
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 134, Number 10, October 2006, Pages 2967–2974
S 0002-9939(06)08320-1
Article electronically published on May 9, 2006

ON POSITIVE PERIODIC SOLUTIONS OF LOTKA-VOLTERRA
COMPETITION SYSTEMS WITH DEVIATING ARGUMENTS

XIANHUA TANG AND XINGFU ZOU

(Communicated by Carmen C. Chicone)

Abstract. By using Krasnoselskii’s fixed point theorem, we prove that the
following periodic n−species Lotka-Volterra competition system with multiple

deviating arguments

(∗) ẋi(t) = xi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)xj(t − τij(t))

⎤
⎦ , i = 1, 2, . . . , n,

has at least one positive ω−periodic solution provided that the corresponding
system of linear equations

(∗∗)
n∑

j=1

āij xj = r̄i, i = 1, 2, . . . , n,

has a positive solution, where ri, aij ∈ C(R, [0,∞)) and τij ∈ C(R,R) are
ω−periodic functions with

r̄i =
1

ω

∫ ω

0
ri(s)ds > 0; āij =

1

ω

∫ ω

0
aij(s)ds ≥ 0, i, j = 1, 2, . . . , n.

Furthermore, when aij(t) ≡ aij and τij(t) ≡ τij , i, j = 1, . . . , n, are constants
but ri(t), i = 1, . . . , n, remain ω-periodic, we show that the condition on (∗∗)
is also necessary for (∗) to have at least one positive ω−periodic solution.

1. Introduction

In recent years, various delay differential equation models have been proposed in
the study of ecological systems, population dynamics and infectious diseases. One
of the most celebrated models for dynamics of population is the Lotka-Volterra
system. Due to its theoretical and practical significance, the Lotka-Volterra system
have been studied extensively [2]–[12], [14]–[19], [21]–[25]. In particular, [4]–[7], [14],
[16]–[19], [21]–[23] investigated the existence of periodic solutions of some special
cases of the following periodic n−species Lotka-Volterra competition system with
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several deviating arguments:

(1.1) ẋi(t) = xi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)xj(t − τij(t))

⎤
⎦ , i = 1, 2, . . . , n,

where ri, aij ∈ C(R, [0,∞)) and τij ∈ C(R,R) are ω−periodic functions (ω > 0)
with

(1.2) r̄i =
1
ω

∫ ω

0

ri(s)ds > 0; āij =
1
ω

∫ ω

0

aij(s)ds ≥ 0, i, j = 1, 2, . . . , n.

For example, Shibata and Saito [21] studied a two-species delay Lotka-Volterra
competition system and showed that the delays in the system can lead to chaotic
behavior. When n = 1, (1.1) reduces to the following delayed periodic logistic
equation:

(1.3) ẋ(t) = x(t) [r(t) − a(t)x(t − τ (t))] .

It was shown in Li [17] that Eq. (1.3) always has a positive ω−periodic solution if
r, a, τ ∈ C(R, [0,∞)) are ω−periodic functions with

∫ ω

0
r(s)ds > 0 and

∫ ω

0
a(s)ds >

0.
Recently, by using the method of coincidence degree, Fan et al. [7] and Li [18]

investigated the existence of periodic solutions of Eq. (1.1) and established the
following two results respectively.

Theorem 1.1 ([7]). Assume that āii > 0 and

(1.4) r̄i >
∑
j �=i

āij r̄j

ājj
e2r̄jω, i = 1, 2, . . . , n.

Then Eq. (1.1) has at least one positive periodic solution of periodic ω.

Theorem 1.2 ([18]). Assume that τii(t) = 0, i = 1, 2, . . . , n, and that
(C): the linear system

(1.5)
n∑

j=1

āij xj = r̄i, i = 1, 2, . . . , n,

has a positive solution.
In addition, suppose that

(1.6) r̄i >
∑
j �=i

āij max
0∈[0,ω]

∣∣∣∣ rj(t)
ajj(t)

∣∣∣∣ , i = 1, 2, . . . , n.

Then Eq. (1.1) has at least one positive ω−periodic solution.

