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In this paper, we consider the age-structured model of a single species living in two iden-
tical patches derived in So et al. [J.W.-H. So, J. Wu, X. Zou, Structured population on two
patches: modeling dispersal and delay, J. Math. Biol. 43 (2001) 37–51]. We chose a birth
function that is frequently used but different from the one used in So et al. which leads
to a different structure of the homogeneous equilibria. We investigate the stability of these
equilibria and Hopf bifurcations by analyzing the distribution of the roots of associated
characteristic equation. By the theory of normal form and center manifold, an explicit algo-
rithm for determining the direction of the Hopf bifurcation and stability of the bifurcating
periodic solutions are derived. Finally, some numerical simulations are carried out for sup-
porting the analytic results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Maturation delay and spatial dispersion are two important factors in population dynamics. By employing the basic age
structure equation (see e.g., Metz and Diekmann [1]) and the idea of characteristics (see e.g., Smith [2]) in terms of time
and age, So et al. [3] derived a system of delay differential equations to model the growth of the matured population in
two patches:
dxðtÞ
dt
¼ �d1;mxðtÞ þ D2;myðtÞ � D1;mxðtÞ

þ e� 1�
Z s

0
e�
R s

h
bDðaÞdaD1ðhÞdh

� �
b1ðxðt � sÞÞ

þ e�
Z s

0
e�
R s

h
bDðaÞdaD2ðhÞdh

� �
b2ðyðt � sÞÞ;

dyðtÞ
dt
¼ �d2;myðtÞ þ D1;mxðtÞ � D2;myðtÞ

þ e� 1�
Z s

0
e�
R s

h
bDðaÞdaD2ðhÞdh

� �
b2ðyðt � sÞÞ

þ e�
Z s

0
e�
R s

h
bDðaÞdaD1ðhÞdh
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b1ðxðt � sÞÞ: ð1Þ
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Here x and d1;m > 0 ðy and d2;mÞ denote the density and death rate of mature population in patch 1 (patch 2), s denotes the
maturation age, bi denote the birth functions in patch i; i ¼ 1;2;Di;m > 0 denote the migration rate of mature population
from patch iði ¼ 1;2Þ to the other patch. The parameter e� ¼ e�

R s

0
dIðaÞda with dIðaÞ denotes the death rate of individuals at

age a which is independent of the patch considered is called the survival rate, giving the probability that a new born indi-
vidual can survive to adult. DiðaÞ denote the migration rate of age a from patch i to patch j, bDðaÞ ¼ D1ðaÞ þ D2ðaÞ;0 6 a 6 s.

The term e�½
R s

0 e�
R s

h
bDðaÞdaD1ðhÞdh�b1ðxðt � sÞÞ denotes the portion of the mature population which was born in the first patch

at time t � s but is in the second patch at the current time t, and the term e�½
R s

0 e�
R s

h
bDðaÞdaD2ðhÞdh�b2ðyðt � sÞÞ denotes the

portion of the mature population which was born in the second patch at time t � s but is in the first patch at the current
time t. This term is usually ignored in the literature before [3].

In the case that the two patches are identical: di;m ¼ dm ¼: d;Di;m ¼ Dm ¼: D; biðsÞ ¼ bðsÞ and DiðaÞ ¼ DIðaÞ for i ¼ 1;2 and
for 0 6 a 6 s, system (1) becomes
dxðtÞ
dt
¼ �dxðtÞ þ DðyðtÞ � xðtÞÞ

þ e�ð1� rÞbðxðt � sÞÞ þ e�rbðyðt � sÞÞ;
dyðtÞ

dt
¼ �dyðtÞ þ DðxðtÞ � yðtÞÞ

þ e�ð1� rÞbðyðt � sÞÞ þ e�rbðxðt � sÞÞ;

ð2Þ
where
r ¼ 1
2

1� e�2
R s

0
DIðaÞda

� �
:

Clearly 0 < r < 1=2.
In [3], the authors chose the following birth function:
bðsÞ ¼ s2e�bs; b > 0 ð3Þ
and showed that varying the immature death rate can alter the behaviors of the homogeneous equilibria. Indeed, they
numerically observed transient oscillations around an intermediate equilibrium, as well as bifurcation of non-homogeneous
equilibria. They also theoretically showed the existence of Hopf bifurcation near the largest equilibrium.

