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Abstract. We consider a generalized Fisher-KPP equation with the growth
function being time and space dependent in the form of “shifting with constant
speed”. The main concerns are extinction and persistence, as well as spatial-
temporal dynamics. By employing a new method relating to semigroup and
some subtle estimates, we not only extend the main results in Li et al. [SIAM J.
Appl. Math. 74 (2014), pp. 1397-1417] to a scenario when the growth function
may have no sign change, but also improve the main results there by dropping
some restrictions on the initial functions.

1. Introduction

In recent years, due to increasing threats associated with global climate change
and the worsening of the environment caused by industrialization, the effects of
climate and environment changes on the survival of biological species have received
much attention from some researchers, including mathematical modellers and an-
alysts. Among the various ways/patterns of changes in climate and environment,
is the one that “propagates or shifts with constant speed”. Corresponding to such
a shifting way of change, some parameters in a mathematical model become time
and location dependent, and they depend on the time and location in this special
shifting way. See, e.g., the equations in Potapov and Lewis [8], Berestycki et al.
[2], and Li et al. [6] and the related references therein for such models. To be more
specific, let us use the model equation in Li et al. [6] to explain. In [6], Li et al.
considered the following model equation:

(1.1)
∂u(t, x)

∂t
= d

∂2u

∂x2
+ ur(x− ct)− u2, x ∈ R, t ≥ 0,

where the function r(·) represents the birth rate and is assumed to be space-time
dependent, changing in the form of shifting with constant speed c > 0, while the
density dependent death rate has been rescaled to the current form. Obviously,
r(x− ct) offers a spatially varying baseline or a historic rate of population growth.
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Different properties that the function r(·) possesses correspond to different sce-
narios in reality. When r(·) is a positive constant, representing a situation with
stable (constant) environment, (1.1) reduces to the classic Fisher-KPP equation
([4, 5]), which has been extensively and intensively studied (see, e.g., [1, 10]). An
increasing r(·) accounts for a scenario that the environment is worsening with a con-
stant speed c > 0, while a decreasing r(·) explains a situation that the environment
is improving with a constant speed c > 0.

In [6], the authors explored the spatial-temporal dynamics of (1.1) under the
following condition on the function r(·):

(H) r(·) is continuous, nondecreasing, and bounded with r(−∞) < 0 < r(∞).

With the condition (H), Li et al. [6] obtained the following main results.

Theorem 1.1 ([6, Theorem 2.1]). Assume that (H) holds. Let c > c∗(∞) :=

2
√
dr(∞). If 0 ≤ u0(x) ≤ r(∞) and u0(x) = 0 for all sufficiently large x, then

for every ε > 0 there exists T > 0 such that for t ≥ T , the solution of (1.1) with
u(0, x) = u0(x) satisfies u(t, x) ≤ ε for all x.

Theorem 1.2 ([6, Theorem 2.2]). Assume that (H) holds. Let 0 < c < c∗(∞).
Then the following statements are valid:

(i) If 0 ≤ u(0, x) ≤ r(∞), then for any ε > 0,

lim
t→∞

[
sup

x≤t(c−ε)

u(t, x)

]
= 0.

(ii) If 0 ≤ u(0, x) ≤ r(∞), and u(0, x) ≡ 0 for all sufficiently large x, then for
any ε > 0,

lim
t→∞

[
sup

x≥t(c∗(∞)+ε)

u(t, x)

]
= 0.

(iii) If 0 ≤ u(0, x) ≤ r(∞), and u(0, x) > 0 on a closed interval, then for any
ε > 0 with 0 < ε < (c∗(∞)− c)/2,

lim
t→∞

[
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− u(t, x)|
]
= 0.

