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A b s t r a c t - - I n  this paper, we consider a discrete logistic equation 

x(n + 1) : x(n)exp Jr (n ) (1 -  x(n) 
K(n) ] J ' 

where {r(n)} and {K(n)} are positive w-periodic sequences. Sufficient conditions are obtained for 
the existence of a positive and globally asymptotically stable w-periodic solution. Counterexamples 
are given to illustrate that the conclusions in [1] are incorrect. (~) 2003 Elsevier Science Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  

One of the the basic differential equation models for populat ion growth of a single species is the 

logistic equation 

dx(t) 
- r ( t ) x ( t ) l l - ~ ]  t > 0 ,  (1.1) 

dt ' - 

where r(.) and K(.)  are positive functions in [0, co), representing the intrinsic growtk rate and 

the carrying capacity, respectively. When K(.)  is constant,  the dynamics of (1.1) are completely 

known: every positive solution converges to the positive equilibrium. In many situations, r(t) 
and K(t)  can be assumed to be nonconstant  periodic functions with a common period T to 

reflect the seasonal fluctuations. In such a periodic case, it has been shown that  (1.1) has a 

positive T-periodic solution 2(t) which at tracts  every positive solution x(t) of (1.1) as t -~ oo. 

See, e.g., [2-4]. 
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In this paper,  we consider a discrete analogue of (1.1), 

x(n + 1) = x(n) exp r(n) 1 K(n) ' n e N, (1.2) 

under the assumptions tha t  x(0) > 0, {r(n)} and { g ( n ) }  are strictly positive sequences of real 
numbers defined for n E N = {0, 1 ,2 , . . .  }. In addition, there exist positive constants r . ,  r*, K . ,  
and K* such tha t  

O < r . < _ r ( n ) < r * ,  O < K . < K ( n ) < K * ,  H e N .  (1.3) 

For a justification of (1.2), we refer to [1]. 
For (1.2), one may natural ly conjecture a parallel conclusion: if {r(n)} and {K(n)}  are both  

periodic with a common period w, then (1.2) has a positive w-periodic solution {5:(n)}, and every 
positive solution {x(n)} of (1.2) tends to {~(n)} as n --+ co. However, the following example 
shows tha t  this cannot be true. 

EXAMPLE 1.1. Consider equation (1.2) with 

r(3n)  = 1, r(3n + 1 )  = 1.5, r(3n + 2) = 1, 

K(3n)  = 1, K(3n + 1) = 5, K(3n + 2) = 8, 

for n C N. Then (1.2) has a 3-periodic solution {~(n)}, where 

~(3n) = 3.2184, ~(3n + 1) = 0.3501, ~(3n + 2) = 1.4126, for n E N, 

= 5.6940, 
x'(6n + 3) = 0.6072, 

and a 6-periodic solution {x*(n)} where 

x*(6n + 1) = 0.0521, 
x*(6n + 4) = 0.8993, 

Let 

Then 

x*(6n + 2) = 0.2299, 
x*(6n + 5) = 3.0774, 

f n ( x ) = x e x p ( r ( n ) ( 1  K ~ n ) ) ) '  H E N .  

for n E N. 

2 5 

1 - I / "  : -1 .6348,  1 ]  ]" (x*(n)) = -0 .7921.  
n = 0  n = 0  

This implies {~(n)} is unstable and {x* (n)} is asymptot ical ly stable. 
This example shows tha t  even for very simple models, a stability result for a continuous model 

does not automatical ly  carry over for the corresponding discrete model. 
Recently, Mohamad and Gopalsamy [1] also considered equation (1.2), and obtained the fol- 

lowing two main theorems. 

THEOREM A. (See [1, Theorem 3.2].) Assume that  {r(n)} and {K(n)}  satisfy (1.3). Then (1.2) 
is extremely stable in the sense that 

lim Ix(n) - y(n)l = O, 

for any two solutions {x(n)} and {y(n)} of (1.2). 

THEOREM B. (See [1, Theorem 4.1].) Assume that {r(n)} and {K(n)}  are almost periodic 
sequences satisfying (1.3) with r* < 2. Then (1.2) has a unique positive and globally asymptoticly 
stable almost  periodic solution. 
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Looking back at the above example, since minneN [~(n) - x*(n)[ > 0, it is easy to see that  
these two theorems are incorrect. Digging into the source of the incorrectness of Theorems A 
and B in [1], we find that  the proofs of these two theorems are based on Lemmas 2.1 and 3.1 

in [1], which are stated below. 