In the the proof of Theorem 1.2, the author took advantage of the fact that there
is no deviating argument in the negative feedback terms aii(t)xi(t), i = 1, 2, . . . , n.
Thus, Theorem 1.2 may fail for Eq. (1.1) when τii(t) �≡ 0. Furthermore, by Lemma
4.1 in [11], it is not difficult to see that condition (1.4) implies (C). But conditions
(1.4) and (1.6) are independent in the sense that neither of them implies the other,
and therefore, Theorems 1.1 and 1.2 are complementary.

In both Theorems 1.1 and 1.2, (C) is an essential condition. Obviously, when
aij(t) ≡ aij , ri(t) ≡ ri, i, j = 1, 2, . . . , n, are all constants, (C) is also a sufficient
and necessary condition for Eq. (1.1) to have a trivial positive periodic solution
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(i.e. positive equilibrium). Also, note that as a special case of (1.1), Eq. (1.3)
always has a positive ω-periodic solution provided that

(C0): r̄ =
∫ ω

0
r(s)ds > 0 and ā =

∫ ω

0
a(s)ds > 0,

which is implied by (C) under (1.2) in this case (since Eq. (1.5) becomes āx = r̄).
Motivated by these two observations, we conjecture that (1.4) and (1.6) may not
be necessary, and condition (C) may only be enough to guarantee that (1.1) has at
least one positive ω-periodic solution.

The purpose of this paper is to give a positive answer to the above conjecture.
More precisely, in Section 2, we prove that if (C) holds, then Eq. (1.1) has at least
one positive ω−periodic solution. Furthermore, when aij(t) ≡ aij and τij(t) ≡
τij , . . . , n are constants but ri(t), i = 1, . . . , n, remain ω-periodic, we show that
(C) is even a sufficient and necessary condition for Eq. (1.1) to have at least one
positive ω−periodic solution.

Throughout of this paper, we say a vector x = (x1, x2, . . . , xn)T is positive if
xi > 0, i = 1, 2, . . . , n.

2. Main results

For convenience, we introduce the definition of cone and the well-known Kras-
noselskii’s fixed point theorem.

Definition 2.1. Let X be a Banach space and let P be a closed, nonempty subset
of X. P is a cone if

(i) αx + βy ∈ P for all x, y ∈ P and all α, β ≥ 0;
(ii) x,−x ∈ P imply x = 0.

Lemma 2.2 (Krasnoselskii, [13]). Let X be a Banach space, and let P ⊂ X be a
cone in X. Assume that Ω1, Ω2 are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω̄1 ⊂
Ω2, and let

ϕ : P ∩ (Ω̄2\Ω1) → P

be a completely continuous operator such that either
(i) ||ϕx|| ≤ ||x||, ∀ x ∈ P ∩ ∂Ω1 and ||ϕx|| ≥ ||x||, ∀ x ∈ P ∩ ∂Ω2;

or
(ii) ||ϕx|| ≥ ||x||, ∀ x ∈ P ∩ ∂Ω1 and ||ϕx|| ≤ ||x||, ∀ x ∈ P ∩ ∂Ω2. Then

ϕ has a fixed point in P ∩ (Ω̄2\Ω1).

Let

X =
{
x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ C(R,Rn) : x(t + ω) = x(t)

}
,(2.1)

||x|| =
n∑

j=1

|xj |0, |xj |0 = max
t∈[0,ω]

|xj(t)|, i = 1, 2, . . . , n.(2.2)

Then X is Banach space endowed with the above norm || · ||. If x(t) = (x1(t),
x2(t), · · · , xn(t))T ∈ X is a solution of Eq. (1.1), then[

xi(t) exp
(
−

∫ t

0

ri(s)ds

)]′

= − exp
(
−

∫ t

0

ri(s)ds

)
xi(t)

n∑
j=1

aij(t)xj(t − τij(t)), i = 1, 2, . . . , n.(2.3)
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Integrating both sides of (2.3) over [t, t + ω], we obtain

(2.4) xi(t) =
∫ t+ω

t

Gi(t, s)xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds, i = 1, 2, . . . , n,

where

(2.5) Gi(t, s) =
1

1 − e−r̄iω
exp

(
−

∫ s

t

ri(ξ)dξ

)
, i = 1, 2, . . . , n.

