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Abstract. In real analysis, the Darboux-Froda theorem states that all dis-
continuities of a real-valued monotone functions of a real variable are at most
countable. In this paper, we extend this theorem to a family of monotone real
vector-valued functions of a real variable arising from dynamical systems. To
this end, we explore some essential characteristics of countable and uncount-
able sets by the notions of strong cluster points, upper and lower strong cluster

points, and establish the existence of strong cluster point sets, upper and lower
strong cluster point sets for an uncountable set. With the help of these strong
cluster point sets, we establish a jump lemma that helps characterize the dis-
continuities of the family of monotone vector-functions. Then we introduce the
notion of distinction set and prove the existence of a distinction set. Making
use of the upper and lower strong cluster points of the distinction set and the
jump lemma, we prove the Darboux-Froda extension theorem. Moreover, we
also present two applications of the generalized Darboux-Froda theorem.

1. Introduction

In real analysis, there is a well-known result about the discontinuities of mono-
tone real-valued functions of a real variable, which states that all discontinuities of
a monotone function in a real interval are necessarily jump discontinuities and they
are at most countable. This result is important in real analysis as it helps char-
acterize monotone functions and is closely related to other important theorems in
real analysis. Although not explicitly stated, this result was included in the famous
French mathematician Darboux’s work in 1875 [3]; later in 1929, Froda gave an
explicit statement of this result and provided a clear proof in his dissertation [7].
Nowadays, this result as a theorem and its various versions of proof can be found
in many text books (e.g., [1, 8, 9, 12]). Following Wikipedia [20], we also refer this
theorem as Darboux-Froda theorem.

For a real vector-valued function of a real variable φ(s) = (φ1(s), · · · , φn(s))
T ,

note the φ(s) is continuous at s if and only if φi(s) is continuous at s for all
i = 1, · · · , n; and hence, the set of discontinuities of such a vector-function is
nothing but the union of discontinuities of all φi(s), i = 1, · · · , n. Thus, if each

Received by the editors December 18, 2023.
2020 Mathematics Subject Classification. Primary 26A48, 26B05, 35C07, 37C65.
Key words and phrases. Monotone function, discontinuity, Darboux-Froda theorem, strong

cluster point, jump lemma, distinction set.
The research of the first and second authors was supported by the National Natural Science

Foundation of China (NSFC 11971494 and 12231008). The research of the third author was
supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-
04744).

c©2024 American Mathematical Society

4675

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/16931


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4676 JING CHEN, TAISHAN YI, AND XINGFU ZOU

φi(s) is monotone, then the set of discontinuities of φ : R → Rn is also at most
countable. For convenience, we call φ(s) = (φ1(s), · · · , φn(s)) a monotone vector-
function if each φi(s) is monotone. Thus, Darboux-Froda theorem also holds for
monotone vector-functions of a real variable.

Very often, one needs to consider a family of monotone vector-functions, denoted
by φ(θ, s) where s ∈ R and the element/parameter θ belongs to certain type of
set denoted by M. If φ(θ, s) is monotone in s for each θ ∈ M, then by the above
Darboux-Froda theorem, the set of discontinuities of φ(θ, s), denoted by Σθ is at
most countable, implying that φ(θ, s) is continuous in s ∈ R \ Σθ. The set of
discontinuities of the family φ(θ, s) is then given by Σ =

⋃
θ∈M

Σθ. This set is also

at most countable if the set M is countable, but it may not be countable if M is
uncountable. Particularly, in the study of traveling waves for evolutionary systems
including nonlocal dispersal equations with time delay and reaction-diffusion equa-
tions in a cylinder and so forth, a family of monotone vector-functions associated
with traveling waves is still denoted by φ : M× R → R

n with M being [−τ, 0] in
the case of the nonlocal diffusion equations with a time delay τ , or the projection
region of a cylinder in the base subspace in the case of reaction-diffusion equations
in a cylinder. A natural question is whether there are suitable conditions on φ such
that

⋃
θ∈M

Σθ is at most countable?

In this paper, we will address this question. Indeed, we can prove (main theorem
of the paper) that if (i) for each θ ∈ M, φ(θ, s) is monotone in s ∈ R and (ii) φ(θ, s)
is continuous in θ for each s, then

⋃
θ∈M

Σθ is at most countable.