LEMMA A. (See [1, Lemma 2.1].) Assume that {r(n)} and {K(n)} satis~ (1.3). Then for any 
positive solution of (1.2), there exists N > 0 such that 

Xmi, <_ x(n)  <_ Xm~×, n > N,  (1.4) 

where 

LEMMA B. 

g ~  
Xmax = - -  exp (r* - 1), 

r .  

T* 

(See [1, Lemma 3.1].) Let {r(n)} and {K(n)} be strictly positive bounded with 

O < r . < _ r ( n ) < r * < 2 ,  n E Z .  (1.5) 

Then for any positive solution {x(n)} of (1.2), there exists a positive integer N such that 

1 z(~) - r ( n ) ~ ( n  ) <1,  n > N ,  

x(n) exp (1 x(n) 

(1.6) 

(1.7) 

Unfortunately, the above two lemmas are incorrect as well. To see that  Lemma A is invalid, 
let us consider the following example. 

EXAMPLE 1.2. Consider equation (1.2) with 

1 K(2n)  = 10 r(n) -= -~, -f~ -- 0.9090909, K(2n + 1) = - - e  -1/20 = 1.0569216, h E N .  

Clearly, (1.3) holds with 

K* = ~ .e  -1/20 = 1.0569216, K .  - 1011 - 0.9090909, r .  = r* = 0.5. 

Let x(0) = 1, then 

x(2n) = 1, x(2n -F 1) = e -1/20 -- 0.9512294, for n E N. 

We can calculate Xmax and xmin as follows: 

K* 
exp(r* 1) ~ : e  - n / 2 °  1.2821107, 

Xl~ax r .  

r* 
Xmin = Xmax eXp (r* -- -~, Xmax) 

-5- 2 0 ( 1 1 1 )  e_ 11/2 0 
e x p  20 9 

= 1.0443000. 

Thus, x(2n + 1) < Zmin for n E N, which implies tha t  (1.4) in Lemma A is incorrect. 
To show Lemma B is incorrect, we consider the following two examples. 
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EXAMPLE 1.3. Consider equation (1.2) with 

4 
r(n) = 1, K(3n) = 1 + ln-----~' 

1 
K ( 3 n +  1) - 1 - l n 2 '  K(3n + 2) = 

1 - ln2'  
h E N .  

Clearly, (1.3) and (1.5) hold with 

4 2 
r .  =r*----l,  K . - - -  K* = 

1+1n4 '  1 - ln2" 

Let x(0) = 4, then 

x (3n )=4 ,  x(3n + l) = l, x(3n + 2) = 2, n E N .  

Thus, 
x(3n) 

1 - r(3n) g(3n) 

a contradiction to (1.6) in Lemma B. 

EXAMPLE 1.4. Consider equation (1.2) with 

- -  - l n 4  < - 1 ,  

r(n) = 1, K ( 2 n )  = 4, K(2n+ 1) = 4_ 3/4 1.20971430, 7 e --- n E N .  

Clearly, (1.3) and (1.5) hold with 

4 
r .  = r* = 1, K.  = - - e  3 /4  K* = 4. 

7 ' 

Let x(0) = 1; then 

Thus, 

x ( 2 n ) = l ,  x ( 2 n + l ) = e  3/4, f o r n E N .  

x(2n) x(n) 
( 1 -  r (2n)K----~)exp [r(n) {1 K---~) }] = 3e3/44 -- 1.58775 > 1, 

for n E N. This contradicts (1.7) in Lemma B. 

In the rest of this paper, we will derive, in Section 3, sufficient conditions under which (1.2) 
has a unique, positive, and globally asymptotically stable periodic solution. For this purpose, in 
Section 2, we need to establish a persistence result. 

2. P E R S I S T E N C E  

In this section, we establish the following persistence result for (1.2), which is a correction of 
Lemma A. 

