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ABSTRACT
In order to better accommodate the actual ecological environment,
a more practical predator-prey model with fear effect, predator-taxis
anddegeneracy in spatially heterogeneous environment is proposed
and analyzed in this paper. We are mainly concerned with positive
steady state solutions and we investigate not only the individual
effect of degeneracy but also the combined effects of predator-taxis
and degeneracy on the such solutions of the models. Our results
not only demonstrate some similarities but also reveal differences
between the models with and without predator-taxis that partially
reflects the fear effect.
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1. Introduction

Traditional predator-prey models focus on the direct effect on the prey by catching and
consuming. However, some ecologists’ field researches indicate that there are indirect
effects mainly in the form of fear, which may also impact the results of predator-prey inter-
actions. Such fear effects are mainly due to prey’s anti-predation responses, including the
changes in their foraging times and locations, avoidance (like habitat choice and distri-
bution), vigilance, alarm calls, grouping and even defences against predators [1, 2]. These
strategies not only diminish direct mortality from predation temporally (benefit), but will
also reduce lifetime fitness at the same time (cost). Furthermore, some experimental evi-
dences show that indirect effects in predator-prey interactions are common and can even
be very significant. For example, Schmitz et al. [3] found that such indirect effects may
cause same level of grasshopper mortality as direct predation by spider. Nelson et al. [4]
surgically shortened the mouthparts of damsel bugs to prevent them from eating, but the
bugs still interfered with the prey aphids, and it turned out that this can still reduce aphid
population by 30%. Zanette et al. [5] conducted a field experiment on song sparrows in
which they protected the birds from direct predation and played the calls and sounds of
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their predators to impose fear on the birds, and such a fear effect resulted in a 40% reduction
in the number of song sparrows’s offspring produced per year.

As far as modelling of fear effect is concerned, Brown et al. [6] firstly modelled the ecol-
ogy of fear by conjoin the Rosenzweig-MacArthur model with foraging theory, where fear
was represented by the level of vigilance. In recent years, many different types of mathe-
matical models with fear (indirect) effects have been proposed and analyzed. For example,
an ODEmodel is proposed and analyzed in [7] where the fear effect is reflected by a reduc-
tion to the reproduction rate; an age-structured DDE model is proposed in [8] where the
cost of fear and adaptive avoidance of predators are considered; a DDE model with both
cost and benefit of anti-predation response as well as a digestion delay is analyzed in [9]; a
food web ODE model with anti-predation responses is investigated in [10]. Some models
with fear effects have also incorporated spatial effects, see e.g. the reaction-diffusionmodel
in [11] and the patch model in [12].

In this paper, we will further explore the fear effects in the presence of some spatial
factors. Let u(x, t) and v(x, t) be the populations of prey and predator at time t and location
x, respectively. For themovements of prey and predators, we consider a scenario that (i) the
predators move randomly, with the flux Jv = −dv∇v; (ii) due to fear, there is a predator-
taxis effect in the prey’s movement, meaning that in addition to the random diffusion, the
prey also tends to move from locations with higher predator density to places with lower
predator density. Feature (ii) can be represented by the flux for the prey given by

Ju = −du∇u − αβ(u)u∇v,

where the first part accounts for the random diffusion while the second part reflects the
predator-repulsion effect. Then a general predator-prey model with the above scenario for
the movement reads {

ut = ∇ · (du∇u + αβ(u)u∇v)+ h(u, v),
vt = du�v + g(u, v). (1)

Here the parameter α measures the strength of the predator-repulsion partially reflects the
fear level, and β(u) is assumed, following [13, 14] to have the volume filling effect described
by

β(u) =
{
1 − u

M
, 0 ≤ u ≤ M,

0, u > M,
(2)

where M measures the maximum number of prey that a unit volume can accommodate.
If the number of prey exceeds the volumeM, then prey can no longer squeeze into nearby
space, and therefore the tendency of directed movement goes to 0.

The fear effect can also be reflected in the reaction terms. For example, in the ODE
model in [7], the authors considered the cost of fear in production by introducing a factor
f (k, v) to reduce the birth rate from r0u to f (k, v)r0u, leading to the following forms of h

h(u, v) = r0f (k, v)u − du − au2 − p(u, v)v.

Here r0, d and a represent the birth rate, natural death rate and intra-specific interaction
coefficient of prey, respectively,

f (k, v) = 1
1 + kv

(3)
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with k measuring the level of prey’s anti-predation response caused by fear, p(u, v) is the
functional response. In [9], in addition to cost, the authors also considered the benefit of
the prey’s anti-predation response by adopting the following forms for the two reaction
terms: {

h(u, v) = r0f (k, v)u − du − au2 − ρ(k)p(u, v)v, x ∈ �, t > 0,
g(u, v) = −m1v − m2v2 + cρ(k)p(u, v)v, x ∈ �, t > 0.

(4)

Here the k dependent factor ρ(k) ∈ (0, 1) reflects the benefit because it reduces the pre-
dation rate, c measures the conversion efficiency of biomass from prey to predator, m1 is
the intrinsic growth rate of the predator with m1 > 0 accounting for a specialist predator
and m1 < 0 explaining the scenario of generalist predator, and m2 ≥ 0 accounts for the
intra-specific competition of the predator. In the real world, the predator’s intra-specific
pressure depends on the conditions of the habitat (environment) which are generally het-
erogeneous. This suggests us to consider m2 as location dependent: m2 = m2(x). Such
location dependent parameter may vanish in some locations, presenting a degenerate situ-
ation. As is shown in [15], when a location dependent parameter vanishes on a nonempty
proper subdomain of� and is positive in the rest of�, some qualitative changes will occur
to the behavior ofmodel. Adopting the location dependence ofm2 and denotingm = −m1
and s(x) = m2(x), (1)–(4) lead to the following system of reaction diffusion equations:⎧⎪⎨⎪⎩

ut − du�u − α∇ · (β(u)u∇v)
= r0f (k, v)u − du − au2 − ρ(k)p(u, v)v,

vt − dv�v = mv − s(x)v2 + cρ(k)p(u, v)v,
x ∈ �, t > 0. (5)

For the function response function and the benefit level, we will adopt the following forms:

p(u, v) = pu
1 + q1u + q2v

, ρ(k) = 1
1 + c1k

,

where p is the maximal predation rate of predator, q1 and q2 stand for the interference
effects of prey and predator, respectively, and c1 is the decreasing rate of reproduction with
respect to the fear level k. Moreover, except form which can take negative values, all other
constants are positive, and in the light of [14], we always assume thatM > (r0 − d)/a.

For the spatial domain, we consider a scenario that the two species live in an isolated
bounded domain � ∈ RN (N ≥ 1) with smooth boundary ∂� ∈ C2+ε with ε ∈ (0, 1).
Then, the isolation (no-flux) boundary condition is presented as

Ju · n = du
∂u
∂n

+ αβ(u)u
∂v
∂n

= 0, Jv · n = dv
∂v
∂n

= 0,

which is equivalent to the following homogeneous Neumann boundary condition

∂u
∂n

= 0,
∂v
∂n

= 0, x ∈ ∂�, (6)

where n denotes the outward unit normal vector on the boundary ∂�.
We remark that for the special cases of ρ(k) = 0, m = −m1 < 0 and s(x) = m2 being

non-positive constant, (5)–(6) reduces to the model discussed in Wang-Zou [8]. In [8],
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in addition to the global existence, uniqueness, positiveness and boundedness of solution
of the model with given positive initial functions, the authors also explored the existence
and stability of co-existence steady state, as well as the pattern formations for four types of
the functional response function p(u, v): (i) p(u, v) = pu; (ii) p(u, v) = pu/(1 + qu); (iii)
p(u, v) = pu/(1 + q1u + q2v); (iv) p(u, v) = pu/(u + qv). A particular interesting finding
is that the impact of the predator-repulsion level on pattern formation actually depends on
the type of p(u, v).

In this paper, we are mainly interested in the pattern formation of the model (5)–(6),
which is related to the system governing the steady state solutions, given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−du�u − α∇ · (β(u)u∇v) = r0
1 + kv

u − du − au2 − pρ(k)uv
1 + q1u + q2v

, x ∈ �,

−dv�v = mv − s(x)v2 + cpρ(k)uv
1 + q1u + q2v

, x ∈ �,
∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂�.
(7)

For the location dependent parameter s(x), we assume it has a degeneracy in�, that is, s(x)
satisfies

s(x) ≡ 0, x ∈ �0, s(x) > 0, x ∈ �\�0 (8)

with �0 being a smooth subdomain in �. Biologically, (8) means that �0 is a favourable
subregion for predator since the intra-specific pressure of predator vanishes in�0.

We point out that in recent decades,many researchers have investigated individual effect
of prey’s fear against predators (see, e.g. [7–12, 16]), the combined effects of random diffu-
sion and predator-taxis [17–21], the combined effects of random diffusion and degeneracy
[22–24], and the combined effects of random diffusion, prey’s fear and degeneracy [25]
on the dynamics for predator-prey models, respectively. However, to the authors knowl-
edge, the joint impacts of fear induced cost and benefit, random diffusion, predator-taxis,
and degeneracy in spatial factors on the dynamics for predator-prey models have not been
studied yet. Such joint impact constitutes the aim of this study. Moreover, to highlight the
role of the degeneracy in conjunctionwith the predator-taxis level, we also explore, inmore
details, the special case without predator-taxis, that is, the following steady state model⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−du�u = r0
1 + kv

u − du − au2 − pρ(k)uv
1 + q1u + q2v

, x ∈ �,

−dv�v = mv − s(x)v2 + cpρ(k)uv
1 + q1u + q2v

, x ∈ �,
∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂�.

(9)

More specifically, we would like to seek answers to the following three meaningful ques-
tions:

- What common properties would the solutions to (7) and (9) share?
- Is/are there any essential difference(s) between the solutions to (7) and (9)?
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- How do the parameter k and the location dependence of s(x) with the vanishing
property (8) affect the solution behavior of (7) and (9)?

To address these questions, we explore positive solutions of (7) and (9) respectively in
Sections 2 and 3, including existence, uniqueness/multiplicity, bifurcation structure, and
behaviors when the prey’s growth rate varies, the impact of the degeneracy and predator-
taxis effect. The similarity and differences between (7) and (9) discussed in the respective
remarks in Section 3 after themajor results. In Section 4, we present some numerical results
to demonstrate the obtained analytic results, which visually illustrate the impact of fear
effect and the spatial heterogeneity function s(x) on the positive solutions and their pat-
terns. Our results provide more new insights on predator-prey interactions in the presence
of spatial factors and fear effect.

2. On solutions of model (7)

To proceed, we first give some notations that will be used in the rest of the paper.
Suppose that T is an differential operator, φ is a Hölder continuous function in �,
and d > 0. Let λD1 (±d,T + φ,�) and λN1 (±d,T + φ,�) denote the first eigenvalues
of ∓d�+ T + φ over � under Dirichlete and Neumann boundary conditions respec-
tively. When T = φ = 0, we will omit T and φ to write λD1 (±d,�) = λD1 (±d, 0,�)
and λN1 (±d,�) = λN1 (±d, 0,�). When T = 0 and φ 	= 0, we will omit T to write
λD1 (±d,φ,�) = λD1 (±d, 0 + φ,�) and λN1 (±d,φ,�) = λN1 (±d, 0 + φ,�). Moreover, we
denote the usual norms in Lp(�) with p ≥ 1 and C(�) as ‖φ‖p = (

∫
� |φ(x)|pdx)1/p and

‖φ‖∞ = max� |φ(x)|, respectively.
It can be seen from Theorem 2.2(1) in [22] that the problem

−dv�v = mv − s(x)v2, x ∈ �, ∂nv = 0, x ∈ ∂� (10)

has a unique positive solution vdvm (x) whenm < λD1 (dv,�0) and it has no positive solution
when m ≥ λD1 (dv,�0) where s(x) satisfies (8). This means that model (7) has a semi-
trivial solution (0, vdvm ) as 0 < m < λD1 (dv,�0). Besides, model (7) has another semi-trivial
solution ((r0 − d)/a, 0) as r0 > d, and trivial solution (0, 0) for any parameter values.

With the above preparation, we can easily identify that

m < λD1 (dv,�0) (11)

is actually also a necessary condition for (7) and also (9) to have positive solutions, as stated
in the following lemma.

Lemma 2.1: Equation (7) (resp. Equation (9) as well) can have positive solution(s) only
when (11) holds.

Proof: For the sake of contradiction, assume that there is such a positive solution (u, v) to
Equation (7) (resp. Equation (9)) for somem ≥ λD1 (dv,�0). Then v is a super solution for
(10) and a subsolution of (10) can be εφ where φ is a positive eigenfunction corresponding
to λD1 (dv,�0). This implies that there is a positive solution to (10) while m ≥ λD1 (dv,�0),
a contradiction. �



6 J. WANG AND X. ZOU

Due to this lemma, in the rest of this paper, we always assume (11) holds. In the rest
of this section, we discuss the local bifurcation structures, the stability of local bifurcation
solutions, and the global bifurcation structures ofmodel (7). Then, we investigate existence
of positive solutions and the asymptotic behavior of positive solutions for (7).

2.1. Local bifurcation structures and stability of local bifurcation solutions

In this subsection, by taking r0 as a bifurcation parameter and using the local bifurca-
tion theory proposed by Crandall and Rabinowitz [26], we explore the local bifurcation
structures of positive solutions for model (7) emitting from the semi-trivial solutions
((r0 − d)/a, 0) and (0, vdvm ) respectively, together with the stability of local bifurcation solu-
tions. In order to accomplish these goals, it is necessary to present an a priori estimate of
positive solutions for (7), which is shown in below.

Theorem 2.1: Suppose that a, M and d are fixed positive constants and assume that m <

λD1 (dv,�0). Then there exists a positive constantW = W(M) such that any positive solution
(u, v) of model (7) with d < r0 < aM + d satisfies ‖u‖∞ + ‖v‖∞ ≤ W.

Proof: Assume that the conclusion is not true. Then there exists a sequence {rn0 }∞n=1
with d < rn0 < aM + d such that model (7) with r0 = rn0 has a positive solution (un, vn)
satisfying

‖un‖∞ + ‖vn‖∞ → ∞ as n → ∞. (12)

For each n, we define the differential operator Ln : C2(�) → C0(�) and function fn as

Lnu = −du�u − α

(
1 − 2un(x)

M

)
∇vn(x)∇u

and

fn(x, u) = α�vn(x)u
(
1 − u

M

)
+ rn0

1 + kvn(x)
gn(u)− du − au2

− pρ(k)vn(x)
1 + q1un(x)+ q2vn(x)

u

respectively. Here gn(u) for u ∈ [0,∞) is such a function that satisfies (i) gn(u) ≥ 0 for
u ≥ 0 and gn(0) > 0; (ii) gn(un) = un; and (iii) gn(M) = 1 + kvn. There are many such
functions, for example, one can set g(0) = 1 and use polynomial interpolation to obtain a
quadratic function gn(u) satisfying the above properties. Then, for such a gn(u) defining
fn(x, u), un obviously solves Lnu = fn(u)with the boundary condition ∂nu = 0. Moreover,
we can easily verify that

fn(x,M) = 0 + rn0
1 + kvn(x)

gn(M)− dM − aM2 − pρ(k)vn(x)
1 + q1un(x)+ q2vn(x)

M

≤ (rn0 − d − aM)M < 0 = LnM, x ∈ �
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and ∂nM = 0, meaning thatM is an upper solution of Lnu = fn(u) with ∂nu = 0. Also, it
is obvious that u = 0 is a lower solution of Lnu = fn(u):

fn(x, 0) = rn0
1 + kvn

g(0) > 0 = Ln0, x ∈ �.