Let σ = min{e−r̄iω : i = 1, 2, . . . , n}. Now, choose the cone defined by
(2.6)

P =
{
x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ X : xi(t) ≥ σ|xi|0, i = 1, 2, . . . , n

}
,

and define an operator Φ : X → X by

(2.7) (Φx)(t) = ((Φx)1(t), (Φx)2(t), . . . , (Φx)n(t))T ,

where

(2.8) (Φx)i(t) =
∫ t+ω

t

Gi(t, s)xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds, i = 1, 2, . . . , n.

By (2.4), it is easy to verify that x = x(t) ∈ X is a ω−periodic solution of Eq. (1.1)
provided x is a fixed point of Φ.

Lemma 2.3. The mapping Φ maps P into P , i.e. ΦP ⊂ P .

Proof. It is easy to see that for t ≤ s ≤ t + ω,

(2.9) Ai :=
e−r̄iω

1 − e−r̄iω
≤ Gi(t, s) ≤

1
1 − e−r̄iω

:= Bi, i = 1, 2, . . . , n.

From (2.8) and (2.9), we have for x ∈ P

|(Φx)i|0 ≤ Bi

∫ ω

0

xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds

and

(Φx)i(t) ≥ Ai

∫ ω

0

xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds ≥ Ai

Bi
|(Φx)i|0 ≥ σ|(Φx)i|0.

Hence, ΦP ⊂ P . The proof is completed. �

Lemma 2.4. Φ : P → P is completely continuous.

Proof. Set

fi(t, xt) = xi(t)
n∑

j=1

aij(t)xj(t − τij(t)), i = 1, 2, . . . , n.

We first show that Φ is continuous. For any L > 0 and ε > 0, there exists a δ > 0
such that for φ, ψ ∈ X, ||φ|| ≤ L, ||ψ|| ≤ L, and ||φ − ψ|| < δ imply

(2.10) max
s∈[0,ω]

|fi(s, φs) − fi(s, φs)| <
ε

nBω
, i = 1, 2, . . . , n,
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where B = max1≤i≤n Bi. If x, y ∈ X with ||x|| ≤ L, ||y|| ≤ L, and ||x − y|| ≤ δ,
then from (2.8), (2.9) and (2.10), we have

|(Φx)i − (Φy)i|0 ≤
∫ t+ω

t

|Gi(t, s)| |fi(s, xs) − fi(s, ys)|ds

≤ B

∫ ω

0

|fi(s, xs) − fi(s, ys)|ds

<
ε

n
, i = 1, 2, . . . , n.

This yields

||Φx − Φy|| =
n∑

i=1

|(Φx)i − (Φy)i|0 < ε.

Thus, Φ is continuous.
Next, we show that Φ is compact. Set a = max1≤i≤n

∑n
j=1 āij . Let M > 0 be

any constant and let S = {x ∈ X : ||x|| ≤ M} be a bounded set. For any x ∈ S, it
follows from (2.8) and (2.9) that

|(Φx)i|0 ≤ Bi

∫ ω

0

|xi(s)|
n∑

j=1

aij(s)|xj(s − τij(s))|ds ≤ ωBM2
n∑

j=1

āij ≤ aωBM2,

and so

||Φx|| =
n∑

i=1

|(Φx)i|0 ≤ naωBM2, ∀ x ∈ S.

Again, from (2.8), we have

[(Φx)i(t)]′ = ri(t)(Φx)i(t) − xi(t)
n∑

j=1

aij(t)xj(t − τij(t)), i = 1, 2, . . . , n.

Then for x ∈ S,

|[(Φx)i(t)]′| ≤ ri(t)|(Φx)i(t)| + |xi(t)|
n∑

j=1

aij(t)|xj(t − τij(t))|

≤ ru
i aωBM2 + M2

n∑
j=1

au
ij

≤ KM2, i = 1, 2, . . . , n,

where K = max1≤i≤n(ru
i aωB +

∑n
j=1 au

ij) and

ru
i = max

t∈[0,ω]
ri(t), au

ij = max
t∈[0,ω]

aij(t), i, j = 1, 2, . . . , n.

Hence, ΦS ⊂ X is a family of uniformly bounded and equi-continuous functions.
By the Ascoli-Arzela Theorem (see, e.g., [20, p. 169]), the operator Φ is compact,
and so it is completely continuous. The proof is completed. �

We are now in a position to state and prove our main results of this paper.

