partial differential
system which includes E Eq. (1) with boundary condition (6) and S, I equations in (8).

A.1 Numerical method for (26) and (27)

The main idea is to use the finite difference method to obtain an algebraic system that
approximates the wave equations (26). Since there is an integral term (non-local term)
in the ψ equation in (26), the problem is not trivial, and thus, is worth of some detailed
description for the reader’s convenience.

Truncate R = (−∞,∞) by [−K,K] where K is a very large number. Take the uni-
form partition of domain [−K,K]:

−K = z1 < z2 < · · · < z2n−1 < z2n < z2n+1 = K

where h = 2K/2n = K/n and zi = z1 + (i − 1)h, i = 1,2, . . . ,2n + 1. Corresponding to
the truncation, the asymptotic boundary conditions in (27) are then translated to

φ(z1) = μ

d
, φ(z2n+1) = β

rε
, and ψ(z1) = 0, ψ(z2n+1) = με

β
− d

r
.

(A.1)

Following the conventional numeric differentiation, the differential operators in the
wave equations can be approximated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′(zi) = φ(zi) − φ(zi−1)

h
+ O(h),

φ′′(zi) = φ(zi+1) − 2φ(zi) + φ(zi−1)

h2
+ O

(
h2

)
,

ψ ′(zi) = ψ(zi) − ψ(zi−1)

h
+ O(h),

ψ ′′(zi) = ψ(zi+1) − 2ψ(zi) + ψ(zi−1)

h2
+ O

(
h2

)
.

(A.2)

By the above (A.2), the φ equation in (26) is immediately discretized to

c
φ(zi) − φ(zi−1)

h
= μ + DS

φ(zi+1) − 2φ(zi) + φ(zi−1)

h2
− dφ(zi) − rφ(zi)ψ(zi),

which is rewritten as

(DS + ch)φ(zi−1) − (
2DS + dh2 + ch

)
φ(zi) + DSφ(zi+1)

− rh2φ(zi)ψ(zi) + μh2 = 0. (A.3)
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For the ψ equation in (26), the local portion can be similarly discretized, but the inte-
gral term needs some work. We first notice that

ε

∫ +∞

−∞
rφ(z − y − cτ)ψ(z − y − cτ)fα(y) dy

= εr

∫ +∞

−∞
φ(y)ψ(y)fα(z − y − cτ) dy.

Using the large number K , we split the integral over (−∞,+∞) into three over the
intervals: (−∞,−K], [−K,K], and [K,∞). Observe that

∫ −K

−∞
φ(y)ψ(y)fα(z − y − cτ) dy ≈

∫ −K

−∞
φ(−K)ψ(−K)fα(z − y − cτ) dy,

which could be arbitrary small by taking K sufficiently large (since ψ(−∞) = 0). Also
note that∫ +∞

K

φ(y)ψ(y)fα(z − y − cτ) dy =
∫ +∞

K

φ(K)ψ(K)fα(z − y − cτ) dy

= φ(z2n+1)ψ(z2n+1)

∫ +∞

K

fα(z − y − cτ) dy.

These give the following approximation:

∫ +∞

−∞
φ(y)ψ(y)fα(z − y − cτ) dy

≈
∫ K

−K

φ(y)ψ(y)fα(z − y − cτ) dy

+ φ(z2n+1)ψ(z2n+1)

∫ +∞

K

fα(z − y − cτ) dy. (A.4)

For the first term on the right-hand side of (A.4), we use the composite Simpson’s rule
to obtain∫ K

−K

φ(y)ψ(y)fα(zi − y − cτ) dy

= h

3

{
φ(z1)ψ(z1)fα(zi − z1 − cτ)

+ 4
[
φ(z2)ψ(z2)fα(zi − z2 − cτ) + φ(z4)ψ(z4)fα(zi − z4 − cτ) + · · ·

+ φ(z2n−2)ψ(z2n−2)fα(zi − z2n−2 − cτ) + φ(z2n)ψ(z2n)fα(zi − z2n − cτ)
]

+ 2
[
φ(z3)ψ(z3)fα(zi − z3 − cτ) + φ(z5)ψ(z5)fα(zi − z5 − cτ)

+ · · · + φ(z2n−3)ψ(z2n−3)fα(zi − z2n−3 − cτ)

+ φ(z2n−1)ψ(z2n−1)fα(zi − z2n−1 − cτ)
]
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+ φ(z2n+1)ψ(z2n+1)fα(zi − z2n+1 − cτ)
}

= h

3

(
φ(z1)ψ(z1)fα(zi − z1 − cτ) + 4

n∑
j=1

φ(z2j )ψ(z2j )fα(zi − z2j − cτ)

+ 2
n∑

j=1

φ(z2j+1)ψ(z2j+1)fα(zi − z2j+1 − cτ)

+ φ(z2n+1)ψ(z2n+1)fα(zi − z2n+1 − cτ)

)
. (A.5)

For the second term on the right-hand side of (A.4), we have the following:

∫ +∞

K

fα(zi − y − cτ) dy =
∫ zi−K−cτ

−∞
fα(y) dy = 1

2

(
1 −

∫ K+cτ−zi

zi−K−cτ

fα(y) dy

)
.