Therefore, by a sup-sub solution argument for elliptic equations, we know that 0 ≤ un ≤ M
for all x ∈ �. Indeed, because fn(x, 0) > 0, the iteration starting from this lower solution
u = 0 will generate an increasing sequence of positive functions which will converge to a
positive solution û of Lnu = fn(x, u) satisfying 0 < û ≤ M. On the other hand, it is easy to
see that fn(x, u) satisfies the lower-sided Lipschitz condition, and hence, Lnu = fn(x, u) can
only have one positive solution, implying that 0 ≤ un = ûn ≤ M for all x ∈ �. The proved
boundedness of un, together with (12) leads to ‖vn‖∞ → ∞ as n → ∞.

Set v̂n = vn/‖vn‖∞. From the second equation of (7), one sees that v̂n satisfies

−dv�v̂n = v̂n
(
m − s(x)‖vn‖∞v̂n + cpρ(k)un

1 + q1un + q2vn

)
, x ∈ �, ∂nv̂n = 0, x ∈ ∂�.

(13)

Then −dv�v̂n ≤ (m + cpρ(k)/q1)v̂n, and then

dv
∫
�

|∇ v̂n|2 dx +
∫
�
v̂2n dx ≤

(
m + cpρ(k)

q1
+ 1

) ∫
�
v̂2n dx ≤

(
m + cpρ(k)

q1
+ 1

)
|�|,

which implies that {v̂n}∞n=1 is bounded in H1(�). Therefore, there exists a subsequence
of {v̂n}∞n=1, still denoted by itself, such that v̂n converges to some v̂ weakly in H1(�) and
strongly in L2(�). Since ‖v̂n‖∞ = 1, we can set v̂n → v̂ in Lp(�) for any p>1. Clearly,
0 ≤ v̂ ≤ 1 in�. Further, by applying the technique of Proposition 4.1 in [22], we conclude
v̂ 	≡ 0 in�.

Next, we will deduce v̂ ≡ 0 in � below to contradict the above. Firstly, we clarify that
v̂ = 0 almost everywhere in �\�0. Multiplying both sides of (13) by v̂n and integrating
over�, one has

‖vn‖∞
∫
�
s(x)v̂3n dx =

∫
�

(
v̂2n(m + cpρ(k)un

1 + q1un + q2vn
)− dv|∇ v̂n|2

)
dx. (14)

It is evident that the right hand side of (14) is uniformly bounded, then

0 = lim
n→∞

∫
�
s(x)v̂3n dx =

∫
�
s(x)v̂3 dx =

∫
�\�0

s(x)v̂3 dx.

Since s(x) > 0 in �\�0, v̂ = 0 almost everywhere in �\�0. Now on �0, we have v̂|�0 ∈
H1
0(�0) since ∂�0 is smooth enough. In the following, we prove v̂ ≡ 0 in�0. Multiplying
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both sides of (13) by ϕ ∈ C∞
0 (�0) and integrating over�0, we obtain

dv
∫
�0

∇ v̂n∇ϕ dx = m
∫
�0

v̂nϕ dx +
∫
�0

cpρ(k)unv̂n
1 + q1un + q2vn

ϕ dx.

On account of∣∣∣∣∫
�0

cpρ(k)unv̂n
1 + q1un + q2vn

ϕ dx
∣∣∣∣ =

∣∣∣∣∫
�0

cpρ(k)unv̂n
1 + q1un + q2v̂n‖vn‖∞

ϕ dx
∣∣∣∣

≤ cpρ(k)‖un‖∞
q2‖vn‖∞

‖ϕ‖L1(�0) → 0

as n → ∞, v̂|�0 ≥ 0 is a weak solution of

−dv�v̂ = mv̂, x ∈ �0.

Since we have shown that v̂ = 0 almost everywhere in�\�0, v̂ satisfies the homogeneous
Dirichlete boundary condition on ∂�0. Now by the maximum principle, we conclude that
v̂ ≡ 0 in�0. Combining the above, we have shown that v̂ ≡ 0 in�, contradicting v̂ 	≡ 0 in
�. This contradiction completes the proof of theorem. �

Now, we study the local bifurcation phenomenon of model (7). Firstly, consider the
function

ς(r0) = λN1

(
−du,α∇vdvm∇ + α�vdvm + r0

1 + kvdvm
− pρ(k)vdvm

1 + q2vdvm
,�

)

with 0 < m < λD1 (dv,�0) and r0 ∈ (d,∞). Since 1/(1 + kvdvm ) > 0, ς(r0) is a continu-
ous and strictly increasing function with respect to r0. By using the argument similar to
that of given in [27], Theorem 2.1, the standard regularity theory of elliptic equations, the
embedding theorems and the assumption ∂� ∈ C2+ε , 0 < ε < 1, we get that there exists
a positive constant M◦ such that for any positive solution (u, v) ∈ C2(�)× C2(�), there
holds max�{‖∇u‖C1 , ‖∇v‖C1 , ‖�v‖C1} ≤ M◦. Thus, we can assume that there exists a α
such that ς(d) < d, then we can derive that no matter ς(d) < 0 or ς(d) = 0 or ς(d) > 0,
there is always a unique r∗∗

0 ∈ (d,∞) such that

ς(r∗∗
0 ) = λN1

(
−du,α∇vdvm∇ + α�vdvm + r∗∗

0

1 + kvdvm
− pρ(k)vdvm

1 + q2vdvm
,�

)
= d. (15)

Figure 1 draws the curves of ς with respect to r0 when ς(d) < 0, ς(d) = 0 and ς(d) > 0,
respectively. From this figure, the existence of r∗∗

0 is verified.
For p>N, let X = W2,p

n (�)× W2,p
n (�), Y = Lp(�)× Lp(�), where

W2,p
n (�) = {u ∈ W2,p(�) : ∂nu = 0, x ∈ ∂�}.

The two semi-trivial solution curves, denoted by�u and�v respectively, are given by

�u = {(r0, u, v) = (r0, (r0 − d)/a, 0) : r0 > d} , �v = {(r0, u, v) = (r0, 0, vdvm ) : r0 > 0}.
Next, we study the local bifurcation branches of positive solutions formodel (7) bifurcating
from�u and�v, respectively. The results read as follows.
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Figure 1. Curves of ς with respect to r0, where ς(d) < 0 in (a), ς(d) = 0 in (b) and ς(d) > 0 in (c).

Theorem 2.2: Let r∗0 = d − am/(mq1 + cpρ(k)) and r∗∗
0 be defined in (15). Then the

followings hold.

(i) If −cpρ(k)/q1 < m < 0, then a branch of positive solutions for model (7) bifurcates
from �u if and only if r0 = r∗0 ;Moreover, all positive solutions of (7) near (r∗0 , (r∗0 −
d)/a, 0) ∈ R × X are on a smooth curve�1, which is given by

�1 = {(r0(ϑ), u(ϑ), v(ϑ)) = (r∗0 + ϑr′0(0)+ o(|ϑ |), (r∗0 − d)/a + ϑφ∗
+ o(|ϑ |),ϑψ∗ + o(|ϑ |)) : 0 < ϑ < ϑ1},

where ϑ1 > 0 is a certain number, φ∗ and ψ∗ are definite functions in W
2,p
n (�), and

r′0(0) is defined by

r′0(0) =
∫
�(s(x)+ cpq2ρ(k)(r∗0−d)

a(1+q1(r∗0−d)/a)2 )ψ
3∗ dx − ∫

�
cpρ(k)φ∗ψ2∗

(1+q1(r∗0−d)/a)2 dx∫
�

cpρ(k)ψ2∗
a(1+q1(r∗0−d)/a)2 dx

.

Additionally, the bifurcation of�1 at (r∗0 , (r∗0 − d)/a, 0) is supercritical if q2 > q̃ and
subcritical if q2 < q̃, where q̃ is given by

q̃ =
∫
�

cpρ(k)φ∗ψ2∗
(1+q1(r∗0−d)/a)2 dx − ∫

� s(x)ψ3∗ dx∫
�

cpρ(k)(r∗0−d)
a(1+q1(r∗0−d)/a)2ψ

3∗ dx
.

(ii) If 0 < m < λD1 (dv,�0), then a branch of positive solutions for model (7) bifur-
cates from �v if and only if r0 = r∗∗

0 . Moreover, all positive solutions of (7) near
(r∗∗
0 , 0, vdvm ) ∈ R × X are on a smooth curve�2, which is given by

�2 = {(r0(ϑ), u(ϑ), v(ϑ)) = (r∗∗
0 + ϑ r̂′0(0)+ o(|ϑ |), ϑφ∗∗

+ o(|ϑ |), vdvm + ϑψ∗∗ + o(|ϑ |)) : 0 < ϑ < ϑ2},
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where ϑ2 > 0 is a certain number, φ∗∗ and ψ∗∗ are definite functions in W2,p
n (�),

and r̂′0(0) is defined by

r̂′0(0) =
∫
�

((
2α
M

∇vdvm∇φ∗∗ − α�ψ∗∗ + kr∗∗
0

(1 + kvdvm )2
ψ∗∗ + pρ(k)ψ∗∗

(1 + q2vdvm )2

)
φ2∗∗

+
(
α

M
�vdvm + a − pq1ρ(k)vdvm

(1 + q2vdvm )2

)
φ3∗∗ − αφ∗∗∇φ∗∗∇ψ∗∗

)
dx/

∫
�

φ2∗∗
1 + kvdvm

dx.

Additionally, the bifurcation of �2 at (r∗∗
0 , 0, vdvm ) is supercritical if a > ã and

subcritical if a < ã, where ã is given by

ã =
∫
�

((
pq1ρ(k)vdvm
(1 + q2vdvm )2

− α

M
�vdvm

)
φ3∗∗ + αφ∗∗∇φ∗∗∇ψ∗∗

−
(
2α
M

∇vdvm∇φ∗∗ − α�ψ∗∗ + kr∗∗
0

(1 + kvdvm )2
ψ∗∗ + pρ(k)ψ∗∗

(1 + q2vdvm )2

)
φ2∗∗

)
dx/∫

�
φ3∗∗ dx.

Proof: We only give the detailed proof of (ii) since (i) can be proved similarly. Let w =
v − vdvm and define L1 : R × X → Y as L1(r0, u,w) = (f1, f2)T with

f1 = du�u + α

(
1 − 2u

M

)
∇u∇(w + vdvm )+ αu

(
1 − u

M

)
�(w + vdvm )

+
(

r0
1 + k(w + vdvm )

− d − au − pρ(k)(w + vdvm )

1 + q1u + q2(w + vdvm )

)
u

and

f2 = w +
(
m − s(x)(w + vdvm )+ cpρ(k)u

1 + q1u + q2(w + vdvm )

)
(w + vdvm ).

Clearly, L1(r0, u,w) = 0 if and only if (u,w + vdvm ) is a solution of model (7). Hence, to
find the positive solutions branch of (7) near (r0, u, v) = (r0, 0, vdvm ), we only need to find
the positive solutions branch of L1(r0, u,w) = 0 near (r0, u,w) = (r0, 0, 0).

Denote by L1(u,w)(r0, u,w) the Fréchet derivative of L1 with respect to (u,w). Then
some straightforward calculations yield

L1(u,w)(r0, u,w)(φ,ψ)T =
(

B1(φ,ψ)+ B2(φ,ψ)
dv�ψ + B3(φ,ψ)

)
,
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where

B1(φ,ψ) = r0φ

1 + k(w + vdvm )
− dφ − 2auφ − pρ(k)

(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))2
φ

− kr0uψ

(1 + k(w + vdvm ))2
− pρ(k)u(1 + q1u)

(1 + q1u + q2(w + vdvm ))2
ψ ,

B2(φ,ψ) = du�φ − 2αφ
M

∇u∇(w + vdvm )+ α

(
1 − 2u

M

)
∇(w + vdvm )∇φ

+ α

(
1 − 2u

M

)
φ�(w + vdvm )+ α

(
1 − 2u

M

)
∇u∇ψ + αu

(
1 − u

M

)
�ψ ,

B3(φ,ψ) = cpρ(k)(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))2
φ

+
(
m − 2s(x)(w + vdvm )+ cpρ(k)u(1 + q1u)

(1 + q1u + q2(w + vdvm ))2

)
ψ

with φ,ψ ∈ W2,p
n (�).

By the Krein-Rutman theorem, we obtain that the second equation of L1(u,w)(r0, 0, 0)
(φ,ψ)T = (0, 0)T has a solution ψ > 0 if and only if r0 = r∗∗

0 . Next, we verify that
(r∗∗
0 , 0, vdvm ) is the only bifurcation point of positive solutions formodel (7) bifurcating from

�u.
Set� = (φ,ψ)T . Then L1(u,w)(r0, u,w)(φ,ψ)T can be rewritten as

L1(u,w)(r0, u,w)(φ,ψ)T = A0(α,�)��+ A1(α,�)∇�+ A2(α,�),

where

A0(α,�) =
⎛⎝du α

(
1 − aw + r0 − d

aM

) (
w + r0 − d

a

)
0 dv

⎞⎠ ,

A1(α,�) =
⎛⎝α (

1 − 2(aw + r0 − d)
aM

)
∇v α

(
1 − 2(aw + r0 − d)

aM

)
∇w

0 0

⎞⎠ ,

A2(α,�) =
⎛⎝−2αφ

M
∇w∇v + α

(
1 − 2(aw + r0 − d)

aM

)
φ�v + B1(φ,ψ)

B3(φ,ψ)

⎞⎠ .

Obviously, trA0(α,�) > 0 and detA0(α,�) > 0 for any� ∈ X, this implies that the oper-
ator L1(u,w)(r0, u,w) is elliptic. Furthermore, by case 2 with N = 1 of remark 2.5.5 in Shi
and Wang [28], one can also obtain that L1(u,w)(r0, u,w) is strongly elliptic and satisfies
the Agmon’s condition for angles θ ∈ [−π/2,π/2]. Therefore, in view of Theorem 3.3
and Remark 3.4 in [28],L1(u,w)(r0, u,w)(φ,ψ)T is the Fredholm operator with zero index.

