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(Communicated by Yingfei Yi)

Abstract. This paper deals with the existence of traveling wave solutions
of the Fisher equation with a shifting habitat representing a transition to a
devastating environment. By constructing a pair of appropriate upper/lower
solutions and using the method of monotone iteration, we prove that for any
given speed of the shifting habitat edge, this reaction-diffusion equation admits
a monotone traveling wave solution with the speed agreeing to the habitat

shifting speed, which accounts for an extinction wave. This predicts not only
how fast but also in what manner a biological species will die out in such a
shifting habitat.

1. Introduction

The classical reaction-diffusion equation

(1.1)
∂u(x, t)

∂t
= d

∂2u

∂x2
+ f(u), x ∈ R, t ≥ 0,

was introduced by R. A. Fisher [4] as a model for the spread of an advantageous gene
in a population of diploid individuals. This equation and its various extensions are
also found in many models arising from physics, chemistry and spatial ecology. For
example, in the context of ecology, this equation is often used to study the spread
of a mutant of an existing species or a new species in a homogeneous environment.
The spatial dynamics of (1.1) including longtime behavior, traveling wave and
asymptotic speed of propagation have been well studied; see [3, 5, 7, 12] and the
references cited therein.

Recently, due to the threats associated with global climate change and the wors-
ening of the environment resulting from industrialization, the effects of climate
and environment changes on the survival of ecological species have attracted much
attention from the scientific community, including mathematical modellers and an-
alysts; see for example, Berestycki et al. [1, 2], Li et al. [8], and Hu-Li [6]. In
particular, Li et al. [8] considered the following model:

(1.2)
∂u(x, t)

∂t
= d

∂2u

∂x2
+ ur(x− ct)− u2, x ∈ R, t ≥ 0,

where the birth rate r is assumed to be space-time dependent, changing in the form
of shifting with constant speed c > 0, while the density dependent death rate has
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been rescaled to the current form. Obviously, r(x − ct) offers a spatially varying
baseline or a historic rate of population growth. Here the function r(ξ) is defined
on R, and it is assumed to satisfy the following condition:

(H) r(ξ) is continuous, nondecreasing and bounded with r(−∞) < 0 < r(∞).

Due to the sign change property of r(·), at any given time t, r(x − ct) naturally
divides the spatial domain into two shifting regions: one is a good quality habitat
suitable for growth (i.e., r(x − ct) > 0), and the other is a poor quality habitat
unsuitable for growth (i.e., r(x − ct) < 0). The main concern of [8] is the speed
of spatial spread of the species and its relation with the persistence/extinction
of the species. The main result in [8] states that the persistence and spreading
dynamics depend on the speed of the shifting habitat edge c and the number
c∗(∞) = 2

√
dr(∞). More precisely, if c > c∗(∞), then the species will die out

in the whole habitat, and if c < c∗(∞), then the species will survive and spread
along the shifting habitat gradient with an asymptotic spreading speed c∗(∞).

We point out that the persistence considered in [8] is not location-wise; instead,
it is in the sense of “by moving” or “on the go”, meaning that the species will
spread/move toward the better resource with speed c∗(∞) which is greater than
the shifting speed c. However, at any given location x, as time goes, r(x − ct)
will become negative when t is sufficiently large (because r(−∞) < 0) and the
population at this location will go to extinction, regardless of whether or not the
species can persist “by moving”. It is then interesting and important to understand
the point-wise “die-out dynamics” of the species, and this motivates us to consider
the traveling wave front connecting the extinction steady state u = 0, which is not
discussed in [8] and has not been considered elsewhere, to the best knowledge of
the authors.

For many spatially diffusive population models with spatially homogeneity in
the whole space, traveling wave fronts (TWF) have played an important role in
describing/understanding the spatial-temporal dynamics of the population. It is
well known that, if the nonlinearity in the reaction-diffusion model system is of
the monostable type, then there exists a minimal speed c∗ for TWFs connecting
the two equilibria, in the sense that for any c ≥ c∗ there is a TWF with speed c
and there is no such TWF with speed c < c∗; moreover, this minimal wave speed
often coincides with the (asymptotic) spread speed of the population if the spatial
system is monotone (see, e.g., Liang-Zhao [9]). Note that the model system (1.2) is
not homogeneous since r depends on x and t, and the heterogeneity is in the form
of “spatial shifting” (r = r(x− ct)) with a constant shifting speed. Therefore, it is
very natural to consider the traveling wave solution with this shifting speed.