To prove the above mentioned generalized Darboux-Froda theorem for φ(θ, s),
we develop a novel method with the key lying in describing the characteristic of
uncountable sets in M × R and establishing a jump lemma. Specifically, we wish
to find a subset of an uncountable set such that every point in it is a cluster point,
and yet, a cluster point is not necessarily a cluster point of the cluster point set.
For example, let I = {θ0}× ([−1, 0]∪{1+ 1

n}) and J = {θ0}× ({1}∪ [−1, 0]) with
θ0 ∈ M, then the cluster point set of I is J , but {θ0} × {1} is not a cluster point
of J . In general, it is difficult to find the cluster point set without isolated points
if we are confined only to the cluster point set. Based on the essential difference
between countable and uncountable sets in M×R, we introduce the definitions of
strong cluster points as well as upper and lower strong cluster points. It is worth
noting that strong cluster points are special kinds of cluster points: each strong
cluster point is a strong cluster point in the whole set of strong cluster points (i.e.,
the strong cluster point set).

In the rest of this paper, we first introduce, in Section 2, the notions of strong
cluster points and as well as upper and lower strong cluster point, and use them
to describe the clustering features of uncountable sets. Section 3 deals with the
continuity/discontinuity of the family of monotone (in s) vector-functions φ(θ, s).
By establishing a jump lemma and confirming the existence of a distinction set,
we prove the aforementioned generalized Darboux-Froda theorem. In Section 4, as
two direct applications of the generalized Darboux-Froda theorem, we present two
propositions, one of them describes the equivalence of functions in M × (R \ Σ),
and the other confirms the continuity of the translation operator associated to a
class of non-compact semiflows arising from the study of traveling wave solutions
to some dynamical systems in [2]. These two propositions are crucial in overcoming
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the lack of compactness in our forthcoming project on the existence of traveling
waves for some dynamical systems that are only point asymptotically smooth but
not necessarily asymptotically smooth.

2. Strong cluster point

In this section, we first introduce some notations. Let N, N+, R, R+, R
n, Rn

+

be the sets of all natural numbers, positive integers, reals, nonnegative reals, n-
dimensional real vectors, and n-dimensional nonnegative real vectors, where n is
a positive integer. Let (M, d) be a compact metric space. For any given (θ, δ) ∈
M× (0,∞), we use Uδ(θ) to denote the open ball in M with center θ and radius
δ.

To characterize the clustering features of uncountable sets inM×R, we introduce
the notions of (upper or lower) strong cluster point and (upper or lower) strong
cluster point set, which are crucial for studying the continuity of the family of
monotone vector-functions.

Definition 2.1. Suppose I ⊆ M× R is non-empty. A point p � (θ, s) ∈ I is said
to be

(i) a strong cluster point w.r.t I if for any δ > 0, [Uδ(θ)× (s− δ, s+ δ)]∩ I is
uncountable;

(ii) a upper (resp. lower) strong point w.r.t. I if for any δ > 0, [Uδ(θ)× (s, s+
δ)] ∩ I (resp. [Uδ(θ)× (s− δ, , s)] ∩ I ) is uncountable.

A subset I is called a (resp. upper or lower) strong cluster point set if each point
of I is a (resp. upper or lower) strong cluster point w.r.t I.
Remark 2.1. A strong cluster point must be a cluster point, but a cluster point
may not be a strong cluster point. An upper or lower strong cluster point (set)
must be a strong cluster point (set).

Next, we give the following properties according to the definitions of strong
cluster points, as well as upper and lower strong cluster points.

Proposition 2.1. Suppose that I ⊆ M×R is an uncountable subset, and J ⊆ I.
Then the following statements are valid:

(i) A (resp. upper or lower) strong cluster point w.r.t. to J must be a (resp.
upper or lower) strong cluster point w.r.t. I;

(ii) If I \ J is at most countable, then a (resp. upper or lower) strong cluster
point w.r.t. I must be a (resp. upper or lower) strong cluster point w.r.t.
J .

Proof. (i) is obvious, so we just need to prove (ii) below. We only give the proof for
the case of strong cluster point, and other cases can be proved by similar arguments.
If the conclusion does not hold, then there exist (θ0, s0) ∈ J and δ0 > 0 such that
[Uδ0(θ0) × (s0 − δ0, s0 + δ0)] ∩ J is at most countable. Since (θ0, s0) is a strong
cluster point with respect to I, we see that [Uδ0(θ0) × (s0 − δ0, s0 + δ0)] ∩ I is
uncountable. Then, the set decomposition relation

[Uδ0(θ0)× (s0 − δ0, s0 + δ0)] ∩ I
= ([Uδ0(θ0)× (s0 − δ0, s0 + δ0)] ∩ J )∪([Uδ0(θ0)× (s0 − δ0, s0 + δ0)]∩(I \ J ))

implies that [Uδ0(θ0)× (s0 − δ0, s0 + δ0)]∩ (I \ J ) is uncountable, a contradiction,
which completes the proof of statement (ii) for the strong cluster point case. �
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Definition 2.2. If for any (θ, s), (θ̃, s̃) ∈ I with (θ, s) �= (θ̃, s̃), we have θ �= θ̃ and
s �= s̃, then we call I a distinction set.