Note that the hypothesis (H) consists of two major requirements for r(·): mono-
tonicity and sign change. Physically/ecologically, nondecreasing property of r(·)
means that, as we explained before, the environment is gradually becoming worse (in
the sense of shifting with constant speed); and the sign change property r(−∞) <
0 < r(∞) further indicates that the worsening is in the very severe sense. Indeed,
due to this sign change property, at any given location x, when t is sufficiently
large, r(x− ct) will become negative meaning that this location will become a poor
and unsuitable habitat for a biological species. Mathematically, these two require-
ments play a crucial role in proving the above results in [6]. For example, under
condition (H), at any given time t, the whole space R can be naturally divided into
exactly two regions: a good (suitable) region where r(x− ct) > 0 and a bad region
(unsuitable) region where r(x− ct) < 0, and the behaviours of solutions to (1.1) in
these two regions can be tracked and analyzed accordingly by such a division.

We point out that some most recent works have extended the results in [6]
to some other equations with shifting parameter(s); for example, to an equation
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resulting from replacing the random diffusion in (1.1) with nonlocal diffusion in Li
et al. [7], and to competitive systems of Lotka-Volterra-type with the same type of
growth function(s) in Zhang et al. [14] and Yuan et al. [13] as r(x − ct) in (1.1).
In these extensions, the growth functions involved are all assumed to satisfy (H).
Our goal in this paper is to extend (also improve) the results (not the equation) for
(1.1) in [6] to allow a no sign change scenario. More specifically, we replace (H)
with the following weaker condition for r(·):

(H*) r(·) is continuous, nondecreasing, and bounded with r(−∞) ≤ 0 < r(∞).

With such a relaxation of conditions for r(·), the main idea and method used in
[6] and the extension works [7,13,14] that depend on the “sign change” implied by
r(−∞) < 0 can no longer be applied (at least directly), and we are forced to seek
an alternative method which is motivated by [12] (a semigroup approach). By our
new method, we are able to obtain some results on the spatial-temporal dynamics
of (1.1) under (H*) which are similar to Theorems 1.1 and 1.2 but also contain
some improvement to Theorems 1.1 and 1.2 (see Remark 3.1).

2. Preliminary results

In this section, we will introduce notation and two lemmas. We denote

C = C(R,R) ∩ L∞(R,R)

and

C+ = C(R,R+) ∩ L∞(R,R).

For any ψ, ϕ ∈ C, we write ψ ≤ ϕ or ϕ ≥ ψ if ϕ− ψ ∈ C+.
For convenience of discussion, we denote by uφ(t, x; r(·)) the solution of (1.1)

with the shifting birth rate function r(·) and initial distribution φ. It is known
(see, e.g., [1, 11]) that if r(·) = r̂ is a positive constant function, then the following
results for (1.1) have been obtained, which will be used later in our analysis.

Lemma 2.1. Let r̂ be a positive constant and ĉ := 2
√
dr̂. Then the following

statements are valid:

(i) If φ ∈ C+ with φ(x) = 0 for all sufficiently large x, then for any ε > 0,

lim
t→∞

[
sup

x≥t(ĉ+ε)

uφ(t, x; r̂)

]
= 0.

(ii) If φ ∈ C+ \ {0}, then for any ε > 0 with 0 < ε < ĉ,

lim
t→∞

[
sup

|x|≤t(ĉ−ε)

|r̂ − uφ(t, x; r̂)|
]
= 0.

By the Phragmén-Lindelöf type maximum principle in [9], we can also easily
establish the following comparison principle for (1.1).

Lemma 2.2. Assume that r, r̃ ∈ C are nondecreasing with r ≥ r̃. Let ψ, φ ∈ C+

with φ ≤ ψ. Then we have

(i) 0 ≤ uφ(t, x; r̃(·)) ≤ uψ(t, x; r(·)) ≤ uψ(t, x; r(∞)) for all (t, x) ∈ R+ × R.
(ii) lim sup

t→∞
||uφ(t, ·; r(·))||L∞ ≤ r(∞).
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3. The main results

Let c∗(∞) := 2
√
dr(∞), which represents the spread speed of the limit equation

(3.1)
∂u(t, x)

∂t
= d

∂2u

∂x2
+ u(r(∞)− u), x ∈ R, t ≥ 0

in the sense of Lemma 2.1. The next theorem shows that if the environmental
worsening speed is less than this limit speed (c < c∗(∞)), then the species can
persist by moving toward the direction of better environment (i.e., toward the right
hand side) with the moving persistence region given by

Dt = {x ∈ R : c t < x < c∗(∞) t}

which is expanding as time goes.