In this paper, we also consider system (2), but we will choose an another important birth function, called Ricker’s func-
tion, given by
bðsÞ ¼ se�bs; b > 0: ð4Þ
This birth function has also been widely used in population dynamics, particularly in modeling fish population. See e.g.,
Cooke et al. [4] and the references therein. This change of the birth function leads to change of the structure of homogeneous
equilibria, and raises a natural question of how does this affect the population dynamics described by the model. In this pa-
per, address this question by analyzing the structure and the stability of homogeneous equilibria, and the associated Hopf
bifurcation of homogeneous periodic orbits.

We point out that when the dispersion channels between the two patches are cut off, meaning that Di;m ¼ Dm ¼
0;DiðaÞ ¼ DIðaÞ ¼ 0 for i ¼ 1;2, system (2) reduces to two decoupled scalar equations of the form
dxðtÞ
dt
¼ �dxðtÞ þ e�dIsbðxðt � sÞÞ; ð5Þ
which was proposed in Cooke et al. [4]. With the birth function given by (4), is have been shown that the positive equilibrium
of (5) may experience double switches for its stability as s increases: there are 0 < s1 < s2 such that when s 2 ½0; s1Þ or
s 2 ðs2;1Þ, the positive equilibrium is stable while when s 2 ðs1; s2Þ, it is unstable. A similar result is also obtained for
the patch model (2) in this paper. The global bifurcation of (5) with (4) has been further studied in Wei and Zou [5].

The rest of the paper is organized as follows: in Section 2, we focus mainly on the positive homogeneous equilibria, and
analyze its stability. Using the approach of Beretta and Kuang [6], we show that the positive steady-state can be destabilized
through a Hopf bifurcation. In Section 3, the direction of the Hopf bifurcation and the stability of the bifurcating periodic
solutions are determined by using the normal form theory and center manifold argument presented in Hassard et al. [7].
Finally, some numerical simulations are given to illustrate the theoretical results obtained.

2. Stability and local Hopf bifurcation
In this section, we shall employ the result due to Beretta and Kuang [6] to study the stability of the positive homogeneous
equilibrium and existence of local Hopf bifurcation. Assume that dIðaÞ is age independent, that is dIðaÞ ¼ dI > 0. Then we have
e� ¼ e�dIs.
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Our main concern is the homogeneous equilibrium ðx; yÞwhich is one with x ¼ y ¼def x�. The homogeneous equilibria of sys-
tem (2) are obtained from the solutions of the scalar equation
dx� ¼ e�x�e�bx� : ð6Þ
Clearly, Eq. (6) has two fixed points if e� > d. The first one is the origin E0 ¼ ð0;0Þ. The second one is given by
E1 ¼ ðx; yÞ ¼ ð�x; �xÞ; �x ¼ 1
b

ln
e�

d
:

Through out this paper, we always assume that e� > d. The linearization of Eq. (2) around E� ¼ ðx�; x�Þðx� ¼ 0 or �xÞ is given by
dxðtÞ
ddt

¼ �dxðtÞ þ DðyðtÞ � xðtÞÞ þ e�rð1� bx�Þe�bx�yðt � sÞ
þ e�ð1� rÞð1� bx�Þe�bx�xðt � sÞ;

dyðtÞ
dt
¼ �dyðtÞ þ DðxðtÞ � yðtÞÞ þ e�rð1� bx�Þe�bx�xðt � sÞ
þ e�ð1� rÞð1� bx�Þe�bx�yðt � sÞ:
Its characteristic equation is
½kþ d� e�ð1� bx�Þe�bx�e�ks� � ½kþ dþ 2D� e�ð1� 2rÞð1� bx�Þe�bx�e�ks� ¼ 0;
which is equivalent to
kþ d� e�ð1� bx�Þe�bx�e�ks ¼ 0 ð7Þ
and
kþ dþ 2D� e�e�2
R s

0
DIðaÞdað1� bx�Þe�bx�e�ks ¼ 0: ð8Þ
Since Eq. (7) with x� ¼ 0 always has a positive real root, we conclude that the equilibrium E0 is unstable. Now we consider the
stability of the positive homogeneous equilibrium.