Remark 2.2. A strong cluster point of the distinction set must be an upper strong
cluster point or a lower strong cluster point.

Lemma 2.1. Suppose that I ⊆ M×R is an uncountable subset. Then there exists
a strong cluster point w.r.t. I.
Proof. Otherwise, for any p := (θ, s) ∈ I, there exists δp > 0 such that [Uδp(θ) ×
(s − δp, s + δp)] ∩ I is at most countable. Since M is a compact metric space,
it follows from [10, Theorem 5.5-(d)] that M is a second countable space. This,
combined with the fact that R is a second countable space, implies that M × R

is a second countable space, and hence I is a Lindelöff space by [10, Theorem
1.15]. Therefore, there are countable points pi := (θi, si) ∈ I such that I ⊆
∞⋃
i=1

Uδpi
(θi)× (si − δpi

, si + δpi
). Since [Uδpi

(θi)× (si − δpi
, si + δpi

)]∩ I is at most

countable, we see that I is at most countable, a contradiction. This completes the
proof. �
Lemma 2.2. Suppose that I ⊆ M× R is an uncountable subset and let J be the
set of all strong cluster points w.r.t. I. Then I \ J is at most countable and every
point in J is indeed also a cluster point w.r.t. J .

Proof. By Lemma 2.1, J is non-empty. We first show that I \ J is at most count-
able. Otherwise, I \ J is uncountable. This, combined with Lemma 2.1, implies
that there exists p0 ∈ I \ J such that p0 is a strong cluster point with respect
to I \ J . Thus, in virtue of Proposition 2.1-(i), p0 is a strong cluster point with
respect to I. It follows from the definition of J that p0 ∈ J , a contradiction.
This proves the claim. The second conclusion follows from this statement and
Proposition 2.1-(ii). �
Proposition 2.2. Suppose I ⊆ M×R is a distinction subset. If I is uncountable,
then there exists a subset K ⊆ I such that K is an upper or lower strong cluster
point set.

Proof. Let J+ (resp. J− ) be the set of all upper (resp. lower) strong cluster
points with respect to J , where J is shown in Lemma 2.2. Since J ⊂ I, J is also
a distinction set. It then follows from Remarks 2.1 and 2.2 that J = J− ∪ J+.
There are two cases to be considered below.

Case I. J− or J+ is at most countable. Without loss of generality, we assume J−
is at most countable. The conclusions can be proved by similar arguments if J+

is at most countable. In this case, J \ J+ is at most countable. In virtue of the
definition of J+ and Proposition 2.1-(ii), we see that J+ is an upper strong cluster
point set. Hence, K := J+ is what is needed for this proposition.

Case II. Both J− and J+ are uncountable. We proceed with the two subcases
below.

Case (II-1). J+ \J− is at most countable. Evidently, J \J− = J+ \J− is at most
countable from Remark 2.2. Again, by Proposition 2.1-(ii), we find that J− is a
lower strong cluster point set from the definition of J−. Thus K := J− is what is
required for this proposition.
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Case (II-2). J+ \ J− is uncountable. Let J̃ = J+ \ J−, and denote all the upper

(resp. lower) strong cluster points with respect to J̃ by J̃+ (resp. J̃−). It then

follows from the contraposition of Proposition 2.1-(i) that J̃− = ∅, and hence

J̃ = J̃+. That is, J̃ consists of upper strong cluster point; and therefore, K := J̃
is what is needed for this proposition.

�

3. A generalized Darboux-Froda theorem

Making use of the notions and properties of upper and lower strong cluster point
sets established in the preceding section, we now explore some crucial properties
for a family of monotone vector-functions in this section.

Let Y = C(M, Rn) be the set of all bounded and continuous functions from M
to Rn equipped with the usual supremum norm ‖·‖Y , and Y+ = C(M, Rn

+). Denote
D = {φ : M × R → Rn|φ(θ, s) is continuous in θ and nonincreasing in s}. Here,
we adopt the standard partial order “≤” in Rn when referring to the monotonicity
of φ(·, s) in s. In particular, for any φ ∈ D , it can be regarded as a monotone
function from R to Y . If φ : M× R → Rn, and φ(·, s) is nonincreasing in s, then
for any (θ, s) ∈ M × R, the left and right limits of φ(θ, s) at s exist, denoted by
φ(θ, s−) and φ(θ, s+), respectively.