Next, we claim dim(ker(L1(u,w)(r∗∗
0 , 0, 0))) = codim(R(L1(u,w)(r∗∗

0 , 0, 0))) = 1. Actu-
ally, one can easy to get Ker(L1(u,w)(r∗∗

0 , 0, 0)) = span{(φ∗∗,ψ∗∗)} with φ∗∗ > 0 and
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(φ∗∗,ψ∗∗) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du�φ∗∗ + α∇vdvm∇φ∗∗ + αφ∗∗�vdvm + r∗∗
0

1 + kvdvm
φ∗∗ − dφ∗∗

− pρ(k)vdvm
1 + q2vdvm

φ∗∗ = 0, x ∈ �,

dv�ψ∗∗ + mψ∗∗ − 2s(x)vdvmψ∗∗ + cpρ(k)vdvm
1 + q2vdvm

φ∗∗ = 0, x ∈ �,

∂nφ∗∗ = ∂nψ∗∗ = 0, x ∈ ∂�.

(16)

From (10), one sees that (dv�+ m − 2s(x)vdvm )−1 is a negative operator, thus, the second
equation of (16) means

ψ∗∗ = −(dv�+ m − 2s(x)vdvm )
−1(cpρ(k)vdvm /(1 + q2vdvm )φ∗∗) > 0.

So, dim(ker(L1(u,w)(r∗∗
0 , 0, 0))) = 1. Further, since L1(u,w)(r0, u,w)(φ,ψ)T is the Fred-

holm operator with zero index, codim(R(L1(u,w)(r∗∗
0 , 0, 0))) = 1.

On the other side, by some calculations, we have

L1r0(u,w)(r0, u,w)(φ,ψ)
T =

(
φ

1 + k(w + vdvm )
− kuψ

(1 + k(w + vdvm ))2
, 0

)T

.

Then

L1r0(u,w)(r
∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T =

(
φ∗∗

1 + k(w + vdvm )
− kuψ∗∗
(1 + k(w + vdvm ))2

, 0

)T

.

We now prove

L1r0(u,w)(r
∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T 	∈ R(L1(u,w)(r∗∗

0 , 0, 0)).

AssumeL1r0(u,w)(r∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T ∈ R(L1(u,w)(r∗∗

0 , 0, 0)). Then there exists a nontriv-
ial solution (u,w) such thatL1(u,w)(r∗∗

0 , 0, 0)(u,w)T = L1r0(u,w)(r∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T , that

is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du�u + α∇vdvm∇u + αu�vdvm + r∗∗
0

1 + kvdvm
u − du − pρ(k)vdvm

1 + q2vdvm
u =

φ∗∗
1 + k(w + vdvm )

− kuψ∗∗
(1 + k(w + vdvm ))2

, x ∈ �,

dv�w + mw − 2s(x)vdvmw + cpρ(k)vdvm
1 + q2vdvm

u = 0, x ∈ �,

∂nu = ∂nw = 0, x ∈ ∂�.

(17)

From (16) and the definition of r∗∗
0 , we know that the determinant of the coeffi-

cient matrix on the left-hand of (17) is zero. Hence, (17) is impossible, and therefore,
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L1r0(u,w)(r∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T 	∈ R(L1(u,w)(r∗∗

0 , 0, 0)). Then from the results in [26], we
conclude that (r∗∗

0 , 0, vdvm ) is the only bifurcation point of positive solutions for model (7)
bifurcating from �v, and the positive solutions set of model (7) near (r∗∗

0 , 0, vdvm ) is on a
smooth curve

�2 = {(r0(ϑ), u(ϑ), v(ϑ)) = (r∗∗
0 + ϑr′0(0)+ o(|ϑ |),ϑφ∗∗ + o(|ϑ |), vdvm + ϑψ∗∗

+ o(|ϑ |)) : 0 < ϑ < ϑ2.}.

The remaining derives r̂′0(0). Set L̂1(r0, u,w) := L1(u,w)(r0, u,w)(φ,ψ)T . Then L̂1(u,w)
(r0, u, w)(φ,ψ)T = (C,D)T with

C = −4αφ
M

∇(w + vdvm )∇φ − 2αφ2

M
�(w + vdvm )− 2aφ2

+ 2pq1ρ(k)(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))3
φ2

− 4αφ
M

∇u∇ψ + 2α
(
1 − 2u

M

)
∇φ∇ψ + 2α

(
1 − 2u

M

)
φ�ψ

− 2kr0
(1 + k(w + vdvm ))2

φψ

− pρ(k)
(1 + 2q1u)(1 + q1u + q2(w + vdvm ))− 2q1u(1 + q1u)

(1 + q1u + q2(w + vdvm ))3
φψ

− pρ(k)

(1 + 2q2(w + vdvm ))(1 + q1u + q2(w + vdvm ))
−2q2(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))3
φψ

+ 2k2r0
(1 + k(w + vdvm ))3

uψ2 + 2pq2ρ(k)
u(1 + q1u)

(1 + q1u + q2(w + vdvm ))3
ψ2,

D = −2cpq1ρ(k)(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))3
φ2 − 2s(x)ψ2

− 2cpq2ρ(k)
u(1 + q2u)

(1 + q1u + q2(w + vdvm ))3
ψ2

+ cpρ(k)
(1 + 2q1u)(1 + q1u + q2(w + vdvm ))− 2q1u(1 + q1u)

(1 + q1u + q2(w + vdvm ))3
φψ

+ cpρ(k)

(1 + 2q2(w + vdvm ))(1 + q1u + q2(w + vdvm ))
−2q2(w + vdvm )(1 + q2(w + vdvm ))

(1 + q1u + q2(w + vdvm ))3
φψ .
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It follows from [29] that r̂′0(0) is given by

r̂′0(0) = − 〈L̂1(u,w)(r∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T , l1〉

2〈L1r0(u,w)(r∗∗
0 , 0, 0)(φ∗∗,ψ∗∗)T , l1〉

=
∫
�

((
2α
M

∇vdvm∇φ∗∗ − α�ψ∗∗ + kr∗∗
0

(1 + kvdvm )2
ψ∗∗ + pρ(k)ψ∗∗

(1 + q2vdvm )2

)
φ2∗∗

+
(
α

M
�vdvm + a − pq1ρ(k)vdvm

(1 + q2vdvm )2

)
φ3∗∗ − αφ∗∗∇φ∗∗∇ψ∗∗

)
dx/

∫
�

φ2∗∗
1 + kvdvm

dx

with l1 being a linear functional in Y defined as 〈(f , g)T , l1〉 = ∫
� f (x)φ∗∗dx. Additionally,

because r̂′0(0) > 0 if a > ã and r̂′0(0) < 0 if a < ã, the bifurcation of �2 at (r∗∗
0 , 0, vdvm ) is

supercritical if a > ã and subcritical if a < ã. The proof is completed. �

Notice that by the Sobolev embedding theorems, we can verify that if the space
X = W2,p

n (�)× W2,p
n (�) is replaced by C = C1

n(�)× C1
n(�)withC1

n(�) = {u ∈ C1(�) :
u(x) = 0 for x ∈ ∂�}, then the conclusions in Theorem 2.2 also hold. Next, the stability of
local bifurcation solutions of model (7) obtained in Theorem 2.2 is investigated.

Theorem 2.3: The following statements hold.

(i) If −cpρ(k)/q1 < m < 0, then there exists a small positive number ϑ1 such that the
positive solution (r0(ϑ), u(ϑ), v(ϑ)) of model (7) bifurcating from (r∗0 , (r∗0 − d)/a, 0)
is non-degenerate for ϑ ∈ (0,ϑ1). Moreover, (u(ϑ), v(ϑ)) is locally asymptotically
stable if q2 > q̃ and unstable if q2 < q̃.

(ii) If 0 < m < λD1 (dv,�0), then there exists a small positive number ϑ2 such that the
positive solution (r0(ϑ), u(ϑ), v(ϑ)) ofmodel (7) bifurcating from (r∗∗

0 , 0, vdvm ) is non-
degenerate for ϑ ∈ (0,ϑ2). Moreover, if limϑ→0+ ∇v(ϑ)/ϑ 	= ∞, then (u(ϑ), v(ϑ))
is locally asymptotically stable if a > ã and unstable if a < ã.

Proof: We only provide detailed proof of (ii) since (i) can be proved similarly. Firstly,
according to the proof of Theorem 2.2(ii), one sees that there exists ϑ2 > 0 such that (7)
admits the positive solution (r0(ϑ), u(ϑ), v(ϑ)) emitting from (r∗∗

0 , 0, vdvm ) with ϑ ∈
(0,ϑ2). Linearizing (7) at (u, v) = (u(ϑ), v(ϑ)) with r0 = r0(ϑ), we have

X (ϑ)
(
φ(ϑ)

ψ(ϑ)

)
= β(ϑ)

(
φ(ϑ)

ψ(ϑ)

)
with X (ϑ) =

(X1(ϑ) X2(ϑ)

X3(ϑ) X4(ϑ)

)
, (18)

X1(ϑ) = −du�− α

(
− 2
M

∇u(ϑ)∇v(ϑ)+
(
1 − 2u(ϑ)

M

)
∇v(ϑ)∇

+
(
1 − 2u(ϑ)

M

)
�v(ϑ)

)
−

(
r0(ϑ)

1 + kv(ϑ)
− d − 2au(ϑ)− pρ(k)v(ϑ)(1 + q2v(ϑ))

(1 + q1u(ϑ)+ q2v(ϑ))2

)
,
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X2(ϑ) = −α
((

1 − u(ϑ)
M

)
u(ϑ)�+

(
1 − 2u(ς)

M

)
∇u(ϑ)∇

)
+

(
kr0(ϑ)u(ϑ)
(1 + kv(ϑ))2

+ pρ(k)u(ϑ)(1 + q1u(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

)
,

X3(ϑ) = −cpρ(k)v(ϑ)(1 + q2v(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

, X4(ϑ) = −dv�− m + 2s(x)v(ϑ)

− cpρ(k)u(ϑ)(1 + q1u(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

.

Owing to (r0(ϑ), u(ϑ), v(ϑ)) → (r∗∗
0 , 0, vdvm ) as ϑ → 0+, we getX (ϑ) → X0 as ϑ → 0+,

where X0 is denoted as

X0 =

⎛⎜⎜⎜⎜⎝
−du�− α∇vdvm∇ − α�vdvm − r∗∗

0

1 + kvdvm
+ d + pρ(k)vdvm

1 + q2vdvm

−cpρ(k)vdvm
1 + q2vdvm

0
−dv�− m + 2s(x)vdvm

⎞⎟⎟⎟⎟⎠ .

It is easy to see that 0 is the least eigenvalue of X0, and the corresponding positive eigen-
function is (φ∗∗,ψ∗∗), which is defined in the proof of Theorem 2.2(ii). Furthermore, the
real parts of all the other eigenvalues of X0 are positive and bounded away from 0. Thus,
the perturbation theory of linear operators [30] means that X (ϑ) has a unique eigen-
valueβ(ϑ)with eigenfunction (ϕ(ϑ),ψ(ϑ))whenϑ > 0 is small enough, whereβ(ϑ) and
(φ(ϑ),ψ(ϑ)) satisfyβ(ϑ) → 0 and (φ(ϑ),ψ(ϑ)) → (φ∗∗,ψ∗∗) asϑ → 0+. Additionally,
all other eigenvalues of X (ϑ) have positive real parts, which are apart from 0. Therefore,
there exists a small positive number ϑ2 such that the positive solution (r0(ϑ), u(ϑ), v(ϑ))
of model (7) bifurcating from (r∗∗

0 , 0, vdvm ) is non-degenerate for ϑ ∈ (0,ϑ2).
Now, we investigate the stability of positive solution (u(ϑ), v(ϑ)). From (18), one sees

that φ(ϑ) satisfies

β(ϑ)φ(ϑ) = −du�φ(ϑ)− α

(
− 2
M

∇u(ϑ)∇v(ϑ)+
(
1 − 2u(ϑ)

M

)
∇v(ϑ)∇

+
(
1 − 2u(ϑ)

M

)
�v(ϑ)

)
φ(ϑ)

−
(

r0(ϑ)
1 + kv(ϑ)

− d − 2au(ϑ)− pρ(k)v(ϑ)(1 + q2v(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

)
φ(ϑ)

− α

((
1 − u(ϑ)

M

)
u(ϑ)�+

(
1 − 2u(ϑ)

M

)
∇u(ϑ)∇

)
ψ(ϑ)
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+
(

kr0(ϑ)u(ϑ)
(1 + kv(ϑ))2

+ pρ(k)u(ϑ)(1 + q1u(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

)
ψ(ϑ). (19)

Multiplying both sides of (19) by u(ϑ) and integrating over �, and then applying the
equation corresponding to u(ϑ), we obtain

β(ϑ)

∫
�
φ(ϑ)u(ϑ) dx

= α

∫
�

((
1 − 2u(ϑ)

M

)
φ(ϑ)∇u(ϑ)∇v(ϑ)+ u(ϑ)

(
1 − u(ϑ)

M

)
× φ(ϑ)�v(ϑ)+ 2

M
φ(ϑ)u(ϑ)∇u(ϑ)∇v(ϑ)

−
(
1 − 2u(ϑ)

M

)
u(ϑ)∇v(ϑ)∇φ(ϑ)−

(
1 − 2u(ϑ)

M

)
u(ϑ)φ(ϑ)�v(ϑ)

−
(
1 − u(ϑ)

M

)
u2(ϑ)�ψ(ϑ)−

(
1 − 2u(ϑ)

M

)
u(ϑ)∇u(ϑ)∇ψ(ϑ)

)
dx

+
∫
�

(
au2(ϑ)φ(ϑ)− pq1ρ(k)u2(ϑ)v(ϑ)φ(ϑ)

(1 + q1u(ϑ)+ q2v(ϑ))2

+
(

kr0(ϑ)
(1 + kv(ϑ))2

+ pρ(k)(1 + q1u(ϑ))
(1 + q1u(ϑ)+ q2v(ϑ))2

)
u2(ϑ)ψ(ϑ)

)
dx. (20)

Dividing both sides of (20) by ϑ2 and letting ϑ → 0, we get

lim
ϑ→0+

β(ϑ)

ϑ
=

(
α lim
ϑ→0+

∫
�

∇v(ϑ)(φ(ϑ)∇u(ϑ)− u(ϑ)∇φ(ϑ))
ϑ2 dx +

∫
�

((
α�vdvm
M

+ a

− pρ(k)q1vdvm
(1 + q2vdvm )2

)
φ3∗∗ + 2α

M
φ2∗∗∇φ∗∗∇vdvm − αφ∗∗(φ∗∗�ψ∗∗ + ∇φ∗∗∇ψ∗∗)

+
(

r∗∗
0 k

(1 + kvdvm )2
+ pρ(k)

(1 + q2vdvm )2

)
φ2∗∗ψ∗∗

)
dx

)
/

∫
�
φ2∗∗ dx. (21)

Since limϑ→0+ ∇v(ϑ)/ϑ 	= ∞,

lim
ϑ→0+

∫
�

∇v(ϑ)(φ(ϑ)∇u(ϑ)− u(ϑ)∇φ(ϑ))
ϑ2 dx

= lim
ϑ→0+

∫
�

∇v(ϑ)
ϑ

dx · lim
ϑ→0+

∫
�

φ(ϑ)∇u(ϑ)− u(ϑ)∇φ(ϑ)
ϑ

dx

= lim
ϑ→0+

∫
�

∇v(ϑ)
ϑ

dx ·
∫
�
(φ∗∗∇φ∗∗ − φ∗∗∇φ∗∗)dx

= 0.