Theorem 2.5. Assume that (C) holds. Then Eq. (1.1) has at least one positive
ω−periodic solution.
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Proof. Let x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T with x∗

i > 0, i = 1, 2, . . . , n, be a positive solution
of (1.5). Set

(2.11) A = min{r̄iAi : i = 1, 2, . . . , n}, B = max{r̄iBi : i = 1, 2, . . . , n}.
Then 0 < A < B < ∞. Define
(2.12)

Ω1 =
{

x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X : |xi|0 <
x∗

i

Bω
, i = 1, 2, . . . , n

}
.

If x = x(t) ∈ P ∩ ∂Ω1, then σ|xi|0 ≤ xi(t) ≤ |xi|0 = (Bω)−1x∗
i , i = 1, 2, . . . , n, and

|(Φx)i|0 ≤ Bi

∫ ω

0

xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds

≤ Biω|xi|0
n∑

j=1

āij |xj |0

= Biω(Bω)−1|xi|0
n∑

j=1

āijx
∗
j

= Bir̄iω(Bω)−1|xi|0
≤ |xi|0, i = 1, 2, . . . , n,

and so

(2.13) ||Φx|| =
n∑

i=1

|(Φx)i|0 ≤
n∑

i=1

|xi|0 = ||x||, ∀ x = x(t) ∈ P ∩ ∂Ω1.

Next, we define
(2.14)

Ω2 =
{

x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X : |xi| <
x∗

i

σ2Aω
, i = 1, 2, . . . , n

}
.

If x = x(t) ∈ P ∩ ∂Ω2, then σ|xi|0 ≤ xi(t) ≤ |xi|0 = (σ2Aω)−1x∗
i , i = 1, 2, . . . , n,

and

(Φx)i(t) ≥ Ai

∫ ω

0

xi(s)
n∑

j=1

aij(s)xj(s − τij(s))ds

≥ σ2Aiω|xi|0
n∑

j=1

āij |xj |0

= Aiω(Aω)−1|xi|0
n∑

j=1

āijx
∗
j

= Air̄iω(Aω)−1|xi|0
≥ |xi|0, i = 1, 2, . . . , n,

and so

(2.15) ||Φx|| =
n∑

i=1

|(Φx)i|0 ≥
n∑

i=1

|xi|0 = ||x||, ∀ x = x(t) ∈ P ∩ ∂Ω2.

Obviously, Ω1 and Ω2 are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2.
Hence, Φ : P ∩ (Ω̄2\Ω1) → P is a completely continuous operator and satisfies
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condition (i) in Lemma 2.2. By Lemma 2.2, there exists a point x = x(t) ∈
P ∩ (Ω̄2\Ω1) such that x(t) = (Φx)(t), i.e., x(t) is a positive ω−periodic solution
of Eq. (1.1). The proof is completed. �
Theorem 2.6. Assume that aii(t) ≡ aij ≥ 0, τij(t) ≡ τij , i, j = 1, 2, . . . , n. Then
Eq. (1.1) has at least one positive ω−periodic solution if and only if the system of
linear equations

(2.16)
n∑

j=1

aij xj = r̄i, i = 1, 2, . . . , n,

has a positive solution.

Proof. If (2.16) has a positive solution, then by Theorem 2.5, Eq. (1.1) has at least
one positive ω−periodic solution. On the other hand, if Eq. (1.1) has at least
one positive ω−periodic solution, say x(t) = (x1(t), x2(t), . . . , xn(t))T . Then from
(1.1), we have

∫ ω

0

⎡
⎣ri(t) −

n∑
j=1

aij xj(t − τij)

⎤
⎦ dt = 0, i = 1, 2, . . . , n.

It follows that
n∑

j=1

aij

(
1
ω

∫ ω

0

xj(t)dt

)
= r̄i, i = 1, 2, . . . , n.

This shows that the system (2.16) of linear equations has a positive solution xj =
1
ω

∫ ω

0
xj(t)dt, j = 1, 2, . . . , n. The proof is completed. �

Remark 2.7. The method in this paper may be used to more general Lotka-Volterra
competition systems than Eq. (1.1).
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