According to the monotonicity of φ in s, we can easily obtain the following
results.

Lemma 3.1. Suppose that φ : M × R → Rn, and φ(·, s) is nonincreasing in s.
Then the following statements are valid:

(i) φ(θ, s−) ≥ φ(θ, s+), ∀(θ, s) ∈ M× R.
(ii) For any fixed (θ, s) ∈ M× R, φ(θ, s−) > φ(θ, s+) if and only if φ(θ, ·) is

discontinuous at s.

The key to the proof of the generalized Darboux-Froda theorem is to establish
the following jump lemma from the monotonicity in s and the continuity in θ of
φ(θ, s) as well as the existence of strong cluster points of an uncountable set.

Lemma 3.2. Let k0 ∈ N+ and φ ∈ D be given. Suppose K ⊆ {(θ, s) ∈ M× R :
φ(θ, s−) − φ(θ, s+) > 1

k0
} and (θ0, s0) ∈ K. Then the following statements are

valid:

(i) If K is a lower strong cluster point set, then there exists (θ∗, s∗) ∈ I such
that s∗ < s0 and φ(θ∗, s∗)− φ(θ0, s0) >

1
3k0

.

(ii) If K is an upper strong cluster point set, then there exists (θ∗, s∗) ∈ I such
that s∗ > s0 and φ(θ0, s0)− φ(θ∗, s∗) > 1

3k0
.

Proof. According to the continuity of φ(θ, s0) at θ0, we can find δ0 := δ0(θ0, s0) > 0
such that

‖φ(θ, s0)− φ(θ0, s0)‖ ≤ 1

3k0
, ∀θ ∈ Uδ0(θ0).

Note that A := [Uδ0(θ0) × (s0 − δ0, s0)] ∩ K is uncountable because K is a lower
strong cluster point set. For any (θ, s) ∈ A, by the continuity of φ(·, s) at θ, there
exists δθ,s > 0 such that Uδθ,s

(θ) ⊆ Uδ0(θ0), and

‖φ(θ̃, s)− φ(θ, s)‖ ≤ 1

3k0
, ∀θ̃ ∈ Uδθ,s

(θ).
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Let M̃ = [0, δ0]×M and I = {(δ, θ, s) ∈ M̃ × R : (θ, s) ∈ A and δ = δθ,s}. Then

M̃ is a compact metric space and I is an uncountable subset of M̃ × R. Due
to Lemma 2.1, we can find (δθ1,s1 , θ1, s1) ∈ I such that (δθ1,s1 , θ1, s1) is a strong
cluster point with respect to I. Thus, there exists (δθ2,s2 , θ2, s2) ∈ I such that

|δθ2,s2 − δθ1,s1 | <
δθ1,s1

2 , d(θ1, θ2) <
δθ1,s1

2 . So θ1, θ2 ∈ Uδθ1,s1
(θ1) ∩ Uδθ2,s2

(θ2).
Without loss of generality, we assume that s2 ≥ s1. It follows from the monotonicity
of φ and the condition of K that

φ(θ2, s1)− φ(θ2, s0) ≥ φ(θ2, s
−
2 )− φ(θ2, s

+
2 ) >

1

k0
.

Consequently,

φ(θ1, s1)− φ(θ0, s0) = φ(θ1, s1)− φ(θ2, s1) + φ(θ2, s1)− φ(θ2, s0) + φ(θ2, s0)

− φ(θ0, s0)

> − 1

3k0
+

1

k0
− 1

3k0

=
1

3k0
.

Taking (θ∗, s∗) = (θ1, s1), (i) is then proved.
The proof of (ii) is similar and is thus omitted here. �

By establishing the existence of the distinction set, we can obtain its upper and
lower strong cluster point sets. Then the following statement follows from the jump
lemma.

Proposition 3.1. Suppose φ ∈ D , and let S = {(θ, s) ∈ M × R : φ(θ, s−) >
φ(θ, s+)} and Σ = {s ∈ R : there exists θ ∈ M such that (θ, s) ∈ S}. Then Σ is
at most countable.

Proof. We distinguish two cases to complete the proof.