Let
I1 ¼ sjs 2 ½0; s1Þ; s1 ¼ �
2þ ln d

dI

� �
;

I2 ¼ sjs 2 ½0; s2Þ; s2 ¼ �
kþ ln d

dI
; k ¼ 2½Dþ ð1� rÞd�

ð1� 2rÞd

� �
:

ð9Þ
Note that 0 < r < 1
2, it follows that I2 � I1, I1 and I2 are non-empty under the following assumption:
ðA1Þ ln d < �2ð1� rÞ
1� 2r

and D <
d
2
½ð1þ ln dÞð2r � 1Þ � 1�:
For convenience, we make the following hypotheses:
ðA1�Þ ln d < �2:
Eqs. (7) and (8) take the general form as
Pjðk; sÞ þ Q jðk; sÞeks ¼ 0; j ¼ 1;2 ð10Þ
with
P1ðk; sÞ ¼ kþ d; Q 1ðk; sÞ ¼ dðb�x� 1Þ ð11Þ
and
P2ðk; sÞ ¼ kþ dþ 2D; Q 2ðk; sÞ ¼ dðb�x� 1Þð1� 2rÞ: ð12Þ
When s ¼ 0, the root of Eq. (10) with j ¼ 1 is given by k ¼ �db�x < 0, and with j ¼ 2 is given by k ¼ �2D� 2dr�
ð1� 2rÞdb�x < 0. Hence, we have the following result.

Proposition 2.1. The positive homogeneous equilibrium E1 of (2) is asymptotically stable when s ¼ 0.

In what following, we will investigate the existence of purely imaginary roots k ¼ ix1ðx1 > 0Þ to Eq. (7) and
k ¼ ix2ðx2 > 0Þ to Eq. (8). Since Eqs. (7) and (8) are equations with delay-dependent coefficients, we shall apply the ap-
proach due to Beretta and Kuang [6]. Similar to the process in Qu and Wei [10], we first verify the following properties
for all s 2 Ijðj ¼ 1;2Þ.

(i) Pjð0; sÞ þ Q jð0; sÞ–0.
(ii) Pjðixj; sÞ þ Qjðixj; sÞ–0.
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(iii) lim supfjQjðk; sÞ=Pjðk; sÞj; jkj ! 1;Rek P 0g < 1 for any s.
(iv) Fjðxj; sÞ ¼: jPjðixj; sÞj2 � jQjðixj; sÞj2 has a finite number of zeros.
(v) Each positive root xjðsÞ of Fjðxj; sÞ ¼ 0 is continuous and differentiable in s whenever it exists.

From the definitions of Pj and Q j in (11) and (12), respectively, we can get that
P1ð0; sÞ þ Q 1ð0; sÞ ¼ db�x > 0;
P2ð0; sÞ þ Q 2ð0; sÞ ¼ ð1� 2rÞdb�xþ 2Dþ 2dr > 0;
P1ðix1; sÞ þ Q1ðix1; sÞ ¼ ix1 þ db�x–0;
P2ðix2; sÞ þ Q2ðix2; sÞ ¼ ix2 þ dð1� 2rÞðb�x� 1Þ þ dþ 2D–0;

lim
jkj!1

Q 1ðk; sÞ
P1ðk; sÞ

���� ���� ¼ lim
jkj!1

dðb�x� 1Þ
kþ d

���� ���� ¼ 0;

lim
jkj!1

Q 2ðk; sÞ
P2ðk; sÞ

���� ���� ¼ lim
jkj!1

dðb�x� 1Þð1� 2rÞ
kþ dþ 2D

���� ���� ¼ 0:
These imply that (i), (ii) and (iii) are satisfied.
Let F be defined as in (iv). From Eqs. (11) and (12), we have
F1ðx1; sÞ ¼ x2
1 � d2b�xðb�x� 2Þ;