THEOREM 2.1. 
Of (1.2) satisfies 

where 

Assume that {r(n)} and {K(n)} satisfy (1.3). Then any positive solution {x(n)} 

u, < linln~f x(n ) < limsupx(n) _< u*, (2.1) 
57,--'+ O0 

_ u *  K *  
u* = - - e x p ( r * - l )  

r *  

PROOF. We first present two cases to show that 

limsupx(n) _< u*. (2.2) 
n--~OO 
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CASE 1. There exists a positive integer no such tha t  x(no) < x(no + 1). 
From (1.2), we see that  1 - (x(no)/K(no) > 0), this implies 

z(no) < g(no) < g*. 

Therefore, by the fact tha t  maxxeR z exp[r(1 --x)] = ( l / r ) e x p ( r -  1) where r > 0, we have 

x ( n o + l ) = x ( n o ) e x p [ r ( n o ) ( 1  K(no)X(n°))] 

_ exp K(no) 

K* 
< exp(r* - 1) = u*. 

r *  

We claim that  
* for n > no. z ( n )  < u , 

In fact, if there exists an integer m _> no ÷ 2 such that  x(m) > u*, and letting m* be the 
least integer between no and m such that  x(m*) = maxno<_n<mX(n), then m* _> no + 2 and 
x(m*) > x(m* - 1) which implies x(m*) <_ u* < x(m). This is impossible. 

CASE 2. x(n) > z(n + 1) for n E N. 
By (1.2), we see tha t  

1 - z(n___._)_) <_ O, n E N. (2.3) 
K(n)  

This implies tha t  x(n) > g(n)  >_ g .  for n E N. Since {x(n)} is nonincreasing and has a lower 
bound K. ,  we know limn--.oo x(n) = ~ > K..  Letting n ~ oo in (1.2), we get 

= lim K(n) <_ K* <_ u*. 
n - - - * o o  

Therefore, (2.2) holds. 
Now, we show tha t  

lim inf x(n) > u.. (2.4) 
n ---* OO 

In view of (2.2), for each ~, there exists a large integer n* such that  

x(n) < u* + ~, for n > n*. (2.5) 

We consider two cases. 

CASE (i). There exists a positive integer n0 > n* such that  x(~0 + 1) < x(~0). 
Similar to Case 1 in the proof of(2.2),  we see tha t  

n "  x(n) > K. exp r* 1 K.  , n > (2.6) 

CASE (ii). z(n + 1) k x(n) for. n _> n*. 
According to (2.5), we know limn-,oo x(n) = I. Letting n --- oc in (1.~) leads to l i m ~ o ~  

K(n) = I. So, 

l =  lim x (n )=  lim K ( n ) > K . > K .  exp r* 1 
? l  ---4 o o  n ---¢ o o  - -  - -  g .  

Combining Cases (i) and (ii), we see that  

l i m i n f x ( n ) > K ,  e x p ( r * ( 1  u * + e )  ] 
n-~oo - K.  / 

Since e is arbitrary, we know (2.4) holds. 
The proof is completed by combining (2.2) with (2.4). 

REMARK 2.1. Since u* <: Xmax, where Xmax is as in Lemma A, (2.1) gives a better  upper bound 
than (1.4). This also confirms tha t  the right half of (1.4) is valid (the left half is invalid though). 

REMARK 2.2. In view of the proof of Theorem 2.1, we see that,  if either limn-.oo K(n) does not 
exist or r* # 1, then u. < x(n) <_ u* eventually holds. 
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3.  E X I S T E N C E  A N D  S T A B I L I T Y  O F  P E R I O D I C  S O L U T I O N  

Now we consider (1.2) with {r(n)} and {K(n)}  being periodic, and we are concerned with the 
existence and stability of a periodic solution. First, we have the following existence result. 

THEOREM 3.1. Assume that {r(n)} and {K(n)}  are positive periodic sequences with a common 
positive period w, that is, 

r ( n + w ) = r ( n ) ,  K ( n + w ) = K ( n ) ,  n c N .  (3.1) 

Then there exists an w-periodic solution for equation (1.2). 