Letting u(x, t) = ϕ(ξ) with ξ = x− ct, and plugging this into (1.2) leads to

(1.3) dϕ′′(ξ) + cϕ′(ξ) + ϕ(ξ)(r(ξ)− ϕ(ξ)) = 0.

This equation for the profile of the traveling waves should be associated with some
boundary conditions at ξ = ±∞. As we explained above, the condition r(−∞) < 0
leads to point-wise distinction, and this suggests the boundary condition ϕ(−∞) =
0 for the profile function ϕ. Note that unlike for homogeneous monostable systems
in which there is another constant steady state, heterogeneity of r in (1.2) prevents
it from having the other constant steady state, and the shifting feature also prevent
it from having any other steady state. Hence, the boundary condition at the other
end ξ = ∞ needs a different perspective. Now, based on the condition r(∞) > 0,
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it seems that we should pose the condition ϕ(∞) = r(∞) at ξ = ∞. Based on the
above consideration, we associate to (1.3) the following boundary conditions:

(1.4) lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) = r(∞).

We will explore whether or not, and for what value of c, the boundary value problem
(1.3)-(1.4) has a positive solution. Such a solution accounts for an extinction wave,
explaining the spatial-temporal dynamics of extinction.

Note that (1.3) is a nonautonomous ordinary differential equation, and the
nonautonomous feature makes the existence problem challenging. In the rest of
this paper, we will tackle this problem by the approach used by Wu and Zou in
[14]: the combination of upper-lower solutions and monotone iterations. In Section
2, we present some preliminaries on a differential operator and its inverse. In Sec-
tion 3, we construct a pair of upper-lower solutions for the problem, by which an
invariant set for the profile of the problem (1.3)-(1.4) is obtained. Using the results
in Sections 2 and 3, the existence problem is transformed to a fixed point problem
for an operator in the profile set, and the fixed point is confirmed in Section 4 by
establishing a monotone iteration scheme, leading to the existence of an extinction
wave, as stated in the following main theorem:

Theorem 1.1. Assume that (H) holds. For any given c > 0, (1.2) admits a mono-
tone traveling wave solution u(x, t) = ϕ(ξ) with ξ = x−ct such that limξ→−∞ ϕ(ξ) =
0 and limξ→∞ ϕ(ξ) = r(∞).

We remark that by this theorem, as long as the habitat is shifting according to
(H), regardless of its magnitude, there will be an extinction wave with the speed
that is precisely the same as the shifting speed. This extinction wave contains
information of the spatial-temporal dynamics of the population, and may help one
estimate the extinction speed at any given location in the habitat. As such, this
result is complementary to those in [8], toward a full understanding of this model
equation (1.2) with a shifting habitat.

2. Preliminary results

We first introduce some notation. Let L∞(R) denote the vector space of all
essentially bounded functions from R to R, BC(R) denote the vector space of all
bounded and continuous functions from R to R, and BC+ = {φ ∈ BC(R) : φ(x) ≥
0 for all x ∈ R}. For any ψ, φ ∈ BC(R), we write ψ ≤ φ or φ ≥ ψ if φ− ψ ∈ BC+.

Similar to [11], we will introduce the second-order linear differential operator Δ∗
and its inverse Δ−1

∗ . Let

α = 2r(∞)− r(−∞).

It is easy to see that the equation

−dλ2 − cλ+ α = 0

has two real roots

λ1 =
−c−

√
c2 + 4dα

2d
< 0, λ2 =

−c+
√
c2 + 4dα

2d
> 0.

The second-order linear differential operator Δ∗ is defined by

(2.1) Δ∗h := −dh′′ − ch′ + αh.
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We can also define the corresponding integral operator Δ−1
∗ by

(2.2) (Δ−1
∗ h)(ξ) =

1

d(λ2 − λ1)

[ ∫ ξ

−∞
eλ1(ξ−x)h(x)dx+

∫ ∞

ξ

eλ2(ξ−x)h(x)dx

]
.