Theorem 3.1. Assume that (H*) is satisfied. Let 0 ≤ c < c∗(∞). Then the
following statements are valid:

(i) If φ ∈ C+, and φ ≡ 0 for all sufficiently large x, then for any ε > 0,

lim
t→∞

[
sup

x≥t(c∗(∞)+ε)

uφ(t, x; r(·))
]
= 0.

(ii) If φ ∈ C+ \ {0} and ε ∈ (0, (c∗(∞)− c)/2), then

lim
t→∞

[
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(·))|
]
= 0.

Proof. For (i), by Lemma 2.1(i), we get

lim
t→∞

[
sup

x≥t(c∗(∞)+ε)

uφ(t, x; r(∞))

]
= 0.

Lemma 2.2(i) implies 0 ≤ uφ(t, x; r(·)) ≤ uφ(t, x; r(∞)) for all (t, x) ∈ R+ × R.
Thus,

0 ≤ sup
x≥t(c∗(∞)+ε)

uφ(t, x; r(·)) ≤ sup
x≥t(c∗(∞)+ε)

uφ(t, x; r(∞))

for all t ∈ R+. Therefore,

lim
t→∞

[
sup

x≥t(c∗(∞)+ε)

uφ(t, x; r(·))
]
= 0.

For (ii), take a nondecreasing function r̃ and ψ ∈ C+ \ {0} with r̃ ≤ r, r̃(∞) =
r(∞), r̃(−∞) = min{−r(∞), r(−∞)}, ψ ≤ r(∞) and ψ ≤ φ. It follows from
Theorem 1.2(iii) that

lim
t→∞

[
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uψ(t, x; r̃(·))|
]
= 0.

Lemma 2.1(ii) implies that

lim
t→∞

[
sup

|x|≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(∞))|
]
= 0.
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In particular, we have

lim
t→∞

[
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(∞))|
]
= 0.

By Lemma 2.2(i), we obtain that uψ(t, x; r̃(·)) ≤ uφ(t, x; r(·)) ≤ uφ(t, x; r(∞)) for
all (t, x) ∈ R+ × R. Thus,

sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(·))|

≤ max

{
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(∞))|, sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)

− uψ(t, x; r̃(·))|
}

for all t ∈ R+. Therefore,

lim
t→∞

[
sup

t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− uφ(t, x; r(·))|
]
= 0.

This completes the proof. �

Let Sμ(t) be the semigroup generated by the following linear system:⎧⎨
⎩

∂u
∂t = d∂2u

∂x2 − μu, t > 0,
u(t, 0) = 0, t ∈ R+,
u(0, x) = φ(x), x ∈ R,

that is, for (x, φ) ∈ R× C,

(3.2)

{
Sμ(0)[φ](x) = φ(x),

Sμ(t)[φ](x) = exp(−μt)√
4πdt

∫
R
φ(y) exp

(
− (x−y)2

4dt

)
dy, t > 0.

For any given c > 0, by making use of this semigroup, we can establish the following
result, which complements Theorem 3.1.

Theorem 3.2. Let (H*) hold, and c > 0 any constant. Then for any φ ∈ C+ and
ε > 0, there holds

lim
t→∞

[
sup

x≤t(c−ε)

uφ(t, x; r(·))
]
= 0.

Proof. Fix φ ∈ C+ and ε > 0. By Lemma 2.2(ii), we may assume, without loss of
generality, that 0 ≤ uφ(t, x; r(·)) ≤ M0 := r(∞) + 1 for all (t, x) ∈ R+ × R. Let

U(τ ) = lim sup
t→∞

[
sup

x≤t(c−τ)

uφ(t, x; r(·))
]

for all τ ∈ (0, ε].

Then U(·) is nonincreasing in (0, ε], and by Lemma 2.2(ii) we have 0 ≤ U(τ ) ≤
r(∞) for all τ ∈ (0, ε].