(A.6)

With the above preparation, the ψ equation in (26) is then discretized to

c
ψ(zi) − ψ(zi−1)

h
= DI

ψ(zi+1) − 2ψ(zi) + ψ(zi−1)

h2
− βψ(zi)

+ εrh

3

(
φ(z1)ψ(z1)fα(zi − z1 − cτ)

+ 4
n∑

j=1

φ(z2j )ψ(z2j )fα(zi − z2j − cτ)

+ 2
n∑

j=1

φ(z2j+1)ψ(z2j+1)fα(zi − z2j+1 − cτ)

+ φ(z2n+1)ψ(z2n+1)fα(zi − z2n+1 − cτ)

)

+ εr

2
φ(z2n+1)ψ(z2n+1)

(
1 −

∫ z2n+1+cτ−zi

zi−z2n+1−cτ

fα(y) dy

)
,

which is equivalently rewritten as

(DI + ch)ψ(zi−1) − (
2DI + βh2 + ch

)
ψ(zi) + DIψ(zi+1)

+ εrh3

3

(
φ(z1)ψ(z1)fα(zi − z1 − cτ)

+ 4
n∑

j=1

φ(z2j )ψ(z2j )fα(zi − z2j − cτ)



Modeling Spatial Spread of Infectious Diseases with a Fixed Latent 2075

+ 2
n∑

j=1

φ(z2j+1)ψ(z2j+1)fα(zi − z2j+1 − cτ)

+ φ(z2n+1)ψ(z2n+1)fα(zi − z2n+1 − cτ)

)

+ εrh2

2
φ(z2n+1)ψ(z2n+1)

(
1 −

∫ z2n+1+cτ−zi

zi−z2n+1−cτ

fα(y) dy

)
= 0. (A.7)

Equations (A.3) and (A.7) form an algebraic system, the solution of which, gives the
values of the numeric solution of (26) on all mesh points zi , i = 1,2, . . . ,2n + 1. For
convenience of using softwares such as Matlab, Maple, or Mathematica, we next rewrite
this system in matrix form. For (A.7), we have

M1

⎡
⎢⎢⎢⎢⎢⎣

ψ(z1)

ψ(z2)
...

ψ(z2n)

ψ(z2n+1)

⎤
⎥⎥⎥⎥⎥⎦ + N1

⎡
⎢⎢⎢⎢⎢⎣

φ(z1)ψ(z1)

φ(z2)ψ(z2)
...

φ(z2n)ψ(z2n)

φ(z2n+1)ψ(z2n+1)

⎤
⎥⎥⎥⎥⎥⎦ + C1 = 0, (A.8)

where

M1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
DI + ch −(βh2 + ch + 2DI) DI · · · 0

...
. . .

. . .
. . .

...

0 · · · DI + ch −(βh2 + ch + 2DI) DI

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

and

N1 = εrh3

3

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
fα(z2,1 − cτ) 4fα(z2,2 − cτ) 2fα(z2,3 − cτ) · · · fα(z2,2n+1 − cτ)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

fα(z2n,1 − cτ) fα(z2n,2 − cτ) fα(z2n,3 − cτ) · · · fα(z2n,2n+1 − cτ)

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦,

with fα(zi,j − cτ) = fα(zi − zj − cτ), and

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
εrh2

2 φ(z2n+1)ψ(z2n+1)(1 − ∫ z2n+1+cτ−z2
z2−z2n+1−cτ

fα(y) dy)

...
εrh2

2 φ(z2n+1)ψ(z2n+1)(1 − ∫ z2n+1+cτ−z2n

z2n−z2n+1−cτ
fα(y) dy)

−(
με

β
− d

r
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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For (A.3), we have

M2

⎡
⎢⎢⎢⎢⎢⎣

φ(z1)

φ(z2)
...

φ(z2n)

φ(z2n+1)

⎤
⎥⎥⎥⎥⎥⎦ + N2

⎡
⎢⎢⎢⎢⎢⎣

φ(z1)ψ(z1)

φ(z2)ψ(z2)
...

φ(z2n)ψ(z2n)

φ(z2n+1)ψ(z2n+1)

⎤
⎥⎥⎥⎥⎥⎦ + C2 = 0, (A.9)

where

M2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
DS + ch −(dh2 + ch + 2DS) DS · · · 0

...
. . .

. . .
. . .

...

0 · · · DS + ch −(dh2 + ch + 2DS) DS

0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

N2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 −rh2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −rh2 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ , and C2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−μ

d

μh2

...

μh2

− β

rε

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Finally, let w = [w(1), . . . ,w(2n+1),w(2n+2), . . . ,w(4n+2)]T ∈ R
4n+2 be defined

by

w(i) =
{
ψ(i), for 1 ≤ i ≤ 2n + 1,

φ(i − 2n − 1), for 2n + 1 < i ≤ 4n + 2.