Case 1. φ(M× R) is a bounded subset of Rn. Otherwise, Σ is uncountable. We
claim that there exists an uncountable subset of S such that S is a distinction
set. Indeed, for any s ∈ Σ, we can choose θs ∈ M such that (θs, s) ∈ S by

the definition of Σ. Set S̃ = {(θs, s) ∈ M × R : s ∈ Σ}. Then S̃ ⊆ S, and S̃
is uncountable. Let M = {θs ∈ M : s ∈ Σ}, and for any θ ∈ M , we define

Σθ = {s ∈ R : (θ, s) ∈ S̃}. Clearly,
⋃

θ∈M

Σθ = Σ, and Σθ is at most countable

from Lemma 3.1-(ii) and the monotonicity of φ(θ, ·). This, combined with the fact
that Σ is uncountable, implies that M is an uncountable set. It follows from the
definition of M that for any θ ∈ M , there exists sθ ∈ R such that (θ, sθ) ∈ S̃.

Denote S = {(θ, sθ) : θ ∈ M}. Then S ⊆ S̃ is uncountable, and S is a distinction
set. Thus, the claim holds true.

For any k ∈ N+, let Sk = {(θ, s) ∈ S : φ(θ, s−) − φ(θ, s+) > 1
k}. Then

S =
⋃

k∈N+

Sk. Hence, there is k0 ∈ N+ such that I =: Sk0
is uncountable. According

to Proposition 2.2, there exists an uncountable subset K ⊆ I such that K is an upper
or lower strong cluster point set. Without loss of generality, we may assume that K
is a lower strong cluster point set. Choose (θ0, s0) ∈ K. It then follows from Lemma
3.2-(i) that there exists (θ1, s1) ∈ K such that s1 < s0 and φ(θ1, s1)− φ(θ0, s0) >
1

3k0
. Again, applying Lemma 3.2-(i) to (θ1, s1) ∈ K, there exists (θ2, s2) ∈ K such
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that s2 < s1, and φ(θ2, s2)− φ(θ1, s1) >
1

3k0
. In a similar way, we can choose the

sequence {(θi, si)}i∈N ⊆ K such that si < si−1 and φ(θi, si)− φ(θi−1, si−1) >
1

3k0

with i ∈ N. Therefore, lim
i→∞

φ(θi, si) = ∞, which contradicts the fact that φ(M×R)

is a bounded subset of Rn. This completes the proof.

Case 2. φ(M× R) is an unbounded subset of Rn. For any m ∈ N+, define φm :
M× R → Rn by

φm(θ, s) =

⎧⎪⎨
⎪⎩
φ(θ,m), ∀(θ, s) ∈ M× (−∞,−m),

φ(θ, s), ∀(θ, s) ∈ M× [−m,m],

φ(θ,−m), ∀(θ, s) ∈ M× (m,∞).

It is easy to see that φm ∈ D and φm(M × R) is a bounded subset of Rn. Let
Σm = {s ∈ R : there exists θ ∈ M such that φm(θ, s−) > φm(θ, s+)}. Thus,
applying the statement of Case 1 to φm, we obtain that Σm is at most countable.

In view of the definitions of φm and Σ, we have Σ =
∞⋃

m=1
Σm, and hence Σ is at

most countable.

Combining Case 1 and Case 2, the proposition is proved. �

With Lemma 3.1-(ii), and Proposition 3.1, we are now in the position to establish
the following generalized Darboux-Froda theorem for φ(θ, s).

Theorem 3.1. Suppose φ ∈ D . Then there exists a subset Σ ⊆ R such that Σ is
at most countable, and R \ Σ � s �→ φ(·, s) ∈ Y is continuous. Therefore, φ(θ, s)
is continuous on M× (R \ Σ).

Proof. In virtue of Lemma 3.1-(ii) and Proposition 3.1, we can know that there
exists a subset Σ ⊆ R such that Σ is at most countable, and for any θ ∈ M,
φ(θ, s) is continuous with s ∈ R \ Σ. For any given (θ, s0) ∈ M× (R \ Σ), φ(θ, s)
converges to φ(θ, s0) as s → s0. This, combined with the fact that φ(·, s0) ∈ Y
and Dini’s theorem, implies that φ(·, s) converges to φ(·, s0) in Y ; that is, φ(θ, s)
converges to φ(θ, s0) uniformly with respect to θ as s → s0. Thus, it follows
that the map R \ Σ � s �→ φ(·, s) ∈ Y is continuous since s0 is arbitrary. Again,
by the arbitrariness of s0 and φ ∈ D , we conclude that φ(θ, s) is continuous on
M× (R \ Σ), completing the proof of the theorem. �

By slightly adapting the proofs of Lemma 3.2, Proposition 3.1, and Theorem 3.1,
we can obtain the same statements under weaker conditions, as stated in Theorem
3.2 with its proof omitted.