F2ðx2; sÞ ¼ x2
2 � d2ð1� 2rÞ2ðb�x� 1Þ2 þ ðdþ 2DÞ2:
It is obvious that property (iv) is satisfied, and by Implicit Function Theorem, (v) is also satisfied.
Substituting k ¼ ix1 into Eq. (7) and separating the real and imaginary parts yields
d ¼ dð1� b�xÞ cos x1s;
�x1 ¼ dð1� b�xÞ sin x1s:
Hence
cos x1s ¼
1

1� b�x
;

sin x1s ¼ �
x1

dð1� b�xÞ :
ð13Þ
In the same way, we have
cos x2s ¼
dþ 2D

dð1� 2rÞð1� b�xÞ ;

sin x2s ¼ �
x2

dð1� 2rÞð1� b�xÞ :
ð14Þ
By the definitions of Pj and Q j as in (11) and (12), and applying the property (i), (13) and (14) can be written as
cos xjs ¼ �Re
Pjðixj; sÞ
Q jðixj; sÞ

;

sinxjs ¼ Im
Pjðixj; sÞ
Q jðixj; sÞ

;

which yields jPjðixj; sÞj2 ¼ jQ jðixj; sÞj2. That is,
Fjðxj; sÞ ¼ 0: ð15Þ
For s 2 I1
x1 ¼ x1ðsÞ ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�xðb�x� 2Þ

p

makes sense, and hence x1 is a root of Eq. (12) with j ¼ 1. Similarly,
x2 ¼ x2ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� 2rÞdb�xþ 2rdþ 2D�½ð1� 2rÞdb�xþ 2ðr � 1Þd� 2D�

q

makes sense for s 2 I2, and hence x2 is a root of (15) with j ¼ 2. Then, let hjðsÞ 2 ½0;2p� be defined for s 2 Ij by
cos hjðsÞ ¼ �Re
Pjðixj; sÞ
Q jðixj; sÞ

;

sin hjðsÞ ¼ Im
Pjðixj; sÞ
Q jðixj; sÞ

;

ð16Þ
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where xj ¼ xjðsÞ and j ¼ 1;2. Since FjðxjðsÞ; sÞ ¼ 0 for s 2 Ij, it follows that hjðsÞ is well and uniquely defined for all s 2 Ij.
From xjðsÞs ¼ hjðsÞ þ 2np, one can check that ix�, with x� ¼ xðs�Þ > 0, is a purely imaginary zero of (7) if and only if s� is

a root of the function Sn
j , defined by
Sn
1ðsÞ ¼ s� h1ðsÞ þ 2np

x1ðsÞ
; s 2 I; n 2 Z ð17Þ
and ix�, with x� ¼ xðs�Þ > 0, is a purely imaginary zero of (8) if and only if s� is a root of the function Sn
j , defined by
Sn
2ðsÞ ¼ s� h2ðsÞ þ 2np

x2ðsÞ
; s 2 I; n 2 Z: ð18Þ
In order to investigate the zeros of Sn
j , we state a theorem is due to Beretta and Kuang [6].

Theorem 2.2. Assume that the function Sn
1ðsÞ (rep. Sn

2ðsÞ) has a positive root s� 2 I1 (rep. I2), for some n 2 N. Then a pair of simple
conjugate pure imaginary roots �ixðs�Þ of Eq. (7) (rep. Eq. (8)) exists at s ¼ s� which crosses the imaginary axis from left to right if
d1ðs�Þ > 0 (rep. d2ðs�Þ > 0) and the imaginary axis from right to left if d1ðs�Þ < 0 (rep. d2ðs�Þ < 0), where
djðs�Þ ¼ Sign
dReðkÞ

ds

����
k¼ixðs�Þ

( )
¼ Sign

@Fj

@x
ðxðs�Þ; s�Þ

� �
Sign

dSn
j ðsÞ
ds

�����
s¼s�

( )
; j ¼ 1;2: ð19Þ
Since @Fj=@xjðxj; sÞ ¼ 2xj > 0ðj ¼ 1;2Þ, (19) is equivalent to
djðs�Þ ¼ Sign
dReðkÞ

ds

����
k¼ixjðs�Þ

( )
¼ Sign

dSn
j ðsÞ
ds

�����
s¼s�

( )
:

We can easily observe that Sn
j ð0Þ < 0. Moreover, for all s 2 Ij; S

n
j ðsÞ > Snþ1

j ðsÞ with n 2 Z. Therefore, if S0
j has no zero in Ij, then

the functions Sn
j have no zero in Ij. If the function Sn�

j ðsÞ has positive zeros s 2 Ijfor n� 2 N, there exists at least one zero satisfying
dSn

j ðs�Þ=ds > 0, where n < n�; Sn
j ðs�Þ ¼ 0.

Furthermore, from (15) it follows that:
lim
s!sj

xjðsÞ ¼ 0; j ¼ 1;2;
where s1 and s2 are defined as in (6). And hence,
lim
s!sj

sin hjðsÞ ¼ 0 and lim
s!sj

cos hjðsÞ ¼ �1; j ¼ 1;2:
This implies that, lims!sj
hjðsÞ ¼ p. Therefore, by (17) and (18) it follows that:
lim
s!sj

Sn
j ðsÞ ¼ �1; j ¼ 1;2:
Define
X ¼ fs : Sn
j ðsÞ ¼ 0;n 2 Z; j ¼ 1;2; s 2 I2g;

~s ¼minfs : s 2 Xg; �s ¼maxfs : s 2 Xg;
Xj ¼ fs : Sn

j ðsÞ ¼ 0;n 2 Z; s 2 Ijg;
~sj ¼ minfs : s 2 Xjg; �sj ¼maxfs : s 2 Xjg; j ¼ 1;2:
For convenience, we assume that
ðA2Þ
dSn

j ðsÞ
ds

�����
s2X

–0 8n 2 N; j ¼ 1;2;

ðA2�Þ dSn
1ðsÞ
ds

����
s2X1

–0 8n 2 N:
Applying the Hopf bifurcation theorem for functional differential equations (see Hale [8], Chapter 11, Theorem 1.1), we can
conclude the existence of Hopf bifurcation as stated in the following theorem.

Theorem 2.3. For system (2), the following conclusions hold:

(1) Suppose one of the following is satisfied.

(i) ðA1�Þ does not hold;
(ii) ðA1�Þ holds, but ðA1Þ does not hold, X1 ¼ ;.
(iii) ðA1Þ holds, X2 ¼ X1 ¼ ;.
Then the positive homogeneous equilibrium E1 is asymptotically stable for all s > 0.
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(2) The assumption ðA1�Þ holds. X1–;, and one of the following holds:

(i) ðA1Þ does not hold;
(ii) ðA1Þ holds, X2 ¼ ;.

ðA2�Þ holds. Then E1 is asymptotically stable for s 2 ½0; ~s1Þ, and becomes unstable for s 2 ð~s1; �s1Þ, and back to asymptotically
stable when s 2 ð�s1; s1Þ with two Hopf bifurcation points s ¼ ~s1; �s1.

(3) The assumption ðA1Þ holds. X1 ¼ ;, X2–; . ðA2Þ holds. Then E1 is asymptotically stable for s 2 ½0; ~s2Þ, and becomes unstable
for s 2 ð~s2; �s2Þ, and back to asymptotically stable when s 2 ð�s2; s2Þ with two Hopf bifurcation points s ¼ ~s2; �s2.