Clearly, the integral Δ−1
∗ h is well defined for any h ∈ BC(R). In fact, the following

equality holds:

(2.3) Δ−1
∗ K̂ =

K

α
,

for any nonnegative constant K, where K̂ denotes the constant function on R taking
the value K. Similar to Lemma 3.1 in [11], we have that

(2.4) Δ∗(Δ
−1
∗ h) = h

for any h ∈ BC(R), and

(2.5) Δ−1
∗ (Δ∗h) = h

for any h ∈ BC(R) such that h′, h′′ ∈ BC(R). Thus, Δ−1
∗ is actually the inverse

operator of Δ∗ in some sense. In fact, we have the following more general conclusion,
which is similar to Lemma 2.5 in [10].

Lemma 2.1. Assume that h ∈ BC(R) satisfies the following conditions: (i) h′′

is continuous on R\{ξj} where {ξj} is a finite increasing sequence, and h′, h′′ ∈
L∞(R); (ii) h′(ξj+) and h′(ξj−) exist. Then Δ−1

∗ (Δ∗h) is a continuous function
on R and

(2.6) [Δ−1
∗ (Δ∗h)](ξ) = h(ξ) +

1

λ2 − λ1

⎛
⎝∑

ξj≥ξ

βje
λ2(ξ−ξj) +

∑
ξj<ξ

βje
λ1(ξ−ξj)

⎞
⎠

for all ξ ∈ R, where βj = h′(ξj+)− h′(ξj−).

Proof. The assumptions on h imply that Δ∗h = −dh′′ − ch′ + αh ∈ L∞(R). Thus,
Δ−1

∗ (Δ∗h) is well defined, and the function [Δ−1
∗ (Δ∗)h](ξ) is continuous with re-

spect to ξ on R. The identity (2.6) follows by direct calculation. �

3. Construction of an invariant set

In order to construct a profile set, we first establish two lemmas. Let

x1 = ϕ, x2 = ϕ′;

then equation (1.3) can be rewritten as

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

dx1

dξ
= x2,

dx2

dξ
= − c

d
x2 −

r(ξ)

d
x1 +

1

d
x2
1.

The vector form of (3.1) is

(3.2) x′ = Ax+B(ξ)x+ f(x),

where x = (x1, x2)
T and

A =

(
0 1

− r(∞)
d − c

d

)
, B(ξ) =

(
0 0

r(∞)−r(ξ)
d 0

)
, f(x) =

(
0

1
dx

2
1

)
.
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It is easy to see that the eigenvalues of A all have negative real parts, limξ→∞ ‖B(ξ)‖
= 0, and f(x) is Lipschitz continuous in a neighbourhood of x = 0 with the property
that f(x) = o(x) as x → 0. By Theorem 7.1 in [13], there exist positive constants
K, ξ0, δ, μ such that ‖x0‖ ≤ δ implies

(3.3) ‖x(ξ; ξ0, x0)‖ ≤ K‖x0‖e−μ(ξ−ξ0)

for ξ ≥ ξ0, where x(ξ; ξ0, x0) = (x1(ξ; ξ0, x0), x2(ξ; ξ0, x0))
T denotes the solution of

(3.2) through x0 at ξ = ξ0, namely, x(ξ0; ξ0, x0) = x0.

Lemma 3.1. Let θ∗ be the positive root of the equation dθ2 + cθ + r(−∞) = 0.
Then there exist ε > 0 and θ0 > θ∗ such that the function

φ(ξ) =

{
εeθ0(ξ−ξ0), ξ < ξ0,

x1(ξ; ξ0, ε(1, θ0)
T ), ξ ≥ ξ0,

is continuously differentiable on R, and satisfies φ ≤ r(∞) and there holds the
following differential inequality:

(3.4) dφ′′(ξ) + cφ′(ξ) + φ(ξ)(r(ξ)− φ) ≥ 0

for any ξ 	= ξ0.