Now it suffices to prove U(ε) = 0; otherwise, the monotonicity of U implies that

there is τ0 ∈ (0, ε) such that U is continuous at τ0 and μ := U(τ0)
2 > 0.
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By r(−∞) ≤ 0, there is ξ0 > 0 such that r(ξ) < μ for all ξ ≤ −ξ0. Let
u(t, x) := uφ(t, x; r(·)). It follows from (1.1) that for any (t0, t, x) ∈ R+ × R+ × R

with t > t0 ≥ ξ0
τ0
, we have

u(t, x) = Sμ(t− t0)[u(t0, ·)](x)

+

∫ t

t0

Sμ(t− s)[(μ+ r(· − cs))u(s, ·)− u2(s, ·))](x)ds

= Sμ(t− t0)[u(t0, ·)](x) + μ

∫ t

t0

Sμ(t− s)[μ](x)ds

−
∫ t

t0

Sμ(t− s)[(u(s, ·)− μ)2](x)ds

+

∫ t

t0

Sμ(t− s)[(r(· − cs)− μ)u(s, ·)](x)ds

≤ M0e
−μ(t−t0) + μ[1− e−μ(t−t0)] +

∫ t

t0

Sμ(t− s)[(r(· − cs)− μ)u(s, ·)](x)ds

= μ+ (M0 − μ)e−μ(t−t0)

+

∫ t

t0

exp(−μ(t− s))√
4πd(t− s)

∫
R

(r(y − cs)− μ)u(s, y) exp

(
− (x− y)2

4d(t− s)

)
dyds

≤ μ+ (M0 − μ)e−μ(t−t0)

+

∫ t

t0

exp(−μ(t− s))√
4πd(t− s)

∫ ∞

s(c−τ0)

(r(y−cs)−μ)u(s, y) exp

(
− (x− y)2

4d(t− s)

)
dyds

≤ μ+ (M0 − μ)e−μ(t−t0)

+ (r(∞)− μ)M0

∫ t

t0

exp(−μ(t− s))√
4πd(t− s)

∫ ∞

s(c−τ0)

exp

(
− (x− y)2

4d(t− s)

)
dyds

= μ+ (M0 − μ)e−μ(t−t0)

+ (r(∞)− μ)M0

∫ t

t0

exp(−μ(t− s))√
4πd(t− s)

∫ ∞

s(c−τ0)−x

exp

(
− y2

4d(t− s)

)
dyds.

Fix τ ∈ (τ0, ε). Let

(3.3) θ :=

{
1
3 if τ0 = c,

max
{

1
3 , 1−

2(τ−τ0)
3|τ0−c|

}
else.

Obviously 1
3 ≤ θ < 1, and hence θt < t for t > 0. Therefore, for (t, x) ∈ R+ × R

with x ≤ (c− τ )t and t ≥ ξ0
θτ0

, we have

u(t, x) ≤ μ+ (M0 − μ)e−μ(t−θt)

+ (r(∞)− μ)M0

∫ t−θt

0

exp(−μs)√
4πds

∫ ∞

(t−s)(c−τ0)−x

exp

(
− y2

4ds

)
dyds

≤ μ+ (M0 − μ)e−μ(t−θt)

+ (r(∞)− μ)M0

∫ t−θt

0

exp(−μs)√
4πds

∫ ∞

τ−τ0
3 t

exp

(
− y2

4ds

)
dyds.

(3.4)
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In the last inequality in (3.4), we have used the fact that

(t− s)(c− τ0)− x = (c− τ )t− x+ t(τ − τ0) + s(τ0 − c)

≥ t(τ − τ0) + s(τ0 − c)

≥ t(τ − τ0)− (t− θt)|τ0 − c|
= t(τ − τ0)− t(1− θ)|τ0 − c|

≥ t(τ − τ0)−
2

3
t(τ − τ0)

=
τ − τ0

3
t.

Note that from [12, Lemma 2.1-(vi)] one obtains for any y ∈ R,

(3.5)

∫
R+

μe−μt

√
4dπt

exp

(
− y2

4dt

)
dt =

μ√
4dμ

e−
√

μ
d |y|.