Combining (21), Theorem 2.2(ii) and the stability theory of bifurcation solution, we
conclude that the conclusion in Theorem 2.3(ii) follows. �
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2.2. Global bifurcation structures

This subsection focuses on the global bifurcation structures of positive solutions for
model (7).

Combining Theorems 2.1–2.2 and the global bifurcation theory presented in [31], we
next investigate the global bifurcation structures of positive solutions tomodel (7) emitting
from�u and�v, respectively.

Theorem 2.4: The following statements hold.

(i) If −cpρ(k)/q1 < m < 0, then an unbounded continuum �∗ of positive solution
for model (7) bifurcates from �u at (r0, u, v) = (r∗0 , (r∗0 − d)/a, 0) and Projr0�∗ ⊃
(r∗0 ,∞).

(ii) If 0 < m < λD1 (dv,�0), then an unbounded continuum �∗∗ of positive solution for
model (7) bifurcates from�v at (r0, u, v) = (r∗∗

0 , 0, vdvm ) and Projr0�∗∗ ⊃ (r∗∗
0 ,∞).

Proof: We only prove (ii) since (i) can be verified similarly. Firstly, by virtue of
Theorem 2.2(ii), there is a smooth curve �2 of positive solutions for model (7) bifurcat-
ing from (r0, u, v) = (r∗∗

0 , 0, vdvm ) ∈ �v. Let�∗∗ ⊂ R × C be the maximal connected set of
positive solutions of (7) satisfying

�2 ⊂ �∗∗ ⊂ {(r0, u, v)\(r∗∗
0 , 0, vdvm ) : (r, u, v) is a solution of model (7)}.

Then Theorem 1.2 in [31] shows that�∗∗ must satisfy one of the following alternatives

(1) �∗∗ is unbounded in R
+ × C;

(2) �∗∗ contains a point (r̃0, 0, vdvm ) with r̃0 	= r∗∗
0 ;

(3) �∗∗ contains a point (r0, u, v) ∈ R
+ × {Y\{(0, vdvm )}}, whereY is a closed subspace

of C such that C = ker(L1(u,w)(r∗∗
0 , 0, 0))⊕ Y .

Denote H = {u ∈ C1
n(�) : u > 0 in �}. Next, we derive that if (r0, u, v) ∈ �∗∗\{(r∗∗

0 ,
0, vdvm )}, then (r0, u, v) ∈ R

+ × H × H, that is, u>0 and v>0 in �. Once this has been
shown, then both alternatives (2) and (3) can be excluded. Suppose on the contrary, that
�∗∗ contains a point (r0, u, v) 	= (r∗∗

0 , 0, vdvm )which lies outside ofR+ × H × H. Then there
exist a sequence {(rn0 , un, vn)}∞n=1 ⊂ �∗∗ ∩ (R+ × H × H) and (ř0, ǔ, v̌) ∈ �∗∗ ∩ (R+ ×
∂(H × H)) such that

lim
n→∞(r

n
0 , un, vn) = (ř0, ǔ, v̌) ∈ �∗∗ ∩ (R+ × ∂(H × H)) in R

+ × C,

where (ǔ, v̌) is a non-negative solution of model (7) with r0 = ř0. Similar to the
previous analysis, we conclude that there exists a positive constant M� such that
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max�{‖∇ǔ‖C1 , ‖∇ v̌‖C1 , ‖�v̌‖C1} ≤ M�. Then by the first equation of (7), we have

− du�ǔ + Pǔ − α∇ · (β(ǔ)ǔ∇ v̌)+ ǔ
(

− ř0
1 + kv̌

+ d + aǔ + pρ(k)v̌
1 + q1ǔ + q2v̌

)
= −du�ǔ − α∇ v̌∇ǔ +

(
P + 2α

M
∇ǔ∇ v̌ − α

(
1 − ǔ

M

)
�v̌ − ř0

1 + kv̌

+ d + aǔ + pρ(k)v̌
1 + q1ǔ + q2v̌

)
ǔ

= Pǔ ≥ 0

with P being a sufficiently large positive constant so that

P + 2α
M

∇ǔ∇ v̌ − α

(
1 − ǔ

M

)
�v̌ − ř0

1 + kv̌
+ d + aǔ + pρ(k)v̌

1 + q1ǔ + q2v̌

is positive and bounded for all x ∈ �. Then the strongmaximum principle asserts that one
of the followings must hold:

(a) ǔ ≡ 0, v̌ ≡ 0, x ∈ �; (b) ǔ > 0, v̌ ≡ 0, x ∈ �; (c) ǔ ≡ 0, v̌ > 0, x ∈ �.
If case (a) is correct, then (ř0, ǔ, v̌) lies on the trivial solution branch�0 = {(r0, u, v) =

(r0, 0, 0) : r0 > 0}. It holds that the only nontrivial and nonnegative solution of (7) closing
to�0 lies on the semi-trivial solution branch�u. Hence, there cannot exist a sequence in
�∗∗ ∩ (R+ × H × H) converging to (ř0, 0, 0). This implies that case (a) cannot occur.

If case (b) is true, then as n → ∞, ǔ satisfies

−du�ǔ = ǔ(ř0 − d − aǔ), x ∈ �, ∂nǔ = 0, x ∈ ∂�.
Clearly, ǔ = (ř0 − d)/a. This derives (ř0, ǔ, v̌) ∈ �u, thus (ř0, ǔ, v̌) is a bifurcation point
of (7) on �u bifurcating from the nontrivial and nonnegative solution. Let v be the prin-
cipal eigenfunction of −dv�− (m + cpρ(k)(ř0 − d)/(a + q1(ř0 − d))) corresponding to
the principal eigenvalue 0. Then v satisfies

−dv�v −
(
m + cpρ(k)(ř0 − d)

a + q1(ř0 − d)

)
v = 0, x ∈ �, ∂nv = 0, x ∈ ∂�,

and then ř0 = r∗0 . Further, owing to m>0, one deduces r∗0 < d, this is impossible. Thus,
case (b) is not true.

Let case (c) hold. Then as n → ∞, v̌ satisfies

−dv�v̌ = v̌(m − s(x)v̌), x ∈ �, ∂nv̌ = 0, x ∈ ∂�.
Since 0 < m < λD1 (dv,�0), v̌ = vdvm . So (ř0, ǔ, v̌) ∈ �v, and thus (ř0, ǔ, v̌) is a bifurcation
point of (7) on�v bifurcating from the nontrivial and nonnegative solution. If u is the prin-
cipal eigenfunction of−du�− (α∇vdvm∇ + α�vdvm + ř0/(1 + kvdvm )− d − pρ(k)vdvm /(1 +
q2vdvm )) corresponding to the principal eigenvalue 0, then u satisfies

− du�u −
(
α∇vdvm∇ + α�vdvm + ř0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm

)
× u = 0, x ∈ �, ∂nu = 0, x ∈ ∂�.

It holds ř0 = r∗∗
0 , contradicting the definition of�∗∗. So, case (c) cannot occur.
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Summarizing the analyses above, we conclude that if (r0, u, v) ∈ �∗∗\{(r∗∗
0 , 0, vdvm )},

then (r0, u, v) ∈ R
+ × H × H. This means that�∗∗ is unbounded in R

+ × C.
On the other side, from Theorem 2.1, we conclude that when 0 < m < λD1 (dv,�0),

(u, v) is uniformly bounded in L∞(�)× L∞(�) for bounded r0, and the elliptic regularity
theory indicates that (u, v) is uniformly bounded in C for bounded r0. Then�∗∗ becomes
unbounded in R

+ × C through r0. The proof is finished. �

2.3. Existence of positive solutions

This subsection deals with the existence of positive solutions for model (7).

Theorem 2.5: Let r∗∗
0 be defined in (15). Then, the following statements hold.

(i) For −cpρ(k)/q1 < m ≤ 0, if r0 > r∗0 , then model (7) has at least one positive
solution.

(ii) For 0 < m < λD1 (dv,�0), if r0 > r∗∗
0 , thenmodel (7) has at least one positive solution.

Proof: Actually, in the light of the conclusions in Theorem 2.4, we just need to prove that
under the case ofm = 0, model (7) has at least one positive solution if r0 > r∗0 .

Let m = 0 and define r∗0 � r∗0(m). Assume on the contrary, that as m = 0, model (7)
has no positive solution if r0 > r∗0 . Then we can find a sequence {(mn, un, vn)}∞n=1 such
that (un, vn) is a positive solution of (7) withm = mn < 0 and limn→∞ mn = 0. Owing to
r∗0(mn) → d as n → ∞, we have r0 > r∗0(mn) as n → ∞. Then from Theorem 2.1 and the
standard regularity theory of elliptic equations, there exists a subsequence of {(un, vn)}∞n=1,
also denoted by itself, such that as n → ∞, (un, vn) → (u, v) in C. Passing to the limit in
the equations for un and vn, one sees that (u, v) is a nonnegative solution of (7) withm = 0.
Since we have assumed that model (7) has no positive solution whenm = 0, either u ≡ 0
or v ≡ 0.

If u ≡ 0, it holds fromm = 0 that v = 0 and

lim
n→∞

(
r0

1 + kvn
− d − aun − pρ(k)vn

1 + q1un + q2vn

)
= r0 − d > 0.

So, as n is large enough,
∫
� un(r0/(1 + kvn)− d − aun − pρ(k)vn/(1 + q1un + q2vn)) dx

> 0, which is impossible since∫
�
un

(
r0

1 + kvn
− d − aun − pρ(k)vn

1 + q1un + q2vn

)
dx

=
∫
�
(−du�un − α∇ · (β(un)un∇vn)) dx

= −α
∫
�

(
1 − 2un

M

)
∇un∇vn dx + α

∫
�

∇
(
un − u2n

M

)
∇vn dx

= 0,

thus u>0.
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If v ≡ 0, then u = (r0 − d)/a and

lim
n→∞

(
mn − s(x)vn + cpρ(k)un

1 + q1un + q2vn

)
= cpρ(k)(r0 − d)

a + q1(r0 − d)
> 0.

It derives that as n is large enough,
∫
� vn(mn − s(x)vn + cpρ(k)un/(1 + q1un +

q2vn)) dx > 0, which is also impossible, so v>0.
Therefore, under the case ofm = 0, model (7) has at least one positive solution if r0 >

r∗0 . The proof follows. �

2.4. Asymptotic behavior of positive solutions as r0 → ∞
This subsection refers to the asymptotic behavior of positive solutions for model (7) on the
bifurcation continuum as r0 → ∞.

Theorem 2.6: Assume that C̃ is a fixed positive constant, {(Mn, rn0 )}∞n=1 is a sequence satis-
fying (Mn, rn0 ) → (∞,∞) as n → ∞ and Mn/rn0 < C̃, and (un, vn) is an arbitrary positive
solution of model (7) corresponding to (M, r0) = (Mn, rn0 ). Then the following statements
hold.

(i) limn→∞ un
rn0

= l1 ∈ [0, C̃].
(ii) If l1 in (i) is positive and −cpρ(k)/q1 < m < λD1 (dv,�0)− cpρ(k)/q1, then subject

to a subsequence, limn→∞ vn = vdvm̄ in�, where m̄ = m + cpρ(k)/q1 and vdvm̄ is the
unique positive solution of the following problem

−dv�v =
(
m + cpρ(k)

q1

)
v − s(x)v2, x ∈ �, ∂nv = 0, x ∈ ∂�.

(iii) If l1 in (i) is positive and λD1 (dv,�0)− cpρ(k)/q1 ≤ m < λD1 (dv,�0), then
(A1) ‖vn‖∞ → ∞ as n → ∞;
(A2) subject to a subsequence, ‖vn‖∞/rn0 → l2 ∈ [0,∞), ṽn = vn/‖vn‖∞ → ṽ

weakly in H1(�) and strongly in Lp(�) for any p>1 as n → ∞, where ṽ is
a nonnegative function satisfying ṽ = 0 for x ∈ �\�0, and ṽ|�0 ∈ H1

0(�0)

is a positive weak solution of

−dv�ṽ = ṽ
(
m + cpl1ρ(k)

q1l1 + q2l2ṽ

)
, x ∈ �0, ṽ = 0, x ∈ ∂�0. (22)

Proof: (i) Set wn = un/rn0 . Substitute it into the first equation of model (7) to get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−du�wn − α∇ · (β(wnrn0 )wn∇vn) = rn0

1 + kvn
wn − dwn − aw2

nr
n
0

− pρ(k)wnvn
1 + q1wnrn0 + q2vn

, x ∈ �,
∂nwn = 0, x ∈ ∂�.

(23)

Similar to the proof of Theorem 2.1, we can obtain thatwn = Mn/rn0 is a supersolution and
wn = 0 is a subsolution of (23) for all x ∈ �. By the assumptionMn/rn0 < C̃ and the super-
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and subsolution argument of elliptic equations, the solution wn of (23) satisfies 0 ≤ wn <

C̃. It holds limn→∞ wn = l1 ∈ [0, C̃]. Therefore, limn→∞ un/rn0 = l1 ∈ [0, C̃]. The part (i)
is proved.

(ii) We first prove that ‖vn‖∞ is uniformly bounded. Assume on the contrary, that
there exists a subsequence of {(un, vn)}∞n=1, still labelled by itself, such that ‖vn‖∞ → ∞
as n → ∞. Set ṽn = vn/‖vn‖∞. Then by the proof of Theorem 2.1, we get that sub-
ject to a subsequence, ṽn → ṽ weakly in H1(�) and strongly in Lp(�) for any p>1 as
n → ∞. Further, we can still obtain that ṽ 	≡ 0 in �, ṽ = 0 almost everywhere in �\�0,
and ṽ|�0 ∈ H1

0(�0) since ∂�0 is smooth enough. Additionally, suppose that z(x) is the
weak limit of cpρ(k)un/(1 + q1un + q2vn) inH1(�), then ṽ|�0 ∈ H1

0(�0) is a nonnegative
weak solution of

−dv�ṽ = ṽ(m + z(x)), x ∈ �0, ṽ = 0, x ∈ ∂�0. (24)

Combined with the previous analysis, it can be seen that ṽ > 0 in �0. Thus, (24)
means m = λD1 (dv,−z(x),�0) ≥ λD1 (dv,�0)− cpρ(k)/q1, contradicting the assumption
m < λD1 (dv,�0)− cpρ(k)/q1. Therefore, ‖vn‖∞ is uniformly bounded.

It remains to show that subject to a subsequence, limn→∞ vn = vdvm̄ in�with m̄ = m +
cpρ(k)/q1. Since l1 in (i) is positive means un → ∞ as n → ∞, cpρ(k)un/(1 + q1un +
q2vn) → cpρ(k)/q1 uniformly as n → ∞. Then the elliptic regularity theory and Sobolev
embedding theorem yield that subject to a subsequence, vn → v in� as n → ∞, and v is
a nonnegative solution of

−dv�v = v
(
m + cpρ(k)

q1
− s(x)v

)
, x ∈ �, ∂nv = 0, x ∈ ∂�. (25)

Obviously, if v = 0, then the second equation of model (7) shows

m − s(x)vn + cpρ(k)un
1 + q1un + q2vn

→ m + cpρ(k)
q1

> 0 as n → ∞,

meaning
∫
� vn(m − s(x)vn + cpρ(k)un/(1 + q1un + q2vn)) dx > 0, which is impossible.