Proof. Let

ε = min

{
δ√

1 + 4θ∗2
,

r(∞)

K
√
1 + 4θ∗2

, 3dθ∗2 + cθ∗, r(∞)

}
,

and let θ0 be the positive root of the equation

dθ2 + cθ + r(−∞)− ε = 0.

It is easily seen that θ∗ < θ0 ≤ 2θ∗. Moreover, φ(ξ0) = x1(ξ0; ξ0, ε(1, θ0)
T ) = ε and

φ′(ξ0) = x2(ξ0; ξ0, ε(1, θ0)
T ) = εθ0. Therefore, φ is continuously differentiable in R.

If ξ > ξ0, then φ(ξ) = x1(ξ; ξ0, ε(1, θ0)
T ). From (3.3), we have

φ(ξ) ≤ |x1| ≤
√
x2
1 + x2

2 ≤ Kε
√
1 + θ20e

−μ(ξ−ξ0) ≤ r(∞)e−μ(ξ−ξ0) ≤ r(∞).

Since φ′(ξ) = x′
1(ξ; ξ0, ε(1, θ0)

T ) = x2(ξ; ξ0, ε(1, θ0)
T ), φ′′(ξ) = x′

2(ξ; ξ0, ε(1, θ0)
T ),

we have

dφ′′(ξ) + cφ′(ξ) + φ(ξ)(r(ξ)− φ) = 0.

Therefore, (3.4) holds for ξ > ξ0.
If ξ < ξ0, then φ(ξ) = εeθ0(ξ−ξ0). We first have φ(ξ) ≤ ε ≤ r(∞). Recalling the

choice of ε and θ0, we have

dφ′′(ξ) + cφ′(ξ) + φ(ξ)(r(ξ)− φ)

= εeθ0(ξ−ξ0)[dθ20 + cθ0 + r(ξ)− εeθ0(ξ−ξ0)]

= εeθ0(ξ−ξ0)[r(ξ)− r(−∞) + ε− εeθ0(ξ−ξ0)]

≥ 0.

Hence, (3.4) also holds for ξ < ξ0. This completes the proof. �
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Lemma 3.2. Let ξ1 ≤ ξ0 be given such that r(ξ1) < 0, and let θ1 be the positive
root of the equation dθ2 + cθ + r(ξ1) = 0. Then the function

φ(ξ) = min{r(∞)eθ1(ξ−ξ1), r(∞)}
satisfies the following differential inequality:

(3.5) dφ
′′
(ξ) + cφ

′
(ξ) + φ(ξ)(r(ξ)− φ) ≤ 0

for any ξ 	= ξ1. Moreover, φ ≥ φ.

Proof. For ξ > ξ1, φ(ξ) = r(∞) ≥ φ(ξ). Clearly, (3.5) holds for ξ > ξ1.

For ξ < ξ1, φ(ξ) = r(∞)eθ1(ξ−ξ1). Noting that r(−∞) ≤ r(ξ1), it is easily seen
that 0 < θ1 ≤ θ∗ < θ0. Together with the fact that ξ1 ≤ ξ0 and ε ≤ r(∞), we
obtain that for ξ < ξ1,

r(∞)eθ1(ξ−ξ1) ≥ εeθ1(ξ−ξ1) ≥ εeθ0(ξ−ξ1) ≥ εeθ0(ξ−ξ0).

Therefore, φ(ξ) ≥ φ(ξ) for any ξ < ξ1. In addition,

dφ
′′
(ξ) + cφ

′
(ξ) + φ(ξ)(r(ξ)− φ)

= r(∞)eθ1(ξ−ξ1)[dθ21 + cθ1 + r(ξ)]− r2(∞)e2θ1(ξ−ξ1)

≤ r(∞)eθ1(ξ−ξ1)[dθ21 + cθ1 + r(ξ1)]

= 0.

Hence, (3.5) also holds for ξ < ξ1. This completes the proof. �

Using these two functions φ and φ, we can define the profile set

(3.6) Γ := {φ ∈ BC(R) : φ ≤ φ ≤ φ}.
Next, we define H(φ) by

H(φ)(ξ) = φ(ξ)[r(ξ)− φ(ξ)] + αφ(ξ)

for any φ ∈ Γ, and denote by F the composite of H and Δ−1
∗ , that is,

(3.7) F (φ) = Δ−1
∗ H(φ).