Now, combining (3.4) and (3.5), we conclude that for any τ ∈ (τ0, ε), and (t, x) ∈
R+ × R with x ≤ (c− τ )t and t ≥ ξ0

θτ0
there holds

u(t, x) ≤ μ+ (M0 − μ)e−μ(1−θ)t

+ (r(∞)− μ)M0

∫ ∞

τ−τ0
3 t

1√
4dμ

e−
√

μ
d |y|dy

= μ+ (M0 − μ)e−μ(1−θ)t

+
(r(∞)− μ)M0

2μ
e−

√
μ
9d (τ−τ0)t.

This implies U(τ ) ≤ μ for all τ ∈ (τ0, ε). Consequently as τ → τ0, we obtain

U(τ0) ≤ μ = U(τ0)
2 , a contradiction. Therefore,

lim
t→∞

[
sup

x≤t(c−ε)

uφ(t, x; r(·))
]
= 0.

The proof is complete. �

When the worsening speed c is larger than the limit spreading speed of (1.1)

c∗(∞) = 2
√
d r(∞), one naturally predicts that the species will eventually become

extinct in space under some very general conditions on the initial function φ. More
precisely, we can prove the following result which is similar to Theorem 1.1, although
the condition (H) on r(·) is relaxed to (H*), allowing both cases of r(−∞) = 0 and
r(−∞) < 0.

Theorem 3.3. Assume that (H*) holds. Let c∗(∞) < c. If φ ∈ C+ and φ(x) ≡ 0
for all sufficiently large x, then

(3.6) lim
t→∞

||uφ(t, x; r(·))||L∞ = 0.

Proof. On the one hand, by Lemma 2.1(i) we have, for any ε ∈ (0, c− c∗(∞)),

0 ≤ lim
t→∞

[
sup

x≥t(c−ε)

uφ(t, x; r(·))
]
≤ lim

t→∞

[
sup

x≥t(c−ε)

uφ(t, x; r(∞))

]
= 0.
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On the other hand, Theorem 3.2 gives

lim
t→∞

[
sup

x≤t(c−ε)

uφ(t, x; r(·))
]
= 0 for any ε ∈ (0, c− c∗(∞)).

Combining the above, we obtain (3.6), completing the proof of the theorem. �

Remark 3.1. Comparing our results in Theorems 3.1, 3.2, and 3.3 with Theorems
1.1 and 1.2, we see that not only the conditions on the growth function r(·) are
relaxed, but also the conditions on the initial function φ are less demanding, that
is, we do not require the initial functions be bounded above by r(∞). Such an
improvement is attributed to our new approach of semigroup arguments.

As far as “no sign change” is concerned for r(·), we have only considered the
critical case for r(−∞) (i.e., r(−∞) = 0) which needs special consideration due
to its critical nature. There are other scenarios of “no sign change”, for example,
assuming r(−∞) > 0 in (H), and even removing the monotonicity of r(·). For
the former, with r(−∞) > 0 replacing r(−∞) < 0, (1.1) has two KPP-type limit
equations, each defining a spreading speed. These two speeds may have complicated
interplays with the shifting speed c in determining the spatial-temporal dynamics
of (1.1). We leave this case for a future research topic.

To conclude this paper, we remark that this paper is mainly a follow-up of [6]
in the sense that we only deal with the issues of extinction or persistence as is
in [6], and for the latter (in the case of c < c∗(∞)), we identify the asymptotic
region of persistence given by Dt = {x ∈ R : ct < x < c∗(∞) t }. We point
out that, although not autonomous, due to its special way of dependence on time
and location, equation (1.1) under (H*) can also allow existence of traveling wave
solutions with the environment forced speed c (hence, such a traveling wave can
be referred to as a forced traveling wave). We do not discuss this topic here and
thus, we choose to omit those vast literatures on this topic to save space, except for
the most recent one by Berestycki and Fang [3] from which a reader can find rich
references on the topic of forced traveling waves in equations with shifting habitats.
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