So, v is a positive solution of (25). Combining (15), Theorem 2.2(1) in [22] and the
assumption −cpρ(k)/q1 < m < λD1 (dv,�0)− cpρ(k)/q1, one has v = vdvm̄ . The part (ii)
is verified.

(iii) Similar to the analysis in the proof of (ii), one sees that in order to finish the proof
of (iii), it only needs to prove that subject to a subsequence, ‖vn‖∞/rn0 → l2 ∈ [0,∞) as
n → ∞, and ṽ|�0 ∈ H1

0(�0) is a positive weak solution of problem (22), where ṽ is defined
in (A2), and it is also the same as that of given in the proof of (ii).

Suppose on the contrary, that there exists a subsequence of {(un, vn)}∞n=1, still denoted
by itself, such that ‖vn‖∞/rn0 → ∞ as n → ∞. Then by the assumption that l1 in (i) is
positive, (A1) and the proof of (ii), we can derive z(x) = 0 in�0 with z(x) being the weak
limit of cpρ(k)un/(1 + q1un + q2vn) in H1(�). Hence, ṽ|�0 ∈ H1

0(�0) is a positive weak
solution of (24)with z(x) = 0. It holdsm = λD1 (dv,�0), contradicting the assumptionm <

λD1 (dv,�0). Thus, ‖vn‖∞/rn0 is bounded, and it is evident that limn→∞ ‖vn‖∞/rn0 = l2 ∈
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[0,∞). Moreover, since in�0, ṽn = vn/‖vn‖∞ satisfies

−dv�ṽn = ṽn
(
m + cpρ(k)un

1 + q1un + q2ṽn‖vn‖∞

)
, x ∈ �0,

we see from limn→∞ un/rn0 = l1 and limn→∞ ‖vn‖∞/rn0 = l2 that ṽ|�0 ∈ H1
0(�0) is a

positive weak solution of problem (22). The proof is completed. �

3. On solutions of model (9)

In this section, we study the dynamics of model (9), including the a priori estimate, bifur-
cation structures, existence, uniqueness, stability and asymptotic behaviors of positive
solutions.

3.1. An a priori estimate and bifurcation structures

This subsection aims to establish an a priori estimate and bifurcation structures of positive
solutions formodel (9).We first establish an a priori estimate for positive solutions as stated
in the following theorem.

Theorem 3.1: Suppose that a and d are fixed positive constants and assume that m <

λD1 (dv,�0). Then for any given positive constant Ĉ, there exists a positive constant Ŵ =
Ŵ(Ĉ) such that any positive solution (u, v) of model (9) with d < r0 ≤ aĈ + d satisfies
‖u‖∞ + ‖v‖∞ ≤ Ŵ.

Proof: Assume that the conclusion is false, then there exist a positive constant Ĉ and
a sequence {rn0 }∞n=1 with d < rn0 ≤ aĈ + d such that model (9) with r0 = rn0 has a posi-
tive solution (un, vn) satisfying ‖un‖∞ + ‖vn‖∞ → ∞ as n → ∞. From the maximum
principle, one sees 0 < un < (rn0 − d)/a ≤ Ĉ. This means ‖vn‖∞ → ∞ as n → ∞. How-
ever, similar to the proof of Theorem 2.1, we can obtain that this is impossible when
m < λD1 (dv,�0). Thus, ‖vn‖∞ is also bounded. The proof is accomplished. �

Remark 3.1: Theorem 2.1 contains the assumption d < r0 ≤ aM + d, which corresponds
to d < r0 ≤ aĈ + d in Theorem 3.1. This difference is mainly caused by the predator-taxis.
The result of introducing the predator-taxis is thatM in model (7) must satisfyM > (r0 −
d)/a, so the assumption d < r0 ≤ aM + d in Theorem 2.1 is necessary. On the other hand,
from the maximum principle, we find that u in model (9) must satisfy u < (r0 − d)/a.
Thus, to guarantee (r0 − d)/a > 0 and the boundedness of u, we need to assume that d <
r0 ≤ aĈ + d holds in Theorem 3.1.

Assume that r� satisfies d < r� < ∞ and

ς(r�) = λN1

(
−du,

r�

1 + kvdvm
− pρ(k)vdvm

1 + q2vdvm
,�

)
= d, (26)

r∗0 ,�u and�v are the same as that of defined in Section 2.1. Then it is clear that model (9)
has semi-trivial solution curves�u and�v. By using the techniques similar to that of the
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proof of Theorems 2.2–2.4, the local and global bifurcation structures of positive solu-
tions for model (9) along�u and�v, and the stability of local bifurcation solutions can be
obtained, as given in the following theorems.

Theorem 3.2 (Local bifurcation structures): The following statements hold.

(i) Let −cρ(k)p/q1 < m < 0. Then a branch of positive solutions for model (9) bifur-
cates from �u if and only if r0 = r∗0 . Specifically, all positive solutions of (9) near
(r∗0 , (r∗0 − d)/a, 0) ∈ R × X are on a smooth curve �̃1, which is given by

�̃1 = {(r0(ϑ), u(ϑ), v(ϑ)) = (r∗0 + ϑ r̄′0(0)+ o(|ϑ |), (r∗0 − d)/a + ϑφ̃∗ + o(|ϑ |),
ϑψ∗ + o(|ϑ |)) : 0 < ϑ < ϑ̃1},

where ϑ̃1 > 0 is a certain number,ψ∗ is the same as that of defined in Theorem 2.2(i),

φ̃∗ = (du�+ d − r∗0)−1
(
pρ(k)(r∗0 − d)
a + q1(r∗0 − d)

+ kr∗0(r∗0 − d)
a

)
ψ∗,

and

r̄′0(0) =
∫
�

(
s(x)+ cpq2ρ(k)(r∗0−d)

a(1+q1(r∗0−d)/a)2

)
ψ3∗ dx − ∫

�
cpρ(k)φ̃∗ψ2∗

(1+q1(r∗0−d)/a)2 dx∫
�

cpρ(k)ψ2∗
a(1+q1(r∗0−d)/a)2 dx

.

Moreover, the bifurcation of �̃1 at (r∗0 , (r∗0 − d)/a, 0) is supercritical if q2 > q̄ and
subcritical if q2 < q̄ with q̄ being given by

q̄ =
∫
�

cpρ(k)φ̃∗ψ2∗
(1+q1(r∗0−d)/a)2 dx − ∫

� s(x)ψ3∗dx∫
�

cpρ(k)(r∗0−d)
a(1+q1(r∗0−d)/a)2ψ

3∗ dx
.

(ii) Let 0 < m < λD1 (dv,�0). Then a branch of positive solutions for model (9) bifur-
cates from �v if and only if r0 = r�. Specifically, all positive solutions of (9) near
(r�, 0, vdvm ) ∈ R × X are on a smooth curve �̃2, which is given by

�̃2 = {(r0(ϑ), u(ϑ), v(ϑ)) = (r� + ϑ r̃′0(0)+ o(|ϑ |),ϑφ̃∗∗ + o(|ϑ |), vdvm
+ ϑψ̃∗∗ + o(|ϑ |)) : 0 < ϑ < ϑ̃2},

where ϑ̃2 > 0 is a certain number, φ̃∗∗ and ψ̃∗∗ satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du�φ̃∗∗ + r�0
1 + kvdvm

φ̃∗∗ − dφ̃∗∗ − pρ(k)vdvm
1 + q2vdvm

φ̃∗∗ = 0, x ∈ �,

dv�ψ̃∗∗ + mψ̃∗∗ − 2s(x)vdvm ψ̃∗∗ + cpρ(k)vdvm
1 + q2vdvm

φ̃∗∗ = 0, x ∈ �,

∂nφ̃∗∗ = ∂nψ̃∗∗ = 0, x ∈ ∂�,
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and r̃′0(0) is defined by

r̃′0(0) =
∫
�

(
(a − pq1ρ(k)v

dv
m

(1+q2v
dv
m )2
)φ̃3∗∗ + (

pρ(k)
(1+q2v

dv
m )2

+ kr�
(1+kvdvm )2

)φ̃2∗∗ψ̃∗∗
)
dx∫

�
φ̃2∗∗

1+kvdvm
dx

.

Moreover, the bifurcation of �̃2 at (r�, 0, vdvm ) is supercritical if a > ã1 and subcritical
if a < ã1, where ã1 is given by

ã1 =
∫
�

(
pq1ρ(k)v

dv
m

(1+q2v
dv
m )2
φ̃3∗∗ −

(
pρ(k)

(1+q2v
dv
m )2

+ kr�
(1+kvdvm )2

)
φ̃2∗∗ψ̃∗∗

)
dx∫

� φ̃
3∗∗dx

.

Theorem 3.3 (Stability of bifurcation solutions): The following statements hold.

(i) Let−cpρ(k)/q1 < m < 0. Then there exists a small positive number ϑ̃1 such that the
positive solution (r0(ϑ), u(ϑ), v(ϑ)) of model (9) bifurcating from (r∗0 , (r∗0 − d)/a, 0)
is non-degenerate for ϑ ∈ (0, ϑ̃1). Moreover, (u(ϑ), v(ϑ)) is asymptotically stable if
q2 > q̄ and unstable if q2 < q̄.

(ii) Let 0 < m < λD1 (dv,�0). Then there exists a small positive number ϑ̃2 such that the
positive solution (r0(ϑ), u(ϑ), v(ϑ)) of model (9) bifurcating from (r�, 0, vdvm ) is non-
degenerate for ϑ ∈ (0, ϑ̃2). Moreover, (u(ϑ), v(ϑ)) is asymptotically stable if a > ã1
and unstable if a < ã1.

Theorem 3.4 (Global bifurcation structures): The following statements hold.

(i) Let−cpρ(k)/q1 < m < 0. Then an unbounded continuum �̃∗ of positive solution of
model (9) bifurcates from�u at (r∗0 , (r∗0 − d)/a, 0) and Projr0�̃∗ = (r∗0 ,∞).

(ii) Let 0 < m < λD1 (dv,�0). Then an unbounded continuum �̃∗∗ of positive solution of
model (9) bifurcates from�v at (r�, 0, vdvm ) and Projr0�̃∗∗ ⊃ (r�,∞).

Remark 3.2: Comparing Theorem 2.2(i) with Theorem 3.2(i), we know that the positive
solution sets of models (7) and (9) near (r∗0 , (r∗0 − d)/a, 0) are on the different smooth
curves. This means that �̃∗ in Theorem 3.4(i) is different from �∗ in Theorem 2.4(i).
Moreover, since r� 	= r∗∗

0 , �̃∗∗ in Theorem 3.4(ii) is different from�∗∗ in Theorem 2.4(ii).

Remark 3.3: In the formulae Projr0�̃∗ = (r∗0 ,∞) and Projr0�∗ ⊃ (r∗0 ,∞), the former is
‘= ’, and the latter is ‘⊃’, this difference is caused by the predator-taxis. More precisely,
by the proofs of Theorems 2.1 and 3.1, one sees that u in model (7) satisfies u<M and
in model (9) satisfies u < (r0 − d)/a. Furthermore, the second equation of (7) and (9)
indicates

m = λN1

(
dv, s(x)v − cpρ(k)u

1 + q1u + q2v
,�

)
> λN1

(
dv,−cpρ(k)u

1 + q1u
,�

)
.



APPLICABLE ANALYSIS 25

It holds that if (7) and (9) have a positive solution, thenm in (7) and in (9) satisfies

m > λN1

(
dv,−cpρ(k)M

1 + q1M
,�

)
= −cpρ(k)M

1 + q1M

and

m > λN1

(
dv,−cpρ(k)(r0 − d)

a + q1(r0 − d)
,�

)
= −cpρ(k)(r0 − d)

a + q1(r0 − d)
,

respectively, where m > −cpρ(k)(r0 − d)/(a + q1(r0 − d)) ⇔ r0 > r∗0 . Combining the
proof of Theorem 2.4(i), we know that Projr0�̃∗ = (r∗0 ,∞) and Projr0�∗ ⊃ (r∗0 ,∞).

3.2. Existence, uniqueness and stability of positive solution

This subsection focuses on the existence, uniqueness and stability of positive solution for
model (9).

Theorem 3.5: The following statements hold.

(i) When −cpρ(k)/q1 < m ≤ 0, then model (9) has at least one positive solution if and
only if r0 > r∗0 .

(ii) Assume that 0 < m < λD1 (dv,�0). If r0 > r�, thenmodel (9) has at least one positive
solution. Let r̃0 = inf{r0 : (9) has a positive solution}. Then d < r̃0 ≤ r�. Moreover,
if r̃0 < r�, then (9) has a positive solution for r0 = r̃0.

Proof: Clearly, by virtue of the conclusions in Theorem 3.4 and the proof of Theorem 2.5,
we just have to prove that r̃0 > d, and if r̃0 < r�, 0 < m < λD1 (dv,�0), then model (9) has
a positive solution for r0 = r̃0.

We first prove r̃0 > d by contradiction. Let r̃0 = d, then there exists a sequence {rn0 }∞n=1
satisfying rn0 > d and limn→∞ rn0 = d such that (9) with r0 = rn0 has a positive solution
(un, vn). By the first equation of (9), we have rn0 > λN1 (du, d + aun + pρ(k)vn/(1 + q1un +
q2vn),�) > d, it holds limn→∞ rn0 > d, which contradicts to limn→∞ rn0 = d. Hence, r̃0 >
d.

Now, we state that if r̃0 < r� and 0 < m < λD1 (dv,�0), then model (9) has a positive
solution for r0 = r̃0. Otherwise, there exists a sequence {(rn0 , un, vn)}∞n=1 such that (un, vn)
is a positive solution of (9) with r0 = rn0 > r̃0 and limn→∞ rn0 = r̃0. Because r̃0 > d, we
can obtain from Theorem 3.1 and the standard regularity theory of elliptic equations that
subject to a subsequence, (un, vn) → (u, v) in X as n → ∞, where (u, v) is a nonnegative
solution of (9) with r0 = r̃0. Since we have assumed that model (9) has no positive solution
for r0 = r̃0, either u ≡ 0 or v ≡ 0.

If u ≡ 0, then the equation of v and 0 < m < λD1 (dv,�0) derive that v = vdvm . Thus, we
have from the equation of un that

0 = λN1

(
du,

rn0
1 + kvn

− d − aun − pρ(k)vn
1 + q1un + q2vn

,�
)

→ λN1

(
du,

r̃0
1 + kvdvm

− d − pρ(k)vdvm
1 + q2vdvm

,�

)
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as n → ∞. This indicates r̃0 = r�, contradicting the assumption that r̃0 < r�. So, u>0.
If v ≡ 0, then u = (r̃0 − d)/a and

lim
n→∞

(
m − s(x)vn + cpρ(k)un

1 + q1un + q2vn

)
= m + cpρ(k)(r̃0 − d)

a + q1(r̃0 − d)
> 0.