(4) The assumption ðA1Þ holds. X1–;, X2–;. ðA2Þ holds. Then:

(i) E1 is asymptotically stable for s 2 ½0; ~sÞ;
(ii) If

S0
1ðs2Þ > 0;

then E1 is unstable for s 2 ð~s; s2Þ, with a Hopf bifurcation occurring when s ¼ ~s;
(iii) If

S0
1ðs2Þ < 0;

then E1 is unstable for s 2 ð~s; �sÞ, and becomes asymptotically stable when s 2 ð�s; s2Þ, with two Hopf bifurcation points
s ¼ ~s; �s.
3. Direction and stability of the Hopf bifurcation

In the previous section, we have already obtained some sufficient conditions ensuring system (2) undergoes a Hopf bifur-
cation at the positive homogeneous equilibrium E1 ¼ ð�x; �xÞ. In this section we shall study the direction of the Hopf bifurca-
tion, and the stability of the bifurcating periodic solutions under the conditions of Theorem 2.3, using techniques of the
normal form and center manifold theory (see e.g., Hassard et al.[7]).

Without loss of generality, we let ŝ be the critical value of s at which system (2) undergoes a Hopf bifurcation at E1. Let
s ¼ ŝþ a, then a ¼ 0 is the Hopf bifurcation value of system (2).

For convenience, let t ¼ ss, and still denote time t, system (2) can be rewritten as
_xðtÞ
_yðtÞ

� 	
¼ sA

xðtÞ
yðtÞ

� 	
þ sB

xðt � 1Þ
yðt � 1Þ

� 	
þ f ; ð20Þ
where
A ¼
�d� D D

D �d� D

 !
; B ¼ dð1� b�xÞ

1� r r

r 1� r

 !
;

f ¼ sd

ð1� rÞ 1
2
�xb� 1


 �
bx2ðt � 1Þ þ 1

2 ð1� 1
3
�xbÞb2x3ðt � 1Þ

� 
þr 1

2
�xb� 1


 �
by2ðt � 1Þ þ 1

2 ð1� 1
3
�xbÞb2y3ðt � 1Þ

� 
þ Oðx4; y4Þ

ð1� rÞ 1
2
�xb� 1


 �
by2ðt � 1Þ þ 1

2 1� 1
3

�xb

 �

b2y3ðt � 1Þ
� 

þr 1
2
�xb� 1


 �
bx2ðt � 1Þ þ 1

2 1� 1
3

�xb

 �

b2x3ðt � 1Þ
� 

þ Oðx4; y4Þ

0BBBBBBBB@

1CCCCCCCCA
:

Choose the phase space as C ¼ Cð½�1;0�;R2Þ, for any / ¼ ð/1;/2Þ
T 2 C let
Lað/Þ ¼ ðŝþ aÞA/ð0Þ þ ðŝþ aÞB/ð�1Þ:
By the Riesz representation theorem, there exists a matrix whose components are bounded variation function
gðh;aÞ : ½�1;0� ! R22

in h 2 ½�1;0� such that
La/ ¼
Z 0

�1
dgðh;aÞ/ðhÞ for / 2 C: ð21Þ
In fact, we can choose gðh;aÞ ¼ ðŝþ aÞAdðhÞ þ ðŝþ aÞBdðhþ 1Þ, where
dðhÞ ¼
1; h ¼ 0;
0; h–0:

�

Then Eq. (21) is satisfied.

For / 2 C1ð½�1;0�;R2Þ, define
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AðaÞ/ ¼
d/ðhÞ=dh; h 2 ½�1;0Þ;R 0
�1 dgðt;aÞ/ðtÞ; h ¼ 0;

(

RðaÞ/ ¼
0; h 2 ½�1;0Þ;
f ða;/Þ; h ¼ 0:

�

Then system (20) can be rewritten in the following form:
_ut ¼ AðaÞut þ RðaÞut;
where ut ¼ uðt þ hÞ for h 2 ½�1; 0�.
For w 2 C1ð½0;1�; ðC2Þ�Þ, define
A�wðsÞ ¼
�dwðsÞ=ds; s 2 ð0;1�;R 0
�1 dTgðt;0Þwð�tÞ; s ¼ 0:

(

For / 2 Cð½�1;0�;C2Þ and w 2 Cð½0;1�; ðC2Þ�Þ, define
hw;/i ¼ �wð0Þ/ð0Þ �
Z 0

�1

Z h

0

�wðn� hÞdgðhÞ/ðnÞdn;
where gðhÞ ¼ gðh;0Þ. Then A� and Að0Þ are adjoint operators. Let qðhÞ and q�ðsÞ are eigenvector of A and A� corresponding to
iŝx0 and �iŝx0, respectively, where
x0 ¼
x1; if Sn

1ðŝÞ ¼ 0;
x2; if Sn

2ðŝÞ ¼ 0;

(
n 2 N:
By direct computation, we obtain that
qðhÞ ¼ ð1;1ÞT eiŝx0h;

q�ðsÞ ¼ D0ð1;1Þeiŝx0s;
where
D0 ¼ 2þ 2ŝdð1� b�xÞe�iŝx0
� �1

:

Moreover, hq�ðsÞ; qðhÞi ¼ 1 and hq�ðsÞ; �qðhÞi ¼ 0.
Following the algorithms in Hassard et al. [7] and using a computation process similar to what stated in Wei and Ruan [9],

we can obtain the coefficients which will be used in determining the important quantities:
g20 ¼ D0ŝdbðb�x� 2Þe�2iŝx0 ;

g11 ¼ 2D0ŝdbðb�x� 2Þ;
g02 ¼ D0ŝdbðb�x� 2Þe2iŝx0 ;

g21 ¼ D0ŝdb2ð3� b�xÞe�iŝx0 þ D0ŝdbðb�x� 2Þ;

e�iŝx0 ðW1
11ð�1Þ þW2

11ð�1ÞÞ þ eiŝx0 ðW1
20ð�1Þ þW2

20ð�1ÞÞ
h i

;

where
W20ð�1Þ ¼ ig20

ŝx0
qð0Þe�iŝx0 þ i�g20

3ŝx0
�qð0Þeiŝx0 þ

E1
1

E1
1

 !
e�2iŝx0 ;

E1
1 ¼ E2

1 ¼
dbðb�x� 2Þe�2iŝx0

2ix0 þ d� dð1� bx̂Þe�2iŝx0
;

W11ð�1Þ ¼ � ig11

ŝx0
qð0Þe�iŝx0 þ i�g11

ŝx0
�qð0Þeiŝx0 þ

E1
2

E1
2

 !
;

E1
2 ¼ E2

2 ¼
b�x� 2

�x
:

Since each gij above is determined by the parameters and delays in system (20), we can compute the following quantities:



C. Yu et al. / Applied Mathematical Modelling 34 (2010) 1068–1077 1075
C1ð0Þ ¼
i

2x0ŝ
ðg20g11 � 2jg11j

2 � 1
3
jg02j

2Þ þ g21

2
;

l2 ¼ �
RefC1ð0Þg

Rek0ðŝÞ ;

b2 ¼ 2RefC1ð0Þg;

T2 ¼ �
ImC1ð0Þ þ l2Imðk0ðŝÞÞ

x0ŝ
:

We know that (see Hassard et al. [7]) l2 determines the direction of the Hopf bifurcation: if l2 > 0ð< 0Þ, then the bifurcating
periodic solutions exist for s > ŝð< ŝÞ. b2 determines the stability of the bifurcating periodic solution: if b2 < 0ð> 0Þ the
bifurcating periodic solutions are stable(unstable). T2 determines the period of the bifurcating periodic solutions: the period
increase (decrease) if T2 > 0ðT2 < 0Þ. Particularly, the direction of the Hopf bifurcation and stability of the bifurcating peri-
odic solutions on the center manifold are coincidence with that of system (2) at the first bifurcation value ŝ, since all the
roots of the characteristic equation with s ¼ ŝ have negative real parts except �ix0.
10 20 30 40 50 60 70 80