Then the algebraic system is rewritten as the following matrix form:

[
M1 0
0 M2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(1)
...

w(2n + 1)

w(2n + 2)
...

w(4n + 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

N1 0
0 N2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(2n + 2)w(1)
...

w(4n + 2)w(2n + 1)

w(1)w(2n + 2)
...

w(2n + 1)w(4n + 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

C1

C2

]
= 0.

(A.10)

This is the matrix form for algebraic system we implemented on Matlab to obtain the
numeric results given in Section 5.

A.2 Numerical method for (20)

The method of lines is very useful in solving a reaction diffusion system in the absence
of time delay and spatial non-locality. By discretizing the spatial variable x, the method



Modeling Spatial Spread of Infectious Diseases with a Fixed Latent 2077

firstly transfers the R-D system into a system of ordinary differential equations on the
spatial grid points. Then by any ODE solver, the resulting ODE system is solved, giving
numeric solutions showing evolution with respect to time variable on the spatial grid
points. But our model (20) contains a time delay representing latent period as well as a
non-local term resulted from the mobility of the latent individuals; the method can not
be applied directly. However, based on the feature of our model, we find that as far as
numeric solutions of (20) are concerned, we can actually transform this system into one
without non-locality. The details are given below.

Note that (20) and its initial conditions can be described by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= μ + DS

∂2S(t, x)

∂x2
− dS(t, x) − rI (t, x)S(t, x), x ∈ R, t ≥ 0,

∂I (t, x)

∂t
= DI

∂2I (t, x)

∂x2
− βI (t, x) + E(t, τ, x), x ∈ R, t ≥ 0,

S(t, x) = φS(t, x), I (t, x) = φI (t, x), x ∈ R, t ∈ [−τ,0],

(A.11)

where E(t, τ, x) is determined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂E(t, a, x)

∂t
+ ∂E(t, a, x)

∂a
= DL

∂2E(t, a, x)

∂x2
− d̄E(t, a, x),

x ∈ R, t ≥ 0, a ∈ [0, τ ],
E(t,0, x) = rS(t, x)I (t, x).

(A.12)

Now, observe that for any fixed t ≥ 0, E(t, τ, x) = u(t, s, x)|s=τ where u(t, s, x) is the
solution of the following initial value problem⎧⎪⎨

⎪⎩
∂u(t, s, x)

∂s
= DL

∂2u(t, s, x)

∂x2
− d̄u(t, s, x), x ∈ R, s ≥ 0,

u(t,0, x) = rS(t − τ, x)I (t − τ, x).

(A.13)

Now, truncate R = (−∞,∞) by [−K,K] and take the uniform partition of [−K,K]
by

−K = x1 < x2 < · · · < xn−1 < xn = K,

with xi = x1 + (i −1)�x and �x = 2L/(n−1). Adopting the second-order central differ-
ence operator to approximate the second order partial derivative with respect to the spatial
variable x, (A.11) respectively discretized to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, xi)

∂t
= μ + DS

S(t, xi+1) − 2S(t, xi) + S(t, xi−1)

(�x)2

− dS(t, xi) − rI (t, xi)S(t, xi), t ≥ 0,

∂I (t, xi)

∂t
= DI

I (t, xi+1) − 2I (t, xi) + I (t, xi−1)

(�x)2
− βI (t, xi) + u(t, τ, xi),

t ≥ 0,

(A.14)
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with the initial conditions:

S(t, xi) = φS(t, xi), I (t, xi) = φI (t, xi), t ∈ [−τ,0], (A.15)

and (A.13) is discretized to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(t, s, xi)

∂s
= DL

u(t, s, xi+1) − 2u(t, s, xi) + u(t, s, xi−1)

(�x)2
− d̄u(t, s, xi),

s ≥ 0,

u(t,0, xi) = rS(t − τ, xi)I (t − τ, xi).

(A.16)

Here, we use the homogeneous Neumann boundary conditions at x1 = −K and xn = K

for both (A.14) and (A.16).
Let [0, T ] be the time interval on which one would like to obtain the numeric solutions.

Take the uniform partition of [0, T ]:
0 = t1 < t2 < · · · < tN−1 < tN = T ,

where ti = (i − 1)�t with �t = T/(N − 1). One can always choose T and �t to be
“cooperative” with the time delay τ in the sense that τ/�t is an integer. Now we are
ready to solve the system (A.16) and (A.14) in an iterative and inductive way, as described
below.

Firstly, by using the initial values of S and I given in (A.15), we can solve the equa-
tion ODE system (A.16) for u(0, s, x) for s ∈ [0, τ ], yielding the value u(t1, τ, xi) =
u(0, τ, xi). Secondly, for t ∈ [t1, t2] = [0,�t], approximate u(t, τ, xi) by u(t1, τ, xi) and
solve (A.14) with u(t, τ, xi) being replaced by u(t1, τ, xi), one may obtain the values of
S(t, xi) and I (t, xi) for t ∈ [t1, t2], completing one round of cross iteration. The above
process can be repeated, starting with (A.16) again but with t = t2, and then moving to
(A.14) for t ∈ [t2, t3]. Inductively, the iteration can be continued until t ∈ [tN−1, tN ].
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