So, as n is large enough,∫
�
vn

(
m − s(x)vn + cpρ(k)un

a + q1un + q2vn

)
dx > 0,

which is impossible, so v>0.
Therefore, (u, v) is a positive solution of (9) with r0 = r̃0 when 0 < m < λD1 (dv,�0).

The proof is completed. �

Remark 3.4: Comparing Theorems 2.5 and 3.5, we find that the existence conditions of
positive solutions for model (7) are also the existence conditions of positive solutions for
model (9). This is the similarity between these two theorems. However, this similarity
does not mean that the positive solutions of models (7) and (9) are in the same form,
see Remark 3.2 for details. Besides that, there are some differences between Theorems 2.5
and 3.5. Specifically, we observe the followings:

(a) r0 > r∗0 is a sufficient and necessary condition for the existence of positive solutions
of (9), while it is only a sufficient condition for (7), this difference is caused by the
predator-taxis. The reasons are the same as described in Remark 3.3;

(b) There is a r̃0 satisfying d < r̃0 ≤ r� such that if r̃0 < r�, then (9) has a positive solu-
tion when r0 = r̃0, but there is no similar conclusion for (7), this difference is also
caused by the predator-taxis. Precisely, according to the proof of Theorem 3.5, we
know that the principal eigenvalue λN1 (du, d + au + pρ(k)v/(1 + q1u + q2v),�)
plays a very important role in determining the relationship between r̃0 and d, and
proving the existence of positive solutions for (9) at r0 = r̃0.However, formodel (7),
the corresponding principal eigenvalue becomes λN1 (du,−α(1 − 2u/M)∇v∇ −
α(1 − u/M)�v + d + au + pρ(k)v/(1 + q1u + q2v),�). Clearly, the appearance
of −α(1 − 2u/M)∇v∇ − α(1− u/M)�v hinders our analysis of the problem. So,
whether model (7) has a similar conclusion as above remains unknown in this
paper.

Inwhat follows, on the basis of the fixed point index theory established on positive cones
[32], we investigate the uniqueness and stability of positive solution for model (9). To this
end, some crucial notations and preliminaries are first listed.

Let E be a Banach space, M be a positive cone in E, and D be a closed subspace of M.
Suppose that A : D ⊂ M −→ M is a compact operator, and (u, v) ∈ D is a fixed point
of A. If A(u, v) 	= (u, v) for all (u, v) ∈ ∂D, then the Leray-Schauder degree degM(I −
A,D, (u, v)) is well-defined. LetA′(u, v) be the Fréchet derivative of A at (u, v). If (u, v) is
an isolated fixed point ofA and I − A′(u, v) is invertible, then the fixed point index ofA
at (u, v) is given by indexM(A, (u, v)) = degM(I − A,N(u, v), (0, 0)), where N(u, v) is a
small open neighborhood of (u, v) in M.
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For (u�, v�) ∈ M, define

M(u�,v�) = {(u, v) ∈ E|(u�, v�)+ ν(u, v) ∈ M, ν > 0}
and

S(u�,v�) = {(u, v) ∈ M(u�,v�)| − (u, v) ∈ M(u�,v�)}.
Assume that E has the decomposition E = E(u�,v�) ⊕ S(u�,v�) and P : E −→ S(u�,v�) is
the projection from E to S(u�,v�), where E(u�,v�) is the maximum subspace of E contained
inM(u�,v�) andS(u�,v�) is a closed linear subspace. Then by summarizing the ideas in [32],
the index ofA at (u�, v�) can be calculated by the following lemma.

Lemma 3.1: If (0, 0) is the only fixed point of A′(u�, v�) in M(u�,v�), then there hold
following results on the fixed point index indexM(A, (u�, v�)).

(i) If P ◦ A′(u�, v�) has eigenvalue larger than 1, then indexM(A, (u�, v�)) = 0;
(ii) If P ◦ A′(u�, v�) has no eigenvalue larger than 1, then indexM(A, (u�, v�)) =

indexE(u� ,v�) (A′(u�, v�), (0, 0)) = (−1)σ , where indexE(u� ,v�) (A′(u�, v�), (0, 0))
denotes the index of A′(u�, v�) at (0, 0) in E(u�,v�), σ is the sum of algebraic
multiplicities of all eigenvalues ofA′(u�, v�) in E(u�,v�) which are larger than 1.

In light of Theorem 3.1, we know that when r0 > d and m 	= λD1 (dv,�0), there exists
a positive constant W∗ such that the positive solution (u, v) of model (9) satisfies u(x) ≤
(r0 − d)/a and v(x) ≤ W∗. Set

E = {(u, v)|u, v ∈ C1(�), ∂nu = ∂nv = 0, x ∈ ∂�}, M = {(u, v) ∈ E|u, v ≥ 0},
D = {(u, v) ∈ M | 0 ≤ u(x) < (r0 − d)/a + ε, 0 ≤ v(x) <W∗ + ε}.

For t ∈ [0, 1], defineAt : D → M by

At(u, v) =

⎛⎜⎜⎝(−du�+ P̃)−1
(
u

(
r0

1 + tkv
− d − au − tpρ(k)v

1 + q1u + q2v

)
+ P̃u

)
(−dv�+ P̃)−1

(
v
(
m − s(x)v + tcpρ(k)u

1 + q1u + q2v

)
+ P̃v

)
⎞⎟⎟⎠ ,

where P̃ is a large positive number such that

max
{
max
�

{∣∣∣∣ r0
1 + tkv

− d − au − tpρ(k)v
1 + q1u + q2v

∣∣∣∣} ,

max
�

{∣∣∣∣m − s(x)v + tcpρ(k)u
1 + q1u + q2v

∣∣∣∣}}
< P̃.

Clearly, Theorem 3.1 means that At is a compact operator from [0, 1] × D to M, and all
nonnegative solutions ofmodel (9) lie inD.Moreover, a straightforward observation shows
that (u, v) is a solution of (9) if and only if (u, v) is a fixed point ofAt when t = 1, and this
is independent of the choice of P̃.
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Simple analysis gives that for t ∈ [0, 1], when r0 > d and 0 < m < λD1 (dv,�0), At has
three nonnegative fixed points (0, 0), ((r0 − d)/a, 0) and (0, vdvm ) which are not positive.
Next, we calculate the indexes ofA0 andA1 at these fixed points, respectively.

Lemma 3.2: Let r0 > d and 0 < m < λD1 (dv,�0). Then the following statements hold.

(i) indexM(A0, (0, 0)) = indexM(A0, ((r0 − d)/a, 0)) = indexM(A0, (0, vdvm )) = 0;
(ii) indexM(A1, (0, 0)) = indexM(A1, ((r0 − d)/a, 0)) = 0;

(iii) indexM(A1, (0, vdvm )) =

⎧⎪⎨⎪⎩
0, λN1

(
du,

r0
1+kvdvm

−d− pρ(k)vdvm
1+q2v

dv
m

,�
)
>0,

1, λN1

(
du,

r0
1+kvdvm

−d− pρ(k)vdvm
1+q2v

dv
m

,�
)

≤0.

Proof: We only present the proof of (iii) since the other cases can be proved similarly.
For the fixed point (0, vdvm ), on the basis of the definitions of M(u�,v�), S(u�,v�), S(u�,v�)

andP , we obtainM
(0,vdvm )

= {(u, v) ∈ E|u ≥ 0}, S
(0,vdvm )

= {(u, v) ∈ E | u = 0},S
(0,vdvm )

=
{(u, v) ∈ E | v = 0} and P(u, v) = (u, 0). On account of

A′
1(0, v

dv
m ) =

⎛⎜⎜⎜⎜⎝
(−du�+ P̃)−1

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)

(−dv�+ P̃)−1 cpρ(k)v
dv
m

1 + q2vdvm

0
(−dv�+ P̃)−1(m − 2s(x)vdvm + P̃)

⎞⎟⎟⎟⎟⎠ ,

and the formula P(u, v) = (u, 0) holds, where P̃ is large and satisfies r0/(1 + kvdvm )− d −
pρ(k)vdvm /(1 + q2vdvm )+ P̃ > 0,m − 2s(x)vdvm + P̃ > 0, we can verify

P ◦ A′
1(0, v

dv
m )(u, v)

T =
(
(−du�+ P̃)−1

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
u, 0

)T

.

Suppose (ϕ,ψ) ∈ M
(0,vdvm )

and P ◦ A′
1(0, v

dv
m )(ϕ,ψ)T = τ(ϕ,ψ)T , where τ is the eigen-

value of P ◦ A′
1(0, v

dv
m ). Then

(−du�+ P̃)−1

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
ϕ = τϕ, ϕ �, 	≡ 0. (27)
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Obviously, since r0/(1 + kvdvm )− d − pρ(k)vdvm /(1 + q2vdvm )+ P̃ > 0, one has τ 	= 0. Mul-
tiplying both sides of (27) by −du�+ P̃ and applying some transformations, we get

− du�ϕ +
(
pρ(k)vdvm
1 + q2vdvm

− r0
1 + kvdvm

)
ϕ + τ − 1

τ

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
ϕ

= −dϕ.

This indicates

d = λN1

(
du,

r0
1 + kvdvm

− pρ(k)vdvm
1 + q2vdvm

− τ − 1
τ

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
,�

)
.

If λN1 (du, r0/(1 + kvdvm )− d − pρ(k)vdvm /(1 + q2vdvm ),�) > 0, then by r0/(1 + kvdvm )− d −
pρ(k)vdvm /(1 + q2vdvm )+ P̃ > 0, we can choose τ > 1 such that

λN1

(
du,

r0
1 + kvdvm

− pρ(k)vdvm
1 + q2vdvm

− τ − 1
τ

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
,�

)

< λN1

(
du,

r0
1 + kvdvm

− pρ(k)vdvm
1 + q2vdvm

,�

)
.

This derives that P ◦ A′
1(0, v

dv
m ) has eigenvalue larger than 1. Therefore, Lemma 3.1(i)

shows indexM(A1,(0, vdvm )) = 0.
If λN1 (du, r0/(1 + kvdvm )− d − pρ(k)vdvm /(1 + q2vdvm ),�) ≤ 0, then there holds

λN1

(
du,

r0
1 + kvdvm

− pρ(k)vdvm
1 + q2vdvm

− τ − 1
τ

(
r0

1 + kvdvm
− d − pρ(k)vdvm

1 + q2vdvm
+ P̃

)
,�

)

≥ λN1

(
du,

r0
1 + kvdvm

− pρ(k)vdvm
1 + q2vdvm

,�

)
.

This means τ ≤ 1. Then we get from Lemma 3.1(ii) that indexM(A1, (0, vdvm )) =
indexE

(0,vdvm )
(A′

1(0, v
dv
m ), (0, 0)) = (−1)σ , where σ is the sum of algebraic multiplicities of

all eigenvalues ofA′
1(0, v

dv
m ) inE

(0,vdvm )
which are larger than 1. Therefore, in order to obtain

the index indexM(A1, (0, vdvm )), we now need to determine the value of σ .
Denote by τ ′ the eigenvalue ofA′

1(0, v
dv
m ) corresponding to the eigenfunction (ϕ′,ψ ′) ∈

E
(0,vdvm )

with ϕ′ ≡ 0,ψ ′ 	≡ 0. Then we have

(−dv�+ P̃)−1(m − 2s(x)vdvm + P̃)ψ ′ = τ ′ψ ′. (28)

Since m − 2s(x)vdvm + P̃ > 0, τ ′ 	= 0. Multiplying both sides of (28) by −du�+ P̃ and
applying some transformations, we get

−dv�ψ ′ + 2s(x)vdvmψ
′ + τ ′ − 1

τ ′ (m − 2s(x)vdvm + P̃)ψ ′ = mψ ′.
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Then

m = λN1

(
dv, 2s(x)vdvm + τ ′ − 1

τ ′ (m − 2s(x)vdvm + P̃),�
)
.

Meanwhile, we derive from (10) that m = λN1 (dv, s(x)v
dv
m ,�) < λN1 (dv, 2s(x)v

dv
m ,�), this

implies (τ ′ − 1)/τ ′(m − 2s(x)vdvm + P̃) < 0. Thus, τ ′ < 1, it means σ = 0. Consequently,
Lemma 3.1(ii) implies

indexM(A1, (0, vdvm )) = indexE
(0,vdvm )

(A′
1(0, v

dv
m ), (0, 0)) = 1.

The proof is completed. �

Based on Lemma 3.2, we next discuss the uniqueness and stability of positive solution
for model (8) when k → 0 and q2 → ∞. The result is shown below.

Theorem 3.6: Let 0 < m < λD1 (dv,�0) and r0 > r�. Then there exist a small and a large
positive numbers ε and q∗, respectively, such that for 0 < k < ε and q2 > q∗,model (9) has
a unique positive solution (u, v), which is non-degenerate and linearly stable.

Proof: By Theorem 3.5, it is easy to check that model (9) has at least one positive solution
when 0 < m < λD1 (dv,�0) and r0 > r�. Next, we prove that any positive solution (u, v)
of (9) is non-degenerate and linearly stable for sufficiently small k and sufficiently large q2.
This purpose will be achieved by reductio. Assume that there exist a sequence {(kn, qn2)}∞n=1
satisfying (kn, qn2) → (0,∞) as n → ∞, and a corresponding positive solution (un, vn)
of (9) at (k, q2) = (kn, qn2), such that for any n ≥ 1, the linearized problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−du�φn =
(

r0
1 + knvn

− d − 2aun − pρ(kn)vn(1 + qn2vn)
(1 + q1un + qn2vn)2

)
φn

−
(

r0knun
(1 + knvn)2

+ pρ(kn)un(1 + q1un)
(1 + q1un + qn2vn)2

)
ψn + γnφn, x ∈ �,

−dv�ψn =
(
m − 2s(x)vn + cpρ(kn)un(1 + q1un)

(1 + q1un + qn2vn)2

)
ψn

+cpρ(kn)vn(1 + qn2vn)
(1 + q1un + qn2vn)2

φn + γnψn, x ∈ �,
∂nφn = ∂nψn = 0, x ∈ ∂�

(29)

of (9) has an eigenvalue solution pair (φn,ψn, γn), where γn is the eigenvalue and (φn,ψn)

is the corresponding eigenfunction with ‖φn‖2 + ‖ψn‖2 = 1 and Reγn ≤ 0. Notice that
φn and ψn may be complex-valued.