Since H(φ) ∈ BC(R) for any φ ∈ Γ, then the operator F is also well defined on Γ.
About the operator F , we have the following properties.

Lemma 3.3. F is a monotone operator and maps Γ into Γ. Furthermore, if φ ∈ Γ
and φ is nondecreasing, then F (φ)(ξ) is nondecreasing with respect to ξ.

Proof. We first verify that, for any ψ, φ ∈ Γ with φ ≥ ψ,

H(φ)(ξ)−H(ψ)(ξ) = [φ(ξ)− ψ(ξ)][α+ r(ξ)− φ(ξ)− ψ(ξ)]

= [φ(ξ)− ψ(ξ)][2r(∞)− r(−∞) + r(ξ)− φ(ξ)− ψ(ξ)]

≥ 0.

Thus, F (φ)(ξ) ≥ F (ψ)(ξ) for ξ ∈ R. On the one hand, it follows from (3.4) in
Lemma 3.1 that

F (φ) = Δ−1
∗ H(φ) ≥ Δ−1

∗ (Δ∗φ).

Note that φ is continuously differentiable on R satisfying all of the assumptions

in Lemma 2.1, and φ′(ξ0−) = φ′(ξ0+). By (2.6) we obtain that Δ−1
∗ (Δ∗φ) = φ.

Hence, F (φ) ≥ φ. On the other hand, it follows from (3.5) in Lemma 3.2 that

F (φ) = Δ−1
∗ H(φ) ≤ Δ−1

∗ (Δ∗φ).
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Note that φ is continuous on R satisfying all of the assumptions in Lemma 2.1,

and φ
′
(ξ1−) > φ

′
(ξ1+) = 0. By (2.6) we get Δ−1

∗ (Δ∗φ) ≤ φ. Thus, F (φ) ≤ φ.
Therefore, F (Γ) ⊆ Γ.

If φ ∈ Γ is nondecreasing, then φ ≥ 0, and for any x ∈ R and s > 0 we have

H(φ)(x+ s)−H(φ)(x)

= φ(x+ s)[r(x+ s)− φ(x+ s)] + α[φ(x+ s)− φ(x)]− φ(x)[r(x)− φ(x)]

≥ [φ(x+ s)− φ(x)][α+ r(x)− φ(x+ s)− φ(x)]

= [φ(x+ s)− φ(x)][2r(∞)− r(−∞) + r(x)− φ(x+ s)− φ(x)]

≥ 0.

Thus,

[Δ−1
∗ H(φ)(x+ s)](ξ) ≥ [Δ−1

∗ H(φ)(x)](ξ)

for any ξ ∈ R. Noting that [Δ−1
∗ h(x+s)](ξ) = [Δ−1

∗ h(x)](ξ+s) for any h ∈ BC(R),
we have

F (φ)(ξ + s) = [Δ−1
∗ H(φ)(x)](ξ + s)

= [Δ−1
∗ H(φ)(x+ s)](ξ)

≥ [Δ−1
∗ H(φ)(x)](ξ)

= F (φ)(ξ).

This completes the proof of the lemma. �

4. Proof of the main result

We construct the following iteration:

φ1 = F (φ), φn+1 = F (φn), n ≥ 1.

Since φ ∈ Γ is nondecreasing on R, by Lemma 3.3, we know that φn ∈ Γ, φn(ξ) is
nondecreasing with respect to ξ for each fixed n = 1, 2, · · · , and

φ(ξ) ≤ φn+1(ξ) ≤ φn(ξ) ≤ φ(ξ), ξ ∈ R, n ≥ 1.

Let

φ(ξ) = lim
n→∞

φn(ξ).

Clearly,

(4.1) φ(ξ) ≤ φ(ξ) ≤ φ(ξ),

and φ is a nondecreasing and positive function defined on R. Next, we will prove
φ(ξ) is a fixed point of F .