−100

−80

−60

−40

−20

0

τ

S

S1
0

S1
1

Fig. 1. Graph of functions S0
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Fig. 2. Waveform for system (2) when s ¼ 40 > ~s ¼ 38:0610.
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4. Computer simulation
In this section, we present some numerical results to Eq. (1) at different values of d; dI;D; b; r and s.
If we choose d ¼ 0:06; dI ¼ 0:01;D ¼ 2; b ¼ 10; r ¼ 0:02, it is easy to verify that I1 ¼ ½0;81:3411Þ; I2 ¼ ;, and the assump-

tions ðA1�Þ and ðA2�Þ hold. S0
1ðsÞ has positive zero in I1, ~s1 ¼ 38:0610; �s1 ¼ 57:8658. We draw the graph of S0

1 and S1
1 versus s

on I1 in Fig. 1.
From Theorem 2.3(2), we conclude that the positive homogeneous equilibrium E1 is asymptotically stable for

s 2 ½0;38:0610Þ, and becomes unstable for s 2 ð38:0610;57:8658Þ, and back to asymptotically stable when s 2 ð57:8658;
81:3411Þ with two Hopf bifurcation points s ¼ 38:0610;57:8658.

If we choose ŝ ¼ 38:0610, we can get that k0ðŝÞ ¼: 0:00068; g20 ¼
: � 0:1857þ 7:2030i; g11 ¼

: 14:4108; g02 ¼
:

�0:1857� 7:2030i and g21 ¼
: � 48:1846� 26:2981i, and hence
C1ð0Þ ¼: � 46:241� 106:04i; l2 ¼
: 67999;

b2 ¼
: � 92:4815; T2 ¼: 45:2507:
Therefore, the bifurcating periodic solutions exist for s > ŝ and the bifurcating periodic solutions are orbitally asymptotically
stable (see Fig. 2).
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Fig. 4. Waveform for system (2) with s ¼ 120 > ~s ¼ 118:6664.
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If we choose d ¼ 0:045; dI ¼ 0:001;D ¼ 0:0119; b ¼ 50; r ¼ 0:03, it is easy to verify that I2 ¼ ½0;472:8132Þ, the assump-
tions ðA1Þ and ðA2Þ hold. S0

1ð472:8132Þ > 0. Both S0
1ðsÞ and S0

2ðsÞ have positive zero in I2, ~s ¼ 118:6664. We draw the graph
of S0

1; S
1
1; S

2
1; S

1
3; S

0
2 and S1

2 versus s on I2 in Fig. 3.
From Theorem 2.3(4), we conclude that the positive homogeneous equilibrium E1 is asymptotically stable for

s 2 ½0;118:6664Þ, and becomes unstable for s 2 ð118:6664;472:8132Þ with two Hopf bifurcation points s ¼ 118:6664.
If we choose ŝ ¼ 118:6664, we can get that k0ðŝÞ ¼: 0:0003; g20 ¼

: 110:66þ 70:671i; g11 ¼
: 262:6053; g02 ¼

: 110:66� 70:671i
and g21 ¼

: � 3521:6þ 4094:8i, and hence
C1ð0Þ ¼
: � 2776:0� 4221:8i; l2 ¼

: 9167700;
b2 ¼

: � 5552; T2 ¼: 461:8764:
Therefore, the bifurcating periodic solutions exist for s > ŝ and the bifurcating periodic solutions are orbitally asymptotically
stable (see Fig. 4).

5. Conclusion

The dynamical behavior of the age-structured model of a single species living in two identical patches derived in So et al.
[3] has been investigated. We chose a birth function that is frequently used but different from the one used in So et al. [3],
which leads to a different structure of the homogeneous equilibria. The stability of these equilibria and existence of Hopf
bifurcations are obtained by analyzing the distribution of the roots of associated characteristic equation, using the approach
introduced by Beretta and Kuang [6]. It is found that there are stability switches when time delay varies. By the theory of
normal form and center manifold presented in Hassard et al. [7], an explicit algorithm for determining the direction of
the Hopf bifurcation and stability of the bifurcating periodic solutions is derived. Some numerical simulations are carried
out for supporting the analytic results.

The results we obtained show that there exist periodic solutions when the time delay is near the Hopf bifurcation values.
A question of mathematical and biological interest is whether the periodic solutions exist when the delay is far away from
the critical values? Future work will study the global existence of periodic solutions.
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