In what follows, we prove that {γn}∞n=1 is uniformly bounded. At first, we claim
that {Reγn}∞n=1 is uniformly bounded. Owing to Reγn ≤ 0, we only need to prove that
{Reγn}∞n=1 is bounded below. Let Reγn → −∞ asn → ∞. Denote φ̄n and ψ̄n the conjugate
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functions of φn and ψn, respectively. By the Kato’s inequality, one has

−du�|φn| ≤ −duRe
(
φ̄n

|φn|�φn
)

≤
(
r0 − d − 2aun − pρ(kn)vn(1 + qn2vn)

(1 + q1un + qn2vn)2

)
|φn|

+
(

r0knun
(1 + knvn)2

+ pρ(kn)un(1 + q1un)
(1 + q1un + qn2vn)2

)
|ψn| + Reγn|φn| (30)

and

−dv�|ψn| ≤ −dvRe
(
ψ̄n

|ψn|�ψn

)
≤

(
m − 2s(x)vn + cpρ(kn)un(1 + q1un)

(1 + q1un + qn2vn)2

)
|ψn|

+ cpρ(kn)vn(1 + qn2vn)
(1 + q1un + qn2vn)2

|φn| + Reγn|ψn|. (31)

Multiplying both sides of (30) by |φn|, then integrating over �, and then applying the
Hölder inequality and the fact un < r0−d

a , we have

−(r0 + Reγn)
∫
�

|φn|2 dx ≤
(
r0kn(r0 − d)

a
+ pρ(kn)

q1

) (∫
�

|φn|2 dx
)1/2

×
(∫

�
|ψn|2 dx

)1/2
.

Since Reγn → −∞ and kn → 0 as n → ∞, we get that for sufficiently large n, there has
‖φn‖2 ≤ p/(q1(−r0 − Reγn))‖ψn‖2. Let n → ∞ in this inequality. One has ‖φn‖2 → 0
as n → ∞, this implies ‖ψn‖2 → 1 as n → ∞.

Similarly, multiplying both sides of (31) by |ψn|, then integrating by parts over �, and
then applying the Hölder inequality, we get

−
(
m + cpρ(kn)

q1
+ Reγn

) ∫
�

|ψn|2 dx ≤ cpρ(kn)
qn2

(∫
�

|φn|2dx
)1/2 (∫

�
|ψn|2dx

)1/2
.

Combining Reγn → −∞, kn → 0 and qn2 → ∞ as n → ∞, we obtain ‖ψn‖2 → 0 as n →
∞, which contradicts to ‖ψn‖2 → 1 as n → ∞ obtained above. So, {Reγn}∞n=1 is bounded
below.

Now,we derive that {Imγn}∞n=1 is uniformly bounded. Assume |Imγn| → ∞ as n → ∞.
Multiply the first two equations of (29) by φ̄n and ψ̄n respectively and integrate by parts
over� to yield

|Imγn|
∫
�

|φn|2 dx =
∣∣∣∣Im ∫

�

(
r0knun

(1 + knvn)2
+ pρ(kn)un(1 + q1un)
(1 + q1un + qn2vn)2

)
φ̄nψn dx

∣∣∣∣
and

|Imγn|
∫
�

|ψn|2 dx =
∣∣∣∣Im ∫

�

cpρ(kn)vn(1 + qn2vn)
(1 + q1un + qn2vn)2

φnψ̄n dx
∣∣∣∣ .
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Applying the Hölder inequality to the above two equations, we have

|Imγn|‖φn‖2 ≤
(
r0kn(r0 − d)

a
+ pρ(kn)

q1

)
‖ψn‖2 and

|Imγn|‖ψn‖2,� ≤ cpρ(kn)
qn2

‖φn‖2.

Owing to |Imγn| → ∞, kn → 0 and qn2 → ∞ as n → ∞, we conclude ‖φn‖2 → 0 and
‖ψn‖2 → 0 as n → ∞, contradicting the fact that ‖φn‖2 + ‖ψn‖2 = 1. Thus, {Imγn}∞n=1
is uniformly bounded. Summarizing the previous analysis, we conclude that {γn}∞n=1 is
uniformly bounded. So, there exists γ satisfying Reγ ≤ 0 such that γn → γ as n → ∞.
Next, we derive Reγ > 0, this contradiction will show that any positive solution (u, v) of
model (9) is stable.

Due to (φn,ψn) satisfies (29) and ‖φn‖2 + ‖ψn‖2 = 1, one has that as n → ∞, there
exists (φ,ψ) such that (φn,ψn) → (φ,ψ) weakly in H1(�)× H1(�) and strongly in
L2(�)× L2(�). Furthermore, since r∗∗

0 > d, kn → 0 and qn2 → ∞ as n → ∞, we have
that when r0 > r∗∗

0 and 0 < m < λD1 (dv,�0), (un, vn) → ((r0 − d)/a, vdvm ) as n → ∞.
Hence, (φ,ψ) satisfies⎧⎪⎨⎪⎩

−du�φ = (d − r0)φ + γφ, x ∈ �,
−dv�ψ = (m − 2s(x)vdvm )ψ + γψ , x ∈ �,
∂nφ = ∂nψ = 0, x ∈ ∂�

(32)

by letting n → ∞ in (29). According to the definitions of ϕ and ψ , we know that at least
one of them is not equivalent to zero. Thus, (32) implies Reγ > 0, which contradicts to
Reγ ≤ 0. Therefore, any positive solution (u, v) ofmodel (9) is non-degenerate and linearly
stable.

The remaining proves the uniqueness of positive solution (u, v). Suppose that At and
D are the same as that of defined in the previous analysis. Then (u, v) is a solution of (9)
if and only if (u, v) is a fixed point of At as t = 1. Clearly, for any t ∈ [0, 1], At(u, v) 	=
(u, v), (u, v) ∈ ∂D. Hence, degM(I − At ,D, (0, 0)) is well-defined, and the homotopy
invariance of degree implies degM(I − A0,D, (0, 0)) = degM(I − A1,D, (0, 0)).

Due to r0 > r∗∗
0 > d and 0 < m < λD1 (dv,�0), we get that when t = 0, A0 has four

fixed points (0, 0), ((r0 − d)/a, 0), (0, vdvm ) and ((r0 − d)/a, vdvm ), and Lemma 3.2(i) shows
indexM(A0, (0, 0)) = indexM(A0, ((r0 − d)/a, 0)) = indexM(A0, (0, vdvm )) = 0.
Moreover, simple analysis gives that the positive fixed point ((r0 − d)/a, vdvm ) of A0 is
equivalent to the positive solution of (9) as k → 0 and q2 → ∞. Then the stability result
obtained above means that ((r0 − d)/a, vdvm ) is stable, it follows that indexM(A0, ((r0 −
d)/a, vdvm )) = 1. Further, from the additivity property of fixed point index, we obtain

degM(I − A0,D, (0, 0)) = indexM(A0, (0, 0))+ indexM(A0, ((r0 − d)/a, 0))

+ indexM(A0, (0, vdvm ))+ indexM(A0, ((r0 − d)/a, vdvm ))

= 0 + 0 + 0 + 1 = 1.

When t = 1, A1 has three nonnegative fixed points (0, 0), ((r0 − d)/a, 0) and
(0, vdvm ) which are not positive. Since r0 > r� is equivalent to λN1 (du, r0/(1 + kvdvm )−
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d − pρ(k)vdvm /(1 + q2vdvm ),�) > 0, Lemma 3.2(ii)–(iii) derives indexM(A1, (0, 0)) =
indexM(A1, ((r0 − d)/a, 0)) = indexM(A1, (0, vdvm )) = 0. Moreover, by the compactness
of A1, there exist only finite isolated positive fixed points of A1, which are denoted by
(ui, vi), i = 1, · · ·, n. Additionally, the stability of any positive solution obtained above
yields that A1 has index 1 at each positive fixed point, that is, indexM(A1, (ui, vi)) = 1,
i = 1, · · ·, n. Hence,

1 = degM(I − A0,D, (0, 0)) = degM(I − A1,D, (0, 0))

= indexM(A1, (0, 0))+ indexM

(
A1,

(
r0 − d

a
, 0

))

+ indexM(A1, (0, vdvm ))+
n∑

i=1
indexM(A1, (ui, vi))

= 0 + 0 + 0 + n = n.

It holds n = 1. Therefore,model (9) has a unique positive solution. The proof is completed.
�

Similar to the discussion of Theorem 3.6, the uniqueness and stability of positive
solution for model (9) when k → 0 and q1 → ∞ can also be obtained, see Theorem 3.7.

Theorem 3.7: Let 0 < m < λD1 (dv,�0) and r0 > r�. Then there exist a small and a large
positive numbers ε and q∗∗, respectively, such that for 0 < k < ε and q1 > q∗∗, model (9)
has a unique positive solution (u, v), which is non-degenerate and linearly stable.

Remark 3.5: Theorems 3.6–3.7 show that when the fear level k is very low and the inter-
ference effect q2 (q1) of predator (prey) is quite strong, model (9) has a unique positive
solution under certain conditions. However, due to the complexity of model (7), the math-
ematical techniques in proving Theorem 3.6 are not applicable to it. Therefore, whether
the conclusions similar to that of Theorems 3.6–3.7 hold true for (7) remains unknown in
the present paper.

3.3. Asymptotic behaviors of positive solutions as r0 → ∞ orm → λD1 (dv,�0)

This subsection concentrates on the asymptotic behaviors of positive solutions for
model (9) as r0 → ∞ orm → λD1 (dv,�0).

Firstly, the asymptotic behavior of positive solutions as r0 → ∞ is discussed. The result
is as follows.

Theorem 3.8: Assume that {rn0 }∞n=1 is a sequence satisfying limn→∞ rn0 = ∞, and (un, vn)
is an arbitrary positive solution of model (9) corresponding to r0 = rn0 . Then the following
statements hold.

(i) limn→∞ un
rn0

= l′1 ∈ [0, 1/a].
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(ii) If l′1 in (i) is positive and −cpρ(k)/q1 < m < λD1 (dv,�0)− cpρ(k)/q1, then subject
to a subsequence, limn→∞ vn = vdvm̄ in �, where m̄ and vdvm̄ are the same as that of
defined in Theorem 2.6(ii).

(iii) If l′1 in (i) is positive and λD1 (dv,�0)− cpρ(k)/q1 ≤ m < λD1 (dv,�0), then
(B1) ‖vn‖∞ → ∞ as n → ∞;
(B2) subject to a subsequence, ‖vn‖∞/rn0 → l′2 ∈ [0,∞), ṽn = vn/‖vn‖∞ → ṽ

weakly in H1(�) and strongly in LP(�) for any p>1 as n → ∞, where ṽ is
a nonnegative function satisfying ṽ = 0 for x ∈ �\�0, and ṽ|�0 ∈ H1

0(�0) is a
positive weak solution of

−dv�ṽ = ṽ
(
m + cpl′1ρ(k)

q1l′1 + q2l′2ṽ

)
, x ∈ �0, ṽ = 0, x ∈ ∂�0.

Proof: For Part (i), set wn = un/rn0 . Similar to the proof of Theorem 2.6(i), we have 0 ≤
wn ≤ (rn0 − d)/(arn0 ). It follows that limn→∞ un/rn0 = limn→∞ wn = l′1 ∈ [0, 1/a]. The
proof of Part (i) follows.

The remaining parts can be proved by using a simple variant of the arguments in the
proof of Theorem 2.6(ii)–(iii), we omit them here. The proof is completed. �

Secondly, we consider the asymptotic behavior of positive solutions for model (9) as
m → λD1 (dv,�0). To this end, let’s start with some notations and basic facts.

As we all know, m → vdvm is continuous and strictly increasing from (0, λD1 (dv, �0))

to C1(�). According to Theorem 2.2 in [22], we obtain that m → λN1 (du, pρ(k)v
dv
m /(1 +

q2vdvm ),�\�0) is also continuous and strictly increasing, and

lim
m→λD1 (dv,�0)

λN1

(
du,

pρ(k)vdvm
1 + q2vdvm

,�\�0

)
= λN1

(
du,

pρ(k)V∗

1 + q2V∗ ,�\�0

)
,

where V∗ is the minimal positive solution of the blow-up problem

−dv�V = mV − s(x)V2, x ∈ �\�0, ∂nV = 0, x ∈ ∂�, V = ∞, x ∈ ∂�0. (33)

Obviously,

λN1

(
du,

pρ(k)V∗

1 + q2V∗ ,�\�0

)
→ λN1 (du, pρ(k)V

∗,�\�0) � R∗

as q2 → 0. Make the following assumptions:
(H1) There exist positive constants ϑ and ε such that s(x) satisfies limx→∂�0

s(x)
(d(x,∂�))ϑ= ε;

(H2) {mn}∞n=1 is a sequence satisfyingmn → λD1 (dv,�0) as n → ∞.
By Theorem 2.8 in [33], (H1) guarantees that problem (33) has a unique positive solu-

tion V∗. The following theorems describe the asymptotic behaviors of positive solutions
for model (9) asm → λD1 (dv,�0).

Theorem 3.9: Let (H2) hold. Suppose that vn is an arbitrary positive solution of the second
equation of model (9) with m = mn. Then limn→∞ vn = ∞ uniformly on�0.
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Proof: From the equation of vn, one sees that vn satisfies

−dv�vn ≥ mnvn − s(x)v2n, x ∈ �, ∂nvn = 0, x ∈ ∂�.

Let vdvmn be positive solution of the problem

−dv�vn = mnvn − s(x)v2n, x ∈ �, ∂nvn = 0, x ∈ ∂�

when 0 < mn < λD1 (dv,�0). Then it follows from Lemma 2.1 in [33] that vdvmn ≤ vn. Since
mn → λD1 (dv,�0) as n → ∞, one sees fromTheorem2.2 in [22] that vdvmn → ∞ uniformly
on �0 as n → ∞. This means vn → ∞ uniformly on �0 as n → ∞. The proof follows.

�

Theorem 3.10: Let (H1) and (H2) hold. Assume that {qn2}∞n=1 is a sequence satisfying
limn→∞ qn2 = 0, and (un, vn) is an arbitrary positive solution of model (9) with (m, q2) =
(mn, qn2). Then the following statements hold.

(i) limn→∞ un = 0 uniformly on any compact subset of�0;
(ii) If r0 = d + R∗ and q1 is sufficiently small, then subject to a subsequence,

limn→∞(un, vn)|�\�0
= (0,V∗) in the space L∞(�\�0)× C1

loc(�\�0), where
C1
loc(�\�0) = ⋂

� C1(�) with� running through all the closed subsets of�\�0;
(iii) If r0 > d + R∗, then subject to a subsequence, limn→∞(un, vn)|�\�0

= (u◦, v◦) in
the space C1

loc(�\�0)× C1
loc(�\�0) with (u◦, v◦) being a positive solution of the

boundary blow-up problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−du�u = r0

1 + kv
u − du − au2 − pρ(k)uv

1 + q1u + q2v
, x ∈ �\�0,

−dv�v = λD1 (dv,�0)v − s(x)v2 + cpρ(k)uv
1 + q1u + q2v

, x ∈ �\�0,

∂nu|∂� = u|∂�0 = 0, ∂nv|∂� = 0, v|∂�0 = ∞.

