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We consider an in-host virus dynamics model with spatial heterogeneity on the
general bounded domain, and homogenous Neumann boundary condition. Under
the assumption that only the free virus diffuse and the host cells (infected and
uninfected) are not mobile, the model turns out to be hybrid in the sense that it
consists of two point-wise ODEs and an PDE. We explore the virus dynamics
by analyzing the model and identifying the basic reproduction number. When
all model parameters are constants, the global dynamics of the model are fully
determined.

Keywords: HBV; Infection; threshold; basic reproduction number; principle
eigenvalue

AMS Subject Classifications: MSC(2010); 35B40; 35K57; 92D25

1. Introduction

There have been extensive investigations on population models for virus dynamics in of in
vivo. These in-host models can be used to estimate some key factors in viral infection and
replication, and to guide development of efficient anti-viral drug therapies (see, e.g. [1–4]
and the references therein).

Typically, an in-host compartmental model of viral dynamics contains three compart-
ments: the populations of uninfected susceptible host cells u1, infected host cells u2, and
free virus particles u3 that are produced by infected host cells. The governing equations
take the form: ⎧⎪⎨

⎪⎩
du1(t)

dt = λ− au1 − βu1u3,
du2(t)

dt = βu1u3 − bu2,
du3(t)

dt = ku2 − mu3,

(1.1)

where λ and a are the recruitment rate and death rate of the susceptible cells, respectively; b
is the death rate of the infected cells; k and m are the recruitment rate and removed rate for
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Applicable Analysis 2313

free viruses; βu1u3 represents the lost of susceptible cells by infection (or the recruitment
of infected cells). The parameters in (1.1) are all positive constants. System (1.1) has been
used to study the in vivo dynamics of HIV-1, HBV, and other virus (see, e.g. [1–11]).

In (1.1), it is assumed that cells and viruses are well mixed, and the mobility of cells
and viruses is neglected. In fact, susceptible host cells and infected cells cannot move under
normal conditions while viruses move freely in the habitat. To incorporate the influences of
spatial structures on virus dynamics, Wang and Wang [12] introduced the random mobility
for viruses into (1.1) and proposed the following mathematical model to describe the
hepatitis B virus (HBV) infection:⎧⎪⎨

⎪⎩
∂u1(x,t)
∂t = λ− au1(x, t)− βu1(x, t)u3(x, t),

∂u2(x,t)
∂t = βu1(x, t)u3(x, t)− bu2(x, t),

∂u3(x,t)
∂t = d�u3(x, t)+ ku2(x, t)− mu3(x, t),

(1.2)

in (x, t) ∈ (−∞,∞) × (0,∞). Here, u1(x, t), u2(x, t), and u3(x, t) are the densities of
uninfected cells, infected cells and free virus at location x at time t , respectively, and d is
the diffusion coefficient. The parameters in (1.2) are positive constants. In (1.2), the spatial
domain is taken as the one-dimensional whole space R = (−∞,∞), and accordingly, the
traveling waves is investigated by appealing to the geometric singular perturbation method.
Among the topics are the existence of traveling wave fronts and the minimal wave speed.[12]

More recently, Brauner et al. [13] modified (1.2) by allowing λ to be space dependent,
and assumed that other parameters remain constants; in addition, for the spatial domain,
they considered a square domain (0, l)× (0, l), and proposed periodic boundary conditions
on this square. The dynamics of the model was explored via a principle eigenvalue.

In reality, a spatial domain where virus and cells stay and interact is bounded but
is typically not a square. Even in the square domain case, there may be other types of
boundary conditions. One frequently encountered scenario is zero-flux boundary condition
in a bounded domain. Moreover, in addition to λ, other model parameters may also depend
on the location in the domain. All these motivate us to consider a more general situation. In
this paper, we consider a general bounded domain� ⊂ R

n and pose zero-flux condition on
the boundary of � (i.e. homogeneous Neumann boundary condition). We further modify
the model system in Brauner et al. [13] to allow all parameters to be location dependent
except the diffusion coefficient d . These considerations lead to the following problem:⎧⎪⎨

⎪⎩
∂u1(x,t)
∂t = λ(x)− a(x)u1(x, t)− β(x)u1(x, t)u3(x, t),

∂u2(x,t)
∂t = β(x)u1(x, t)u3(x, t)− b(x)u2(x, t), (x, t) ∈ �× (0,∞)

∂u3(x,t)
∂t = d�u3(x, t)+ k(x)u2(x, t)− m(x)u3(x, t),

(1.3)

with the homogeneous Neumann boundary condition

∂u3(x, t)

∂ν
= 0, x ∈ ∂�, t > 0, (1.4)

and initial conditions

ui (x, 0) = u0
i (x) ≥ 0, x ∈ �, i = 1, 2, 3, (1.5)

where ∂
∂ν

denotes the differentiation along the outward normal ν to ∂�. In this paper, we
always assume that the location-dependent parameters are continuous and strictly positive
functions on �̄.
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2314 F.-B. Wang et al.

We point out that since the first two equations in (1.3) have no diffusion terms, the
semiflow associated with our model is not compact. To overcome this problem, we will
prove that the semiflow associated with a linearized system around the infection-free steady
state is κ-contraction, where κ is the Kuratowski measure of noncompactness (see, e.g.
[14]). Then, by a generalized Krein–Rutman Theorem and some new results in [15], we
can show that the principal eigenvalue of the associated eigenvalue problems exists, and
hence, the stability of the infection-free steady state can be determined. Next, we can derive
a condition under which, the semiflow associated with our systems is κ-contracting and
thereby, conclude that the semiflow admits a connected global attractor using the results
in [16] (see also [17]). Finally, we show that the basic reproduction number serves as a
threshold parameter that predicts whether the infection will go to extinction or persist, by
appealing to the theory of uniform persistence and the comparison theorem.

2. Analysis of the model system

In this section, we analyze the model system (1.3)–(1.5), intending to understand when the
disease will go to extinct and when it will persist. We start with some basic properties for
system (1.3)–(1.5).

Let X := C(�̄,R3) be the Banach space with the supremum norm ‖ ·‖X. Define X
+ :=

C(�̄,R3+), then (X,X+) is a strongly ordered spaces. For every initial value functions
φ = (φ1, φ2, φ3) ∈ C(�̄,R3), define

T1(t)φ1 = e−a(·)tφ1, T2(t)φ2 = e−b(·)tφ2. (2.1)

Let T3(t) : C(�̄,R) → C(�̄,R) be the C0 semigroups associated with d�− m(·) subject
to the Neumann boundary condition, that is,

(T3(t)φ3)(x) =
∫
�


(x, y, t)φ3(y)dy, t ≥ 0, (2.2)

where 
 is the Green function associated with d� − m(·) and the Neumann boundary
condition. From [18, Section 7.1 and Corollary 7.2.3], it follows that T3(t) : C(�̄,R) →
C(�̄,R) is compact and strongly positive, ∀ t > 0.

Define F = (F1, F2, F3) : X
+ → X by

F1(φ)(x) = λ(x)− β(x)φ1(x)φ3(x),

F2(φ)(x) = β(x)φ1(x)φ3(x),

F3(φ)(x) = k(x)φ2(x), ∀ x ∈ �̄.
Then (1.3)–(1.5) can be rewritten as the integral equation:

u(t) = T (t)φ +
∫ t

0
T (t − s)F(u(s))ds, (2.3)

where

u(t) =
⎛
⎝ u1(t)

u2(t)
u3(t)

⎞
⎠ , T (t) =

⎛
⎝ T1(t) 0 0

0 T2(t) 0
0 0 T3(t)

⎞
⎠ .
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Applicable Analysis 2315

It is easy to show that

lim
h→0+ dist(φ + hF(φ),X+) = 0, ∀ φ ∈ X

+.

By [19, Corollary 4], we obtain the following basic properties of the set X
+:

Lemma 2.1 For every initial value functions φ := (φ1, φ2, φ3) ∈ X
+, system (1.3)–(1.5)

has a unique mild solution u(x, t, φ) on [0, τφ) with u(·, 0, φ) = φ and u(·, t, φ) ∈ X
+,

∀ t ∈ [0, τφ), where τφ ≤ ∞.

In order to study the infection-free steady state and its stability, we need to consider the
following auxiliary point-wise scalar equation

∂w(x, t)

∂t
= λ(x)− A(x)w(x, t), x ∈ �̄, t > 0, (2.4)

and the following scalar reaction-diffusion equation{
∂w
∂t = d�w + g(x)− m(x)w, x ∈ �, t > 0,
∂w
∂ν

= 0, x ∈ ∂�, t > 0,
(2.5)

where d > 0; g(x) and m(x) are continuous and positive functions on �̄. For (2.4), by [20,
Theorem 2.2.1], we have the following result.

Lemma 2.2 The system (2.4) admits a unique positive steady state λ(x)
A(x) which is globally

asymptotically stable in C(�̄,R).

For (2.5), the following result is available from [21, Lemma 1].

Lemma 2.3 The system (2.5) admits a unique positive steady statew∗(x)which is globally
asymptotically stable in C(�̄,R). Moreover, if g(x) ≡ g, m(x) ≡ m, ∀ x ∈ �̄, then
w∗(x) = g

m .

We are in a position to show that solutions of system (1.3)–(1.5) exist globally on [0,∞),
and are ultimately bounded and uniformly bounded in X

+.

Lemma 2.4 For every initial value function φ ∈ X
+, system (1.3)–(1.5) has a unique

solution u(·, t, φ) on [0,∞)with u(·, 0, φ) = φ, and solutions of (1.3)–(1.5) are ultimately
bounded and uniformly bounded in X

+.

Proof Let U (x, t) := u1(x, t)+ u2(x, t). Then U (x, t) satisfies

∂U (x, t)

∂t
≤ λ− cU (x, t), x ∈ �, t > 0, (2.6)

where
λ = max

x∈�
λ(x) and c = min{min

x∈�̄
{a(x)},min

x∈�̄
{b(x)}}. (2.7)

The comparison principle implies that U (x, t) is uniformly bounded, and hence, so are
u1(x, t) and u2(x, t). This, together with a comparison argument, implies that u3(x, t) in
(1.3) is also uniformly bounded.
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2316 F.-B. Wang et al.

Now, we show that solutions are also ultimately bounded (point dissipative). Comparing
(2.6) with (2.4), it follows from Lemma 2.2 and the comparison principle that

lim sup
t→∞

U (x, t) ≤ λ

c
, uniformly for x ∈ �.

It then follows that there exist 0 < η0 � 1 and t̃0 > 0 such that

u1(·, t)+ u2(·, t) := U (·, t) ≤ (1 + η0)
λ

c
, ∀ t ≥ t̃0, (2.8)

and hence,

u1(·, t) ≤ (1 + η0)
λ

c
, u2(·, t) ≤ (1 + η0)

λ

c
, ∀ t ≥ t̃0. (2.9)

This implies that u1(·, t) and u2(·, t) are ultimately bounded.
From (2.9) and the third equation of (1.3), it follows that{

∂u3(x,t)
∂t ≤ d�u3(x, t)+ (1 + η0)

λ
c k − mu3(x, t), x ∈ �, t ≥ t̃0,

∂u3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,

where

k = max
x∈�

k(x) and m = min
x∈�̄

m(x). (2.10)

By Lemma 2.3, it follows that there is a t̂0 ≥ t̃0 > 0 such that

u3(·, t) ≤ (1 + 2η0) · λ · k

c · m
, ∀ t ≥ t̂0. (2.11)

It then follows that u3(x, t) is also ultimately bounded. �

From Lemma 2.4, (2.8), and (2.11), it follows that there exist t̂0 > 0, K̄ := (1+η0)
λ
c > 0

and K := (1 + 2η0) · λ·kc·m > 0 such that

u1(·, t)+ u2(·, t) ≤ K̄ , u3(·, t) ≤ K , ∀ t ≥ t̂0.

Let

D = {(u1, u2, u3) ∈ R
3+ : 0 ≤ u1 + u2 ≤ K̄ , 0 ≤ u3 ≤ K }.

Define the semiflow t : X
+ → X

+ associated with (1.3)–(1.5) by

t (φ) = u(·, t, φ), t ≥ 0, (2.12)

where u(·, t, φ) is the solution of (1.3)–(1.5) with u(·, 0, φ) = φ ∈ X
+. Then

t (φ) ∈ D, ∀ t ≥ t̂0, φ ∈ X
+. (2.13)

Moreover, it is easy to see that K̄ and K are upper solutions of systems

∂U (x, t)

∂t
= λ− cU (x, t), x ∈ �, t > 0,
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Applicable Analysis 2317

and {
∂u3(x,t)
∂t = d�u3(x, t)+ 2λ

c k − mu3(x, t), x ∈ �, t ≥ t̃0,
∂u3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,

respectively. These facts, together with a comparison argument, imply that D is positively
invariant for t in the sense that t (φ) ∈ D, ∀ t ≥ 0, φ ∈ D.

For convenience, we let⎧⎨
⎩

f1(x, u1, u3) = λ(x)− a(x)u1 − β(x)u1u3,

f2(x, u1, u2, u3) = β(x)u1u3 − b(x)u2,

g(x, u2, u3) = k(x)u2 − m(x)u3.

(2.14)

Then (1.3)–(1.5) can be rewritten as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u1(x,t)
∂t = f1(x, u1, u3), x ∈ �, t > 0,

∂u2(x,t)
∂t = f2(x, u1, u2, u3), x ∈ �, t > 0,

∂u3(x,t)
∂t = d�u3(x, t)+ g(x, u2, u3), x ∈ �, t > 0,

∂u3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,
ui (x, 0) = u0

i (x) ≥ 0, x ∈ �, i = 1, 2, 3,

(2.15)

For u := (u1, u2) and v := u3, we impose the following assumption: there exists a constant
r > 0 such that

zT
[
∂f(x,u, v)

∂u

]
z ≤ −rzT z, ∀ z ∈ R

2, x ∈ �, (u, v) ∈ D, (2.16)

where f(x,u, v) := ( f1(x, u1, u3), f2(x, u1, u2, u3)).

Remark 2.1 Recall that K := (1+2η0)
λ·k
c·m > 0; λ and c are defined in (2.7); η0 is defined

in (2.9); k and m are defined in (2.10). Assume that

1

2
βK − b < 0, (2.17)

where β := maxx∈�̄ β(x) and b := minx∈�̄ b(x). It is easy to see that the assumption (2.17)
implies (2.16).

Since the first two equations in (1.3)–(1.5) have no diffusion terms, its solution semiflow
t is not compact. In order to overcome this difficulty, we introduce the Kuratowski measure
of noncompactness (see [14]), κ , which is defined by

κ(B) := inf {R : B has a finite cover of diameter < R}, (2.18)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to see that
B is precompact(i.e. B̄ is compact) if and only if κ(B) = 0. We have the following results:

Lemma 2.5 Let (2.16) hold. Then t is κ-contracting in the sense that

lim
t→∞ κ(t B) = 0 for any bounded set B ⊂ X

+.

Proof Let B be a given bounded subset in X
+. Using a slight modification of the proof

in [17, Lemma 4.1], we can show that t is asymptotically compact on B in the sense that
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2318 F.-B. Wang et al.

for any sequences ϕn ∈ B and tn → ∞, there exist subsequences ϕnk and tnk → ∞ such
that tnk

(ϕnk ) converges in C(�,R3) as k → ∞.
It follows from [22, Lemma 23.1 (2)] thatω(B), the omega-limit set of B, is a nonempty,

compact, invariant set in X
+, and ω(B) attracts B. In view of [16, Lemma 2.1 (b)], we see

that

κ(t (B)) ≤ κ(ω(B))+ δ(t (B), ω(B)) = δ(t (B), ω(B)) → 0 as t → ∞,

Completing the proof. �

Theorem 2.1 Let (2.16) hold. Then t admits a connected global attractor on X
+.

Proof By Lemma 2.4, it follows that t is point dissipative on X
+ and that the positive

orbits of bounded subsets of X
+ for t are bounded. Furthermore, t is κ-contracting on

X
+ by Lemma 2.5. By [16, Theorem 2.6],t has a global attractor that attracts every point

in X
+. �

The following results will play an important role in establishing the persistence of
(1.3)–(1.5).

Lemma 2.6 Suppose u(x, t, φ) is the solution of system (1.3)–(1.5) with u(·, 0, φ) = φ ∈
X

+.

(i) For any φ ∈ X
+, we always have u1(x, t, φ) > 0, ∀ x ∈ �̄, t > 0 and

lim inf
t→∞ u1(x, t, φ) ≥ h(x),

where h(x) is a strictly positive function on �̄;
(ii) If there exists some t0 ≥ 0 such that u3(·, t0, φ) ≡/ 0, then u3(x, t, φ) > 0, ∀ x ∈ �̄,

t > t0;
(iii) If there exists some t0 ≥ 0 such that ui (·, t0, φ) ≡/ 0, for i ∈ {2, 3}, then u2(x, t, φ) >

0, ∀ x ∈ �̄, t > t0.

Proof From the first equation of (1.3), it is easy to see that u1(x, t, φ) > 0, ∀ x ∈ �̄,
t > 0, for any φ ∈ X

+. From (2.11), it follows that there is a t̂0 > 0 such that

u3(·, t) ≤ K , ∀ t ≥ t̂0.

From the first equation of (1.3), it follows that

∂u1(x, t)

∂t
≥ λ(x)− (a(x)+ Kβ(x))u1(x, t), x ∈ �̄, t ≥ t̂0.

By Lemma 2.2 and the comparison theorem, it follows that

lim inf
t→∞ u1(x, t, φ) ≥ λ(x)

a(x)+ Kβ(x)
, ∀ x ∈ �̄.

Thus, Part (i) is proved.
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Applicable Analysis 2319

It is easy to see that u3 satisfies the following inequality:{
∂u3(x,t)
∂t ≥ d�u3(x, t)− m(x)u3(x, t), x ∈ �, t > 0,

∂u3
∂ν

= 0, x ∈ ∂�, t > 0.

By the similar arguments as in [23, Lemma 2.1] and [24, Proposition 3.1], it follows from
the strong maximum principle (see, e.g. [25, p. 172, Theorem 4]) and the Hopf boundary
lemma (see, e.g. [25, p. 170, Theorem 3]) that part (ii) is valid.

Assume by contradiction that the conclusion of (iii) is false, that is, there exist x0 ∈ �̄
and t̂ > t0 such that u2(x0, t̂, φ) = 0. From the second equation of (1.3), it follows that

0 = ∂u2(x0, t̂)

∂t
= β(x0)u1(x0, t̂)u3(x0, t̂)− b(x0)u2(x0, t̂),

and hence,
0 = β(x0)u1(x0, t̂)u3(x0, t̂),

which implies that u3(x0, t̂) = 0. This contradicts (ii). Part (iii) is proved. �

It is easy to see that (u∗
1(x), 0, 0) is the infection-free steady-state solution for the system

(1.3)–(1.5), where u∗
1(x) = λ(x)

a(x) . Linearizing the system (1.3)–(1.5) at (u∗
1(x), 0, 0) and we

get the following cooperative system for the infected host cells and free virus particle:⎧⎪⎨
⎪⎩
∂U2(x,t)
∂t = −b(x)U2(x, t)+ β(x)u∗

1(x)U3(x, t), x ∈ �, t > 0,
∂U3(x,t)
∂t = d�U3(x, t)− m(x)U3(x, t)+ k(x)U2(x, t), x ∈ �, t > 0,

∂U3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,

(2.19)

and initial conditions. We first consider the following generalized version of system (2.19):⎧⎪⎨
⎪⎩
∂U2(x,t)
∂t = −b(x)U2(x, t)+ β(x)H(x)U3(x, t), x ∈ �, t > 0,

∂U3(x,t)
∂t = d�U3(x, t)− m(x)U3(x, t)+ k(x)U2(x, t), x ∈ �, t > 0,

∂U3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,

(2.20)

and initial conditions, where H(x) > 0, ∀ x ∈ �̄. It is easy to see that system (2.20) is
cooperative while its solution semiflows are not compact since the first equation in (2.20) has
no diffusion term. Let Y = C(�̄,R2). For every initial value functions φ = (φ2, φ3) ∈ Y,
the solution semiflows �t : Y → Y associated with the linear system (2.20) is defined by

�t (φ) = (U2(·, t, φ),U3(·, t, φ)), ∀ φ ∈ Y, t ≥ 0.

It is easy to see that �t is a positive C0-semigroup on C(�̄,R2), and its generator BH can
be written as

BH =
(−b(x) β(x)H(x)

k(x) d�− m(x)

)
.

Further, BH is a closed and resolvent positive operator (see, e.g. [26, Theorem 3.12]).
Substituting Ui (x, t) = eηtψi (x), i = 2, 3, into (2.20) we get the following associated

eigenvalue problem:⎧⎨
⎩
ηψ2(x) = −b(x)ψ2(x)+ β(x)H(x)ψ3(x), x ∈ �,
ηψ3(x) = d�ψ3(x)− m(x)ψ3(x)+ k(x)ψ2(x), x ∈ �,
∂ψ3(x)
∂ν

= 0, x ∈ ∂�.
(2.21)
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2320 F.-B. Wang et al.

The following lemma concerns with the existence of the principal eigenvalue of (2.21).

Lemma 2.7 Suppose H(x) > 0, ∀ x ∈ �̄ and s(BH ) is the spectral bound of BH .

(i) If s(BH ) ≥ 0 then s(BH ) is the principal eigenvalue of the eigenvalue problem
(2.21) which has a strongly positive eigenfunction;

(ii) If b(x) ≡ b, ∀ x ∈ �̄, then s(BH ) is always the principal eigenvalue of the
eigenvalue problem (2.21) which has a strongly positive eigenfunction.

Proof We first prove Part (i). Recall that b := minx∈�̄ b(x) and it is easy to see that

b(x) ≥ b, ∀ x ∈ �̄. (2.22)

We first show that for each t > 0, �t is an κ-contraction on Y := C(�̄,R2) in the sense
that

κ(�t B) ≤ e−btκ(B),

for any bounded set B in Y, whereκ is the Kuratowski measure of noncompactness as defined
in (2.18). Let T2(t) and T3(t) be the semigroup defined by (2.1) and (2.2), respectively.
Define a linear operator

L(t)φ = (T2(t)φ2, 0), ∀φ = (φ2, φ3) ∈ Y, (2.23)

and a nonlinear operator

N (t)φ =
(∫ t

0
e−b(·)(t−s)β(·)H(·)U3(·, s, φ)ds,U3(., t, φ)

)
, ∀φ = (φ2, φ3) ∈ Y.

It is easy to see that

�t (φ) = L(t)φ + N (t)φ, ∀φ ∈ Y, t ≥ 0.

By (2.22) and (2.23), it follows that

sup
φ∈Y

‖L(t)φ‖
‖φ‖ ≤ sup

φ∈Y

‖e−b(·)tφ2‖
‖φ‖ ≤ sup

φ∈Y

‖e−btφ2‖
‖φ‖ ≤ e−bt ,

and hence ‖L(t)‖ ≤ e−bt .
From the boundedness of �t and the compactness of T3(t) for t > 0, it follows that

N (t) : Y → Y is compact for each t > 0. For any bounded set B in Y, there holds
κ(N (t)B) = 0 since N (t)B is precompact, and consequently,

κ(�t B) ≤ κ(L(t)B)+ κ(N (t)B) ≤ ‖L(t)‖κ(B) ≤ e−btκ(B), ∀ t > 0.

Thus, �t is a κ-contraction on Y with a contracting function e−bt . This implies that the
essential spectral radius re(�t ) of �t satisfies

re(�t ) ≤ e−bt < 1, ∀ t > 0.

On the other hand, the spectral radius r(�t ) of �t satisfies

r(�t ) = es(BH )t ≥ 1, ∀ t > 0.
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Applicable Analysis 2321

This implies that re(�t ) < r(�t ), ∀ t > 0. Since �t is a strongly positive and bounded
operator on Y, it follows from a generalized Krein–Rutman Theorem (see, e.g. [27]) that
the conclusion of Part (i) is true.

Next, we are in a position to prove Part (ii). In order to make use of the results in [15,
Theorem 2.3 (i)], we define an one-parameter family of linear operators on C(�̄,R):

Lη = d�− m(x)+ k(x)β(x)H(x)

η + b
, ∀ η > −b.

Let A := minx∈�̄[k(x)β(x)H(x)] > 0. It is easy to see that the eigenvalue problem{
ηφ(x) = d�φ(x)− m(x)φ(x), x ∈ �,
∂φ(x)
∂ν

= 0, x ∈ ∂�,
has a principal eigenvalue, denoted by η0, with an associated eigenvector φ0  0. Let

η∗ = 1

2

[
(η0 − b)+

√
(η0 − b)2 + 4(A + η0b)

]
.

Then, η∗ = 1
2

[
(η0 − b)+ √

(η0 + b)2 + 4A
]
> −b. It is easy to see that

Lη∗φ0 = d�φ0 − m(x)φ0 + k(x)β(x)H(x)

η∗ + b
φ0 ≥ (η0 + A

η∗ + b
)φ0 = η∗φ0.

By [15, Theorem 2.3 (i)], we complete the proof of (ii). �

Notice that the second and the third equations are decoupled from the first one in (2.19)
and they form a subsystem which is closely related to the basic reproduction number. In the
following, we shall adopt the same ideas as in [15,28–30] to identify the basic reproduction
number for system (1.3)–(1.5). To this end, we first need to separate the transfer part from
the infection part in the u2 − u3 subsystem of (2.19) as below.

Let S(t) : C(�̄,R2) → C(�̄,R2) be the C0-semigroup generated by the following
system⎧⎪⎪⎨

⎪⎪⎩
∂U2(x,t)
∂t = −b(x)U2(x, t), x ∈ �, t > 0,

∂U3(x,t)
∂t = d�U3(x, t)− m(x)U3(x, t)+ k(x)U2(x, t), x ∈ �, t > 0,

∂U3(x,t)
∂ν

= 0, x ∈ ∂�, t > 0,
U2(x, 0) = ϕ2(x), U3(x, 0) = ϕ3(x), x ∈ �.

(2.24)

In order to define the basic reproduction number for the system (1.3)–(1.5), we assume
that the population is near the Disease-free equilibrium (u∗

1(x), 0, 0). Then, we introduce
the distribution of initial infection described by ϕ := (ϕ2, ϕ3) ∈ C(�̄,R2). Hence, S(t)ϕ
represents the distribution of those infective members as time evolves. Thus, the distribution
of new infection at time t is (

0 β(·)u∗
1(·)

0 0

)
(S(t)ϕ)(·).

Consequently, the distribution of total new infections is

L(ϕ)(·) :=
∫ ∞

0

(
0 β(·)u∗

1(·)
0 0

)
(S(t)ϕ)(·)dt.
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2322 F.-B. Wang et al.

Then L is a continuous and positive operator which maps the initial infection distribution ϕ
to the distribution of the total infective members produced during the infection period. Fol-
lowing the idea of next generation operators (see, e.g. [15,26,30–32]), the basic reproductive
number for system (1.3)–(1.5) is given by the spectral radius of L, that is,

R0 := r(L). (2.25)

By the general results in [26] and [15, Theorem 2.5 and Remark 2.3], we have the following
observation.

Lemma 2.8 R0 − 1 and s(Bu∗
1 ) have the same sign.

Now we are ready to prove the main result of this section, which indicates that R0 is a
threshold index for disease persistence.

Theorem 2.2 Assume that (2.16) is true. Suppose u(x, t, φ) is the solution of system
(1.3)–(1.5) with u(·, 0, φ) = φ ∈ X

+. Then the following statements hold.

(i) If R0 < 1 and b(x) ≡ b, ∀ x ∈ �̄, then the disease-free equilibrium (u∗
1(x), 0, 0)

is globally attractive in X
+, where u∗

1(x) := λ(x)
a(x) ;

(ii) If R0 > 1, then system (1.3)–(1.5) admits at least one positive steady state û(x) and
there exists a σ > 0 such that for any φ ∈ X

+ with φi (·) ≡/ 0 for i = 2, 3, we have

lim inf
t→∞ ui (x, t) ≥ σ, ∀ i = 1, 2, 3,

uniformly for all x ∈ �̄.

Proof We first assume that R0 < 1, that is, s(Bu∗
1 ) < 0 by Lemma 2.8. It follows from

Lemma 2.7(ii) that s(Bu∗
1 ) is the principal eigenvalue of the eigenvalue problem (2.21)

with H ≡ u∗
1. By Lemma 2.7(ii) and the continuity, there is a ρ0 > 0 such that s(Bu∗

1+ρ0)

is still the principal eigenvalue of the eigenvalue problem (2.21) with H ≡ u∗
1 + ρ0 and

s(Bu∗
1+ρ0) < 0.

From the first equation of (1.3), it follows that

∂u1(x, t)

∂t
≤ λ(x)− a(x)u1(x, t), (2.26)

From Lemma 2.2, (2.26) and the comparison principle, it follows that there is a t0 := t0(φ)
such that

u1(x, t, φ) ≤ u∗
1(x)+ ρ0, ∀ t ≥ t0, x ∈ �̄.

Thus,⎧⎪⎨
⎪⎩
∂u2(x,t)
∂t ≤ β(x)(u∗

1(x)+ ρ0)u3(x, t)− b(x)u2(x, t), x ∈ �, t ≥ t0.
∂u3(x,t)
∂t = d�u3(x, t)+ k(x)u2(x, t)− m(x)u3(x, t), x ∈ �, t ≥ t0.

∂u3
∂ν

= 0, x ∈ ∂�, t ≥ t0.

(2.27)
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Applicable Analysis 2323

By Lemma 2.7(ii), there is a strongly positive eigenfunction ψ̂ := (ψ̂2, ψ̂3) corre-
sponding to s(Bu∗

1+ρ0). Since for any given φ ∈ X
+, there exists some α > 0 such that

(u2(x, t0, φ), u3(x, t0, φ)) ≤ αψ̂(x), ∀ x ∈ �̄. Note that the following linear system⎧⎪⎨
⎪⎩
∂u2(x,t)
∂t = β(x)(u∗

1(x)+ ρ0)u3(x, t)− b(x)u2(x, t), x ∈ �, t ≥ t0.
∂u3(x,t)
∂t = d�u3(x, t)+ k(x)u2(x, t)− m(x)u3(x, t), x ∈ �, t ≥ t0.

∂u3
∂ν

= 0, x ∈ ∂�, t ≥ t0,

(2.28)

admits a solution αes(Bu∗
1+ρ0 ))(t−t0)ψ̂(x), ∀ t ≥ t0. The comparison principle implies that

(u2(x, t, φ), u3(x, t, φ)) ≤ αes(Bu∗
1+ρ0 ))(t−t0)ψ̂(x), ∀ t ≥ t0,

and it then follows that limt→∞(u2(x, t, φ), u3(x, t, φ)) = 0 uniformly for x ∈ �̄. Then,
the equation for u1 is asymptotic to

∂u1(x, t)

∂t
= λ(x)− a(x)u1(x, t), (2.29)

and then we get limt→∞ u1(x, t, φ) = u∗
1(x) uniformly for x ∈ �̄ by Lemma 2.2 and the

theory for asymptotically autonomous semiflows (see, e.g. [33, Corollary 4.3]). Thus Part
(i) is proved.

We consider the case where R0 > 1, that is, s(Bu∗
1 ) > 0 by Lemma 2.8.

Let

W0 = {φ ∈ X
+ : φ2(·) ≡/ 0 and φ3(·) ≡/ 0},

and

∂W0 = X
+\W0 = {φ ∈ X

+ : φ2(·) ≡ 0 or φ3(·) ≡ 0}.
By Lemma 2.6, it follows that for any φ ∈ W0, we have ui (x, t, φ) > 0, ∀ x ∈ �̄, t >
0, i = 2, 3. In other words, tW0 ⊆ W0, ∀ t ≥ 0. Let

M∂ := {φ ∈ ∂W0 : tφ ∈ ∂W0, ∀ t ≥ 0},
and ω(φ) be the omega limit set of the orbit O+(φ) := {tφ : t ≥ 0}.
Claim: ω(ψ) = {(u∗

1, 0, 0)}, ∀ ψ ∈ M∂ .
Since ψ ∈ M∂ , we have tψ ∈ M∂ , ∀ t ≥ 0. Thus, u2(·, t, ψ) ≡ 0 or u3(·, t, ψ) ≡
0, ∀ t ≥ 0. In case where u3(·, t, ψ) ≡ 0, ∀ t ≥ 0. Then, u1 satisfies the Equation (2.29),
∀ t ≥ 0; and hence, we get limt→∞ u1(x, t, ψ) = u∗

1(x) uniformly for x ∈ �̄. Further, it
is easy to see that limt→∞ u2(x, t, ψ) = 0 uniformly for x ∈ �̄ from the equation of u2
in (1.3). In case where u3(·, t̃0, ψ) ≡/ 0, for some t̃0 ≥ 0. Then Lemma 2.6 implies that
u3(x, t, ψ) > 0, ∀ x ∈ �̄,∀ t > t̃0. Hence, u2(·, t, ψ) ≡ 0, ∀ t > t̃0. In view of the u3
equation in (1.3), it is easy to see that limt→∞ u3(x, t, ψ) = 0 uniformly for x ∈ �̄. Again,
the equation for u1 is asymptotic to the Equation (2.29) and the theory for asymptotically
autonomous semiflows (see, e.g. [33, Corollary 4.3]) implies that limt→∞ u1(x, t, ψ) =
u∗

1(x) uniformly for x ∈ �̄. Hence, ω(ψ) = {(u∗
1, 0, 0)}, ∀ ψ ∈ M∂ .

By the similar arguments to those in Lemma 2.7 (i) and [34, Lemma 4.5], we can show
that there is a small δ0 > 0 such that s(Bu∗

1−δ0) is the principal eigenvalue of the eigenvalue
problem (2.21) with H ≡ u∗

1 − δ0 and s(Bu∗
1−δ0) > 0. Let ψ̃ := (ψ̃2, ψ̃3) be the strongly

positive eigenfunction corresponding to s(Bu∗
1−δ0).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

es
te

rn
 O

nt
ar

io
] 

at
 0

9:
42

 0
3 

Fe
br

ua
ry

 2
01

5 



2324 F.-B. Wang et al.

Claim: (u∗
1, 0, 0) is a uniform weak repeller for W0 in the sense that

lim sup
t→∞

‖tφ − (u∗
1, 0, 0)‖ ≥ δ0, ∀ φ ∈ W0.

Suppose, by contradiction, there exists φ0 ∈ W0 such that

lim sup
t→∞

‖tφ0 − (u∗
1, 0, 0)‖ < δ0.

Then, there exists t1 > 0 such that u1(x, t, φ0) > u∗
1(x) − δ0, ∀ t ≥ t1, x ∈ �̄. Thus,

u(x, t, φ0) satisfies⎧⎪⎨
⎪⎩
∂u2(x,t)
∂t ≥ β(x)(u∗

1(x)− δ0)u3(x, t)− b(x)u2(x, t), x ∈ �, t ≥ t1,
∂u3(x,t)
∂t = d�u3(x, t)+ k(x)u2(x, t)− m(x)u3(x, t), x ∈ �, t ≥ t1,

∂u3
∂ν

= 0, x ∈ ∂�, t ≥ t1.

(2.30)

Since ui (x, t, φ0) > 0, ∀ x ∈ �̄, t > 0, i = 2, 3, there exists ε0 > 0 such that

(u2(x, t1, φ0), u3(x, t1, φ0)) ≥ ε0ψ̃ . Note that ε0es(Bu∗
1−δ0 )(t−t1)ψ̃ is a solution of the

following linear system:⎧⎪⎨
⎪⎩
∂u2(x,t)
∂t = β(x)(u∗

1(x)− δ0)u3(x, t)− b(x)u2(x, t), x ∈ �, t ≥ t1,
∂u3(x,t)
∂t = d�u3(x, t)+ k(x)u2(x, t)− m(x)u3(x, t), x ∈ �, t ≥ t1,

∂u3
∂ν

= 0, x ∈ ∂�, t ≥ t1.

(2.31)

The comparison principle implies that

(u2(x, t, φ0), u3(x, t, φ0)) ≥ ε0es(Bu∗
1−δ0 )(t−t1)ψ̃, ∀ t > t1, x ∈ �̄.

Since s(Bu∗
1−δ0) > 0, it follows that u(x, t, φ0) is unbounded. This contradiction proves

the claim.
Define a continuous function p : X

+ → [0,∞) by

p(φ) := min{min
x∈�̄

φ2(x), min
x∈�̄

φ3(x)}, ∀ φ ∈ X
+.

By Lemma 2.6, it follows that p−1(0,∞) ⊆ W0 and p has the property that if p(φ) > 0
or φ ∈ W0 with p(φ) = 0, then p(tφ) > 0, ∀ t > 0. That is, p is a generalized distance
function for the semiflowt : X

+ → X
+ (see, e.g. [35]). From the above claims, it follows

that any forward orbit of t in M∂ converges to (u∗
1, 0, 0) which is isolated in X

+ and
W s(u∗

1, 0, 0) ∩ W0 = ∅, where W s(u∗
1, 0, 0) is the stable set of (u∗

1, 0, 0) (see [35]). It is
obvious that there is no cycle in M∂ from {(u∗

1, 0, 0)} to {(u∗
1, 0, 0)}. By [35, Theorem 3],

it follows that there exists an σ̃ > 0 such that

min
ψ∈ω(φ) p(ψ) > σ̃ , ∀ φ ∈ W0.

Hence, lim inf t→∞ ui (·, t, φ) ≥ σ̃ , ∀ φ ∈ W0, i = 2, 3. From Lemma 2.6, there exists an
0 < σ ≤ σ̃ such that

lim inf
t→∞ ui (·, t, φ) ≥ σ, ∀ φ ∈ W0, i = 1, 2, 3.

Hence, the uniform persistence stated in the conclusion (ii) are valid. By [16, Theorem 3.7
and Remark 3.10], it follows that t : W0 → W0 has a global attractor A0. It then follows
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Applicable Analysis 2325

from [16, Theorem 4.7] thatt has an equilibrium ũ(·) ∈ W0. Further, Lemma 2.6 implies
that ũ(·) is a positive steady state of (1.3)–(1.5). The proof is complete. �

Remark 2.2 If R0 < 1 and b(x) is not a constant function, then we are unable to show that
the disease-free equilibrium (u∗

1(x), 0, 0) is globally attractive in X
+. This is because we

can NOT prove s(Bu∗
1 ) is the principal eigenvalue of the eigenvalue problem (2.21) with

H ≡ u∗
1 (see Lemma 2.7(ii)) in this situation.

3. Global attractivity – spatially homogeneous case

In this section, we shall consider a special case where all the coefficients in (1.3) are
independent of the variable x , that is,⎧⎪⎨

⎪⎩
∂u1(x,t)
∂t = λ− au1(x, t)− βu1(x, t)u3(x, t),

∂u2(x,t)
∂t = βu1(x, t)u3(x, t)− bu2(x, t),

∂u3(x,t)
∂t = d�u3(x, t)+ ku2(x, t)− mu3(x, t),

(3.1)

in (x, t) ∈ �×(0,∞)with the homogeneous Neumann boundary condition (1.4) and initial
conditions (1.5). In such a special case, the global dynamics can be completely obtained,
as is shown below.

Following,[12] the basic reproduction number for ODE model corresponding to the
system (3.1), is given by kβλ

abm , which describes the average number of newly infected cells
generated from one infected cell at the beginning of the infectious process. In the following,
we are going to find the basic reproduction number for the system (3.1):

Lemma 3.1 The basic reproduction number for the system (3.1), is also given by R0 =
kβλ
abm .

Proof By the similar arguments to those in [15, Lemma 4.2, Theorem 3.2], we first consider
the following eigenvalue problem:{

−d�φ(x)+ mφ(x) = μ
kβu∗

1
b φ(x), x ∈ �,

∂φ(x)
∂ν

= 0, x ∈ ∂�, (3.2)

where u∗
1 ≡ λ

a . Note that (η0, φ0(x)) = (0, 1) is the pair of principal eigenvalue–
eigenfunction of {

ηφ(x) = d�φ(x), x ∈ �,
∂φ(x)
∂ν

= 0, x ∈ ∂�.
Let μ1 be the principal eigenvalue of (3.2), it then follows that m − μ1

kβu∗
1

b = 0, that is,
μ1 = bm

kβu∗
1

= abm
kβλ > 0. Hence, (3.2) admits a unique positive eigenvalueμ1 with a positive

eigenfunction φ0(x). By [15, Theorem 3.2], it follows that R0 = 1
μ1

= kβλ
abm . The proof is

complete. �

Clearly, system (3.1) has an infection-free steady-state solution Q0 := ( λa , 0, 0). It is

not hard to see that Q̂ := (û1, û2, û3) ≡
(
λ
a

1
R0
, am
βk (R0 − 1), a

β
(R0 − 1)

)
is the unique

constant positive steady-state solution of (3.1), provided that R0 > 1. In the following, we
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2326 F.-B. Wang et al.

shall adopt a technique of Lyapunov functional to prove R