Since φn converges point-wise to φ, then H(φn) converges point-wise to H(φ).
Note that |H(φn)| ≤ 2r2(∞) + αr(∞) for all n = 1, 2, · · · . By (2.3) and the
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Lebesgue’s dominated convergence theorem, we then have

φ(ξ) = lim
n→∞

φn(ξ)

= lim
n→∞

F (φn−1(ξ))

= lim
n→∞

1

d(λ2 − λ1)

[ ∫ ξ

−∞
eλ1(ξ−x)H(φn−1)(x)dx

+

∫ ∞

ξ

eλ2(ξ−x)H(φn−1)(x)dx

]

=
1

d(λ2 − λ1)

[ ∫ ξ

−∞
eλ1(ξ−x)H(φ)(x)dx+

∫ ∞

ξ

eλ2(ξ−x)H(φ)(x)dx

]
= F (φ)(ξ).

Thus, from (2.4), we have

(4.2) Δ∗φ = Hφ,

i.e., there exists φ ∈ BC(R) satisfying (1.3). It remains to show that φ satisfies the
boundary condition (1.4). Since

lim
ξ→−∞

φ(ξ) = lim
ξ→−∞

φ(ξ) = 0,

by (4.1) we obtain that

lim
ξ→−∞

φ(ξ) = 0.

Noting that φ is nondecreasing and φ ≤ φ ≤ r(∞), let

lim
ξ→∞

φ(ξ) = A.

By the positivity and monotonicity of φ, we have 0 < A ≤ r(∞). Since

lim
ξ→∞

H(φ)(ξ) = A[r(∞)−A] + αA,

recalling the definition of Δ−1
∗ , by L’Hôpital’s rule, we have

A = lim
ξ→∞

φ(ξ)

= lim
ξ→∞

Δ−1
∗ (H(φ))(ξ)

= lim
ξ→∞

1

d(λ2 − λ1)

[ ∫ ξ

−∞
eλ1(ξ−x)H(φ)(x)dx+

∫ ∞

ξ

eλ2(ξ−x)H(φ)(x)dx

]

= lim
ξ→∞

1

d(λ2 − λ1)

(
H(φ)(ξ)

−λ1
+

H(φ)(ξ)

λ2

)

=
A[r(∞)−A]

α
+A.

This yields A = r(∞). Therefore, φ(ξ) satisfies (1.4). This completes the proof of
Theorem 1.1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EXTINCTION WAVE IN THE FISHER EQUATION 4771

Acknowledgment

This work was completed when the first author was visiting the University of
Western Ontario as a visiting scholar sponsored by the China Scholarship Council
(Grant No. 201408430035), and he would like to thank the staff of the Department
of Applied Mathematics for their help and thank the university for its excellent
facilities and support during his stay.

References

[1] H. Berestycki, O. Diekmann, C. J. Nagelkerke, and P. A. Zegeling, Can a species keep pace
with a shifting climate?, Bull. Math. Biol. 71 (2009), no. 2, 399–429, DOI 10.1007/s11538-
008-9367-5. MR2471053

[2] H. Berestycki, L. Desvillettes, and O. Diekmann, Can climate change lead to gap formation?,
Ecological Complexity, 20 (2014), pp. 264–270.

[3] J. Billingham and D. J. Needham, A note on the properties of a family of travelling-wave
solutions arising in cubic autocatalysis, Dynam. Stability Systems 6 (1991), no. 1, 33–49,
DOI 10.1080/02681119108806105. MR1012593

[4] R. A. Fisher, The wave of advance of advantageous genes, Annals of eugenics, 7(4)(1937),
pp. 355–369.

[5] Xiaojie Hou, Yi Li, and Kenneth R. Meyer, Traveling wave solutions for a reaction diffusion
equation with double degenerate nonlinearities, Discrete Contin. Dyn. Syst. 26 (2010), no. 1,
265–290, DOI 10.3934/dcds.2010.26.265. MR2552787

[6] Changbing Hu and Bingtuan Li, Spatial dynamics for lattice differential equations
with a shifting habitat, J. Differential Equations 259 (2015), no. 5, 1967–1989, DOI
10.1016/j.jde.2015.03.025. MR3349426

[7] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Étude de l‘équations de la diffusion avec
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