(34)

Proof: (i) Set αn = minx∈�0
vn(x). The conclusion in Theorem 3.9 implies αn → ∞ as

n → ∞. From the equation of un, we find that un satisfies

−du�un ≤ r0un − dun − au2n − pρ(k)αnun
1 + q1un + qn2αn

≤
(
r0 − d − pρ(k)αn

1 + q1(r0 − d)/a + qn2αn

)
un − au2n. (35)

Let �n = |r0 − d − pρ(k)αn/(1 + q1(r0 − d)/a + qn2αn)|. Denote wn = β�(x)−4/�n
with�(x) being a smooth function on �0 satisfying�(x) = 0 on ∂�0 and�(x) > 0 in
�0, and β > 0 being a constant to be determined later. Some straightforward calculations
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yield that if β is chosen large enough, then for all x ∈ �0, we have

du�wn +
(
r0 − d − pρ(k)αn

1 + q1(r0 − d)/a + qn2αn

)
wn − aw2

n

= βdu
�n

(
20�(x)−6|∇�(x)|2 − 4�(x)−5��(x)

) − β�(x)−4 − aβ2

�2
n
�(x)−8

≤ β�(x)−6

�n
(20du|∇�(x)|2 − 4du�(x)��(x)− 2

√
aβ)

< 0.

Thus, for all n ≥ 1, one has

−du�wn ≥
(
r0 − d − pρ(k)αn

1 + q1(r0 − d)/a + qn2αn

)
wn − aw2

n, x ∈ �0. (36)

Since wn = β�(x)−4/�n → ∞ as x → ∂�0, wn > un on ∂�0. Furthermore, combin-
ing (35)–(36) and Lemma 2.1 in [34], we conclude wn ≥ un on �0. Additionally, since
qn2 → 0 and αn → ∞ as n → ∞, we have �n → ∞ as n → ∞, and then wn → 0 uni-
formly on any compact subset of �0 as n → ∞, the same is true for un. The proof of (i)
follows.

(ii) Since

−du�un ≤ r0un, x ∈ �, ∂nun = 0, x ∈ ∂�

and

du
∫
�

|∇un|2 dx +
∫
�
u2n dx ≤ (r0 + 1)

∫
�
u2n dx ≤ (r0 + 1)|�|,

there exists a subsequence of {un}∞n=1, also denoted by itself, such that un → u◦ weakly in
H1
0(�) and strongly in Lp(�) for any p ≥ 1. Owing to mn → λD1 (dv,�0) and qn2 → 0 as

n → ∞, we see from conclusion (i) that u◦ = 0 almost everywhere in �0. Furthermore,
from the smoothness assumption on ∂�0, one has u◦|�\�0

∈ H1
0(�\�0) and u◦|∂�0 = 0.

We now show u◦ = 0 almost everywhere in�. Otherwise, together with the discussion
above, u◦ > 0 in�\�0. By the proof of Theorem 3.9, we have vn ≥ vdvmn in�. Due to un <
(r0 − d)/a, one can obtain from the equation of un that

r0 − d > λN1

(
du, aun + pρ(k)vn

1 + q1un + qn2vn
,�

)

≥ λN1

(
du, aun + pρ(k)vdvmn

1 + q1(r0 − d)/a + qn2v
dv
mn

,�

)
.
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Since (H2) holds, it follows fromTheorem 2.2 in [22] that vdvmn → V∗ in�\�0. Combining
qn2 → 0 as n → ∞, one concludes that if q1 is chosen suitably small, then

λN1

(
du, aun + pρ(k)vdvmn

1 + q1(r0 − d)/a + qn2v
dv
mn

,�\�0

)

→ λN1

(
du, au◦ + pρ(k)V∗

1 + q1(r0 − d)/a
,�\�0

)
> λN1 (du, pρ(k)V

∗,�\�0) = R∗

as n → ∞. This means r0 − d > R∗, contradicting the assumption r0 − d = R∗. Thus,
u◦ = 0 almost everywhere in �, and therefore un → 0 in Lp(�) for any p ≥ 1. Fur-
thermore, from −du�un ≤ r0un, we get 0 ≤ un ≤ (−du�+ I)−1(r0 + 1)un. Then the
regularity theory of elliptic equation shows un → 0 in L∞(�).

Next, we prove vn → V∗ in C1
loc(�\�0). For this purpose, we define a sequence of

enlarging smooth domains �n given by �n = {x ∈ �0 : d(x, ∂�0) > σn}, where σn is a
decreasing sequence of positive numbers with σn → 0 as n → ∞. Suppose that σ1 is a
sufficiently small positive number such that for any n ≥ 1, �n is not empty and ∂�n is as
smooth as ∂�0. Set

sn(x) = s(x)+ d(x,�n), x ∈ �.
Then sn(x) satisfies (i) sn(x) → s(x) as n → ∞ in L∞(�); (ii) sn(x) > 0 in �\�n; (iii)
sn(x) = 0 in�n; (iv) sn(x) ≥ sn+1(x) for all x ∈ �.

For fixed ε > 0, by Theorem 2.8 in [33], we know that the problem

− dv�H = (mn + ε)H − sn(x)H2, x ∈ �\�n, ∂nH = 0, x ∈ ∂�,
H = ∞, x ∈ ∂�n

has a unique positive solution Hn for each n. Further, with the help of Lemma 2.1 in
[33], we conclude that in�\�0,Hn is increasing with respect to n. It holds thatH∗(x) =
limn→∞ Hn(x) is well-defined over�\�0. Then a regularity consideration shows thatH∗
is a solution of

−dv�H = (λD1 (dv,�0)+ ε)H − s(x)H2, x ∈ �\�0, ∂nH = 0, x ∈ ∂�,
H = ∞, x ∈ ∂�0. (37)

It is obvious that problem (37) has a unique positive solution V∗
ε under the assumption

(H1). Therefore,H∗ = V∗
ε , that is, limn→∞ Hn(x) = V∗

ε , x ∈ �\�0.
On account of ‖un‖∞ → 0 as n → ∞, for all large n, vn satisfies

−dv�vn =
(
mn + cpρ(k)un

1 + q1un + qn2vn

)
vn − s(x)v2n ≤ (mn + ε)vn − sn(x)v2n.

Using Lemma 2.1 in [33], we get that for all large n, vn ≤ Hn in �\�0 ⊂ �\�n. This
derives

limn→∞vn(x) ≤ limn→∞Hn = V∗
ε (x) (38)

for x ∈ �\�0. Furthermore, by a simple regularity and compactness consideration, one
sees that the uniqueness of V∗

ε implies that V∗
ε varies continuously with respect to ε in the



38 J. WANG AND X. ZOU

norm C1
loc(�\�0). Letting ε → 0 in (38), we have

limn→∞vn(x) ≤ V∗(x), x ∈ �\�0.

On the other side, owing to vn(x) ≥ vdvmn(x) and vdvmn(x) → V∗(x) in�\�0 as n → ∞,

limn→∞vn(x) ≥ V∗(x), x ∈ �\�0.

Therefore,

lim
n→∞ vn(x) = V∗(x), x ∈ �\�0.

By making use of the regularity theory of elliptic equation, we conclude vn → V∗ in
C1
loc(�\�0). The proof of (ii) follows.
(iii) On account of r0 > d + R∗, it holds from the proof of (ii) that u◦ > 0 in�\�0. Due

to un < (r0 − d)/a, we know that if there exists a constant η satisfying η ≥ λD1 (dv,�0)+
cpρ(k)(r0 − d)/(a + q1(r0 − d)), then

−dv�vn =
(
mn + cpρ(k)un

1 + q1un + qn2vn

)
vn − s(x)v2n

<

(
mn + cpρ(k)(r0 − d)

a + q1(r0 − d)

)
vn − s(x)v2n

≤ ηvn − s(x)v2n,

and then Lemma 2.1 in [33] derives vn ≤ Vdv
η in�\�0 with Vdv

η being the unique positive
solution of (33)withm = η. Thus, {vn(x)}∞n=1 is uniformly bounded on any compact subset
of�\�0.

Denote Bn = {x ∈ � : d(x,�0) > �n}, where �n is a decreasing sequence of positive
numbers with �n → 0 as n → ∞. By using the interior and boundary estimates on Bi+1,
one sees that {vn|Bi} is compact in C1(Bi). Then a standard diagonal process gives that
{vn|�\�0

} has a subsequence converging to some v◦ in C1
loc(�\�0), and clearly, ∂nv◦ = 0

for x ∈ ∂�. Moreover, since vdvmn(x) ≤ vn(x) and vdvmn(x) → V∗(x) in C1
loc(�\�0) as n →

∞, we deduce v◦ ≥ V∗ in C1
loc(�\�0). So v◦ > 0 in�\�0 and v◦|∂�0 = ∞. Then by let-

ting n → ∞ in the equations for un and vn, we obtain (u◦, v◦)|�\�0
satisfies (34). And the

standard interior and boundary regularity indicates u◦|�\�0
∈ C1

loc(�\�0). The proof of
(iii) is completed. �

Remark 3.6: Theorems 3.9–3.10 imply that when the growth rate m of predator
approaches the critical value λD1 (dv,�0), the following phenomena will occur: (i) Predator
population blows up in �0 (see Theorem 3.9); (ii) Prey population vanishes in �0 if the
interference effect q2 of predator is weak (see Theorem 3.10(i)); (iii) Under the conditions
in case (ii), if the interference effect q1 of prey is also weak, then when the growth rate
r0 of prey is equal to d + R∗, the number of predators will reach a certain level, but the
prey species will die out in �\�0 (see Theorem 3.10(ii)), however, when r0 is larger than
d + R∗, both the number of prey and predator species will reach a certain level in �\�0
(see Theorem 3.10(iii)).
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We end up this section by pointing out that for (7), we are not able to explore the
asymptotic behavior asm → ∞.

4. Numerical simulations

In this section, based on Theorems 2.5 and 3.5, we perform some numerical simulations
of models (7) and (9) in one-dimensional spaces �0 = (0, lπ/2) and �\�0 = (lπ/2, lπ]
(l>0) to illustrate the existence of positive solutions. Then the effects of fear level, predator-
taxis, intra-specific pressure of predator and degeneracy on the positive solutions are
analyzed according to these numerical results.

4.1. Numerical simulations ofmodel (7)

Let s(x) satisfy

s(x) ≡ 0, x ∈ �0, s(x) = ln(1 + x), x ∈ �\�0. (39)

Given the parameter set

l = 0.5, a = 10, α = 10, M = 10, p = 2, c = 0.6, m = −0.1,

c1 = 0.2, d = 6, q1 = 1, q2 = 10, r0 = 10, du = 2, dv = 0.01.
(40)

Then�0 = [0, 0.785] and�\�0 = (0.785, 1.57].
Choose the parameter values in (40), we find that when k = 0.01, 0.1, 1 or 10, all condi-

tions in Theorem 2.5(i) are satisfied, thus, model (7) has at least one positive solution. It is
worthwhile to point out that due to the degeneracy of function s(x), the forms of positive
solutions of (7) in spaces�0 and�\�0 are different, so we perform the numerical simula-
tions of (7) in spaces�0 and�\�0, respectively, see Figures 2–4. In what follows, we give
the detailed explanations of Figures 2–4.

Firstly, by the proof of Theorem 2.5(i), the positive solutions of (7) are on the con-
tinuum �∗ of (7) emitting from the semi-trivial solution ((r0 − d)/a, 0). Since s(x) ≡
0, x ∈ �0, one sees from the proof of Theorem 2.2(i) that in space �0, the positive solu-
tions of (7) bifurcating from ((r0 − d)/a, 0) are its positive constant solutions at s(x) = 0.

Figure 2. Positive solutions of model (7) in the domain�0 under different k.
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Figure 3. Positive solutions of model (7) in the domain�\�0 under different k.

Figure 4. Positive solutions of model (7) in the domain�\�0 under different s(x)with k = 0.1.

Some straightforward calculations show that when k = 0.01, 0.1, 1 and 10, the correspond-
ing positive constant solutions are (0.3829, 0.3202), (0.3589, 0.2863), (0.2677, 0.1409) and
(0.3506, 0.0052), respectively. Figure 2 presents the positive solutions in space �0 at
t = 800when k = 0.01, 0.1, 1 and 10, respectively. Secondly, by the proof of Theorem2.2(i)
again, we can derive that the positive solutions in space �\�0 are spatially dependent.
Figure 3 performs the positive solutions in space �\�0. Particularly, we observe from
Figures 2–3 that regardless of which space the two species are in, their density decreases
with the increase of k. In addition, to observe the effect of s(x) on the positive solu-
tion, we also show the numerical simulations of positive solutions in space �\�0 when
s(x) = ex, 1 + x3, 1.5 + sin(2x) and 1.2 + cos(1.5x), respectively, see Figure 4.We find that
the type of function s(x) has an important effect on the trend of species density.

Notice that Figures 2–4 mean that the combination of predator-taxis and degeneracy
can cause model (7) to produce positive solutions. Meanwhile, comparing these simula-
tion results, we conclude that under certain conditions, the perturbation of k, different
function s(x) and spaces�0,�\�0 can lead model (7) to generate different patterns of the
solution.



APPLICABLE ANALYSIS 41

4.2. Numerical simulations ofmodel (9)

Assume that s(x) satisfies Equation (39). Given the following parameter set

l = 0.5, a = 0.5, p = 0.2, c = 1, c1 = 0.2, m = −0.1,

d = 0.2, q1 = 0.1, q2 = 0.1, r0 = 10, du = 0.013, dv = 0.01.
(41)

Then�0 = [0, 0.785] and�\�0 = (0.785, 1.57].
Take the parameter value in (41), then one can easy to check that when k = 0.01, 0.1, 1

or 10, all conditions in Theorem 3.5(i) are satisfied. This deduces that model (9) has at least
one positive solution. Combining Theorem 3.2(i) and the analysis in Section 4.1, one can
verify that (9) only has a unique positive constant solution in space�0. Numerically, when
k = 0.01, 0.1, 1 and 10, the corresponding positive constant solutions are (0.3829, 0.3202),
(0.3589, 0.2863), (0.2677, 0.1409) and (0.3506, 0.0052), respectively, see Figure 5. More-
over, in�\�0, the positive solutions of (9) are spatially heterogeneous, as demonstrated in
Figure 6. In particular, we observe from Figures 5–6 that with the increase of k, the density
of two species decreases both in�0 and�\�0.

Figure 5. Positive solutions of model (9) in the domain�0 under different k.

Figure 6. Positive solutions of model (9) in the domain�\�0 under different k.
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Figure 7. Positive solutions of model (9) in the domain�\�0 under different s(x)with k = 0.1.

On the impact of spatially heterogeneous parameter s(x), we also present some numeri-
cal simulations of positive solutions formodel (9) in space�\�0 for some particular forms
of s(x): s(x) = ex, 1 + x3, 1.5 + sin(2x) and 1.2 + cos(1.5x), respectively in Figure 7. We
find that the impact of s(x) on the spatial distribution of species’ population is significant.
We have to admit that analytic results on such an impact is very challenging and are not
explored in this paper.

We point out that the numeric results in Figures 5–7 not only indicate that the individ-
ual degeneracy can cause model (9) to produce positive solutions, but also show that the
perturbation of k, different function s(x) and spaces �0, �\�0 can induce model (9) to
generate different solution patterns. Moreover, by comparing Figures 2–4 and 5–7, we find
that the appearance of predator-taxis, in conjunction with the spatial heterogeneity of s(x),
can lead to different spatial patterns of persistence of the interacting species, particularly of
the prey species, as clearly illustrated in the left panels of Figures 4 and 7.
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