PROOF. If K(n) - K(constant ) ,  then x(n) = K is a solution of (1.2) which implies Theorem 3.1 

holds. 
Now assume tha t  {K(n)}  is not constant, so limn--.oo K(n) does not exist. By the assumptions,  

we see (1.3) holds with r .  = minn~N{r(n)}, r* = maxn~N{r(n)}, K .  = minn~g{K(n)},  and 
K* -~ maxneN{K(n)}.  According to the proof of Theorem 2.1, it is easy to see tha t  

x(0) e [u., u*] implies x(n) • [u., u*], for n • g .  (3.2) 

Now, we define a mapping  F on [u.,u*] by F(z(O)) = x(w). From (1.2), we see tha t  z(w) 
depends continuously on x(0). Thus, F is continuous and maps  the interval [u., u*] into itself. 
Therefore, F has a fixed-point p. Let x(0) -- p, then the corresponding solution {2(n)} of (1.2) 
is an w-periodic solution to (1.2) in [u,, u*]. This completes the proof. 

The  next theorem confirms the globally asymptot ic  stabili ty of the periodic solution obtained 
in Theorem 3.1, under an additional condition. 

THEOREM 3.2. Assume tha t  (3.1) holds with 

K* 
- - e x p  (r* - 1) _< 2, (3.3) 
K ,  

where r* = maxn~g{r(n)}, K,  = minn~N{g(n)},  and K* = maxncN{g(n)} .  Let {~(n)} be a 
periodic solution of (1.2). Then for every positive solution {x(n)} of (1.2), we have 

lira (x(n) - ~(n)) = 0. (3.4) 
n--+OO 

PROOF. If K(n) =- K(cons tant ) ,  since (3.3) implies tha t  r* < 1 + in 2 < 2. By [5], we know tha t  
l im,~oo x(n) = K, this implies tha t  (3.4) holds with ~(n) = K.  

Now we assume tha t  { g ( n ) }  is not constant. Let x(n) = ~(n)exp(y(n)). Then (1.2) is 
t ransformed to 

y(n + 1) = y(n) - -~n) ~(n)(exp(y(n)) - 1). ()  

Define Y(n) = y2(n). Then 

A V ( n )  = V ( n  + 1) - 

= (y(n + 1) - y(n))(y(n + 1) + y(n)) 

_ r(n) (2y(n)  ~ ( n ) )  ( e x p ( y ( n ) ) 1 )  (3.5) K(n) ~(n)(exp(y(n)) - 1 )  - 

r(n) (2 ~ ( n ) e x p ( O y ( n ) ) )  y2(n), K(n) 2(n) exp(0y(n))  - 

for some 0 C (0, 1). Since 2 (n)exp(gy(n) )  lies between ~(n) and x(n), by Theorem 2.1 and 
Remark 2.2, we know tha t  there exists a positive integer nl  such tha t  

r(n) r'u* K* 
2 - K - - ~  exp(0y(n))  ~ 2 K---~- - 2 - ~** exp (r* - 1) > 0, n _> nl.  
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This  implies t ha t  {V(n)} is nonincreasing for n > n l .  So, 

l im V(n)  = v* e [0, oc). 
n - - - ~  OO 

(3.6) 

We claim v* = 0. In  fact, if v* > 0, then  y(n)  > v/~- for n > El.  Since {K(n )}  is not  constant ,  

there  exists an integer p wi th  0 < p < w such tha t  K(p)  > K . ,  from (3.5), we have 

r .  / r* *'~ v* 
A V ( p  + n~)  <_ --K-JU. 2 - - K ~ U  ) < 0 ,  n >_ n l .  

This implies t ha t  ~-~n°°=o A V ( n )  diverges to - o c .  But  from (3.6), ~n°°=o A V ( n )  = v* - V(0); this  

is a contradict ion.  Therefore, v* = 0. Thus, l imn- .ooy(n)  = 0 and (3.4) holds. The  proof is 

complete.  

REMARK 3.1. Theorem 3.2 shows t ha t  {~(n)} is the  global a t t r ac to r  of all posit ive solutions 

of (1.2), and hence, {2(n)} is the  unique w-periodic posit ive solution of (1.2). 

REMARK 3.2. When  K ( n )  - K(cons tan t ) ,  [5] has proved tha t  if r* _< 3/2,  then the solution 

x(n)  = K is a global  a t t r ac to r  of (1.2). Since, in this case, (3.3) reduces to  r* <_ 1 + ln2 - 

1.69314718 > 3/2,  Theorem 3.2 ac tual ly  improves the  corresponding result  in [6], since, in this 

case, (3.3) reduces to r* _< 1 + ln2  = 1.69314718, which is larger than  3/2. 
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