Theorem 3.2. Suppose for each θ ∈ M, φ(θ, s) is nonincreasing in s ∈ R. As-
sume that there is an at most countable subset Σ ⊆ R such that for any s ∈
R \ Σ, φ(·, s) ∈ Y . Then there exists a subset Σ1 ⊆ R such that Σ1 is at most
countable, and φ(θ, s) is continuous on M× (R \ Σ1).

Remark 3.1. To conclude this section, we point out that if, in addition to the
condition φ ∈ D , φ(·, s±) ∈ Y for s ∈ R, then the conclusion of Theorem 3.1 can
be easily obtained by an alternative and simpler method. In fact, for any fixed
s ∈ R, define Js = {θ ∈ M : φ(θ, s−) > φ(θ, s+)} and Σ = {s ∈ R : Js �= ∅}.
Note that for any s ∈ R, Js is a non-empty open set by the hypothesis and the
definition of Σ. It suffices to show that Σ is at most countable. Otherwise, Σ is
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uncountable. Since M is a compact metric space, it follows from [10, Theorem
1.14] that there exists a countable dense subset N := {θi : i ∈ N+} of M such that

N ∩ Js �= ∅ for all s ∈ R. Thus, Σ =
∞⋃
i=1

Σi, where Σi = {s ∈ Σ : θi ∈ Js}. Since

Σ is uncountable, one of Σi is uncountable. Without loss of generality, we assume
Σ1 is uncountable. Therefore for any s ∈ Σ1, we have φ(θ1, s

−) > φ(θ1, s
+),

that is, the discontinuities of φ(θ1, s) with s are uncountable. This contradicts
the Darboux-Froda theorem. This, together with Dini’s theorem, implies that the
conclusion of Theorem 3.1 holds. Additionally, we also note that the condition that
for any m ∈ N+, {φ(·, s) : s ∈ [−m,m]} is a precompact subset of Y is equivalent
to the hypothesis that for any s ∈ R, φ(·, s±) ∈ Y from Dini’s theorem. Moreover,
we also note that the condition that for any m ∈ N+, {φ(·, s) : s ∈ [−m,m]}
is a precompact subset of Y is equivalent to the hypothesis that for any s ∈ R,
φ(·, s±) ∈ Y from Dini’s theorem.

4. Applications

In this section, we will apply the generalized Darboux-Froda theorem proved in
the preceding section to characterize functions that are equal almost everywhere,
and the continuity of monotone mappings with translation invariance in D .

4.1. Equivalence of elements in D . The main purpose is to show that functions
that are equal almost everywhere in D are actually equal in R \ Σ, where Σ is at
most countable. Such a result is stated in Proposition 4.1 which is useful in the
study of existence of traveling waves in monotone function space Chen et al [2].

Proposition 4.1. Let φ, ψ ∈ D , and suppose that φ(·, s) is equal to ψ(·, s) almost
everywhere with s ∈ R. Then there exists a subset Σ ⊆ R such that Σ is at most
countable, and for any (θ, s) ∈ M× (R \ Σ), we have φ(θ, s) = ψ(θ, s).

Proof. In view of φ, ψ ∈ D , it follows from Theorem 3.1 that we can find a subset
Σ ⊆ R such that Σ is at most countable, and for any θ ∈ M, both φ(θ, s) and
ψ(θ, s) are continuous with s ∈ R \ Σ. Since φ(·, s) = ψ(·, s), a.e. s ∈ R, there
exists a zero test set Σ0 ⊆ R such that φ(θ, s) = ψ(θ, s) for all (θ, s) ∈ M×(R\Σ0).
Without loss of generality, we shall assume (θ, s) ∈ M× (R \ Σ). Take a sequence
{sk}k∈N ⊆ R \ (Σ ∪ Σ0) satisfying lim

k→∞
sk = s. Therefore, φ(θ, sk) = ψ(θ, sk).

Then we let k → ∞ to see that φ(θ, s) = ψ(θ, s) from the continuity of φ(θ, ·) and
ψ(θ, ·), which completes the proof. �

4.2. Continuity of monotone mappings with translation invariance. It is
well known that Weinberger [14] established a set of theories about spreading speeds
and traveling waves for recursive systems. By the properties of monotone functions
and Helly theorem, Yagisita [17] specifically investigated spreading speeds and trav-
eling waves for noncompact and monotone semiflows on a subspace of nonnegative
monotone real functions. Fang and Zhao [5] extended the abstract dynamical meth-
ods to obtain the existence of traveling waves with weak compactness for monotone
semiflows. Subsequently, spreading speeds and travelling wave solutions have also
been deeply studied in [4, 6, 11, 15, 16, 18, 19]. Through the above works, we find a
class of mappings extracted from recursive systems play a crucial role in studying
the existence of traveling waves. In this section, we will discuss the continuity of
the relevant monotone mappings with translation invariance.
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Let D+ = {ϕ ∈ D : ϕ(M × R) ⊆ Rn
+}, and for any π+ ∈ Int(Y+), define

Dπ+
= {u ∈ D : 0 ≤ ϕ ≤ π+}. In what follows, for any given t ∈ R, we

define the translation operator Tt on D by Tt[ϕ](θ, s) = ϕ(θ, s− t) for (ϕ, θ, s) ∈
D×M×R, and assume thatQ = (Q1, · · · , Qk) : Dπ+

→ Dπ+
satisfies the following

hypotheses:

(4.1)

(i) (Translation invariance) Q[T t[u]] = T t[Q[u]], ∀(t,φ) ∈ R×
Dπ+

;
(ii) (Monotonicity) φ ≤ ψ implies that Q[φ] ≤ Q[ψ];
(iii) (Continuity) If φk,φ ∈ Dπ+

and φk converges to φ in Dπ+

as k → ∞, then Q[φk](·, s) converges to Q[φ](·, s) almost every-
where with s ∈ R in Y .

In order to obtain the continuity of the mapping Q, we firstly rely on the chain
convergence conclusions for multiple sequences to get the uniform convergence for
the sequence in Y as follows.

Lemma 4.1. Suppose the sequences {ψ
n,k

}n,k∈N, {ψn,k}n,k∈N, {ψk}k∈N,

{η
n
}n∈N, {ηn}k∈N ⊆ Y , and ψ ∈ Y with ψ

n,k
≤ ψk ≤ ψn,k. If for any n ∈ N, ψ

n,k

and ψn,k converge to η
n
and ηn respectively in Y as k → ∞, and lim

n→∞
η
n
(θ) =

lim
n→∞

ηn(θ) = ψ(θ) for all θ ∈ M, then ψk converges to ψ in Y as k → ∞.

Proof. First, we claim that for any θ ∈ M, ψk(θ) converges to ψ(θ) as k → ∞, and
hence η

n
≤ ψ ≤ ηn. Clearly, ψn,k

(θ) ≤ ψk(θ) for all θ ∈ M since ψ
n,k

≤ ψk. We

let k → ∞ to see that η
n
≤ lim inf

k→∞
ψk(θ). Passing to the limit as n → ∞, it follows

from the conditions of ψ
n,k

and η
k
that for any θ ∈ M, ψ(θ) ≤ lim inf

k→∞
ψk(θ).

Similarly, we can easily verify that for any θ ∈ M, ψ(θ) ≥ lim sup
k→∞

ψk(θ), and thus

lim
k→∞

ψk(θ) = ψ(θ).

Next, we show that ψk converges to ψ in Y as k → ∞. Otherwise, there exist
ε0 > 0, {θk}k∈N ⊆ M, and a subsequence of {ψk}k∈N, still denoted by {ψk}k∈N

such that

‖ψk(θk)−ψ(θk)‖ ≥ ε0.

As M is a compact metric space, we shall assume lim
k→∞

θk = θ0. According to the

above conditions and the claim, it is easy to see that

‖ψk(θk)−ψ(θk)‖ ≤ max{‖ψn,k(θk)− η
n
(θk)‖, ‖ψn,k

(θk)− ηn(θk)‖}.

Using triangle inequality, we have

‖ψn,k(θk)−η
n
(θk)‖ ≤ ‖ψn,k(θk)−ηn(θk)‖+‖ηn(θk)−ψ(θk)‖+‖ψ(θk)−η

n
(θk)‖

≤ ‖ψn,k(θk)−ηn(θk)‖+‖ηn(θk)−ηn(θ0)‖+‖ηn(θ0)−ψ(θ0)‖
+2‖ψ(θ0)−ψ(θk)‖+‖η

n
(θk)−η

n
(θ0)‖+‖η

n
(θ0)−ψ(θ0)‖.

Because of lim
n→∞

η
n
(θ0) = ψ(θ0) and lim

n→∞
ηn(θ0) = ψ(θ0), there exists N0 :=

N0(ε, θ0) such that

‖η
N0

(θ0)−ψ(θ0)‖+ ‖ηN0
(θ0)−ψ(θ0)‖ <

ε0
3
.
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By the fact that ηN0
, η

N0
, and ψ ∈ Y , there is K0 := K0(ε0, N0) > 0 such that for

any k ≥ K0,

‖η
N0

(θk)− η
N0

(θ0)‖+ ‖ηN0
(θk)− ηN0

(θ0)‖+ 2‖ψ(θ0)−ψ(θk)‖ <
ε0
3
.

Since ψN0,k converges to ηN0
in Y as k → ∞, there exists K1 := K1(ε0, N0) such

that for any k ≥ K1,

‖ψN0,k(θk)− ηN0
(θk)‖ <

ε0
3
.

Hence, ‖ψN0,k(θk)− η
N0

(θk)‖ < ε0 if k ≥ max{K0,K1} is sufficiently large. Sim-

ilarly, we have ‖ψ
N0,k

(θk)− ηN0
(θk)‖ < ε0 for sufficiently large k.

Consequently, ‖ψk(θk) − ψ(θk)‖ < ε0 for sufficiently large k, a contradiction,
which completes the proof. �

Let D = BC(M×R,Rn) be the normed vector space of all bounded and contin-

uous functions from M×R to Rn with the norm ‖ϕ‖D �
∞∑

m=0
2−m sup{‖ϕ(θ, s)‖ :

−m ≤ s ≤ m, θ ∈ M}. In what follows, we construct monotone and continuous
function sequences and apply the convergence criterion to get a special application
of Theorem 3.1.

Proposition 4.2. Suppose that Q satisfies hypothesis (4.1), and φk, φ ∈ Dπ+ . If
φk(·, s) converges to φ(·, s) almost everywhere with s as k → ∞, then Q[φk](·, s)
converges to Q[φ](·, s) almost everywhere with s ∈ R as k → ∞.

Proof. By φ ∈ Dπ+ and adapting the proof of [17, Proposition 9], we can choose

the sequences φ
m

and φm ∈ Dπ+
∩ D such that for any (s,m) ∈ R× N,

(4.2) φ(·, s+ 2−m) ≤ φ
m
(·, s) ≤ φ(·, s) ≤ φm(·, s) ≤ φ(·, s− 2−m).

This, combined with the fact that φk(·, s) converges to φ(·, s) almost everywhere
with s ∈ R, implies that for anym ∈ N, min{φk(·, s),φm

(·, s)} converges to φ
m
(·, s)

almost everywhere with s ∈ R. Further, by the continuity of φ
m
(·, s) with s and

[5, Lemma 2.3-(ii)], min{φk,φm
} converges to φ

m
in Dπ+

as k → ∞. Similarly,

max{φk,φm} converges to φm in Dπ+
as k → ∞. Thus, it follows from the

continuity of Q that there exists a zero test set Σ0 ⊆ R such that for any s ∈ R\Σ0,

lim
k→∞

Q[min{φk,φm
}](·, s) = Q[φ

m
](·, s),

and

lim
k→∞

Q[max{φk,φm}](·, s) = Q[φm](·, s).

Due to the monotonicity and translation invariance of Q, and (4.2), we have

Q[min{φk,φm
}](·, s) ≤ Q[φk](·, s) ≤ Q[max{φk,φm}](·, s),

and

(4.3)

Q[φ](·, s+ 2−m) = Q[φ(·, ·+ 2−m)](·, s)
≤ Q[φ

m
](·, s) ≤ Q[φm](·, s)

≤ Q[φ(·, · − 2−m)](·, s) = Q[φ](·, s− 2−m).
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In view of Q[φ] ∈ Dπ+
and Theorem 3.1, there exists a subset Σ ⊆ R such that Σ

is at most countable and for any θ ∈ M, Q[φ](θ, s) is continuous in s ∈ R \Σ, and
hence for any (θ, s) ∈ M× (R \ Σ), we have

lim
m→∞

Q[φ](θ, s+ 2−m) = Q[φ](θ, s) = lim
m→∞

Q[φ](θ, s− 2−m).

This, combined with (4.3), implies that for any (θ, s) ∈ M×(R\Σ), lim
m→∞

Q[φ
m
](θ, s)

= lim
m→∞

Q[φm](θ, s) = Q[φ](θ, s). Thus, applying Lemma 4.1, it follows that for

any s ∈ R \ (Σ ∪ Σ0), Q[φk](·, s) converges to Q[φ](·, s) in Y as k → ∞. In other
words, Q[φk](·, s) converges to Q[φ](·, s) almost everywhere with s ∈ R, which
completes the proof. �

In the succeeding work [2], we make use of the conclusions in the above proposi-
tions to obtain the existence of traveling waves for monotone mappings with trans-
lation invariance under the point asymptotically smooth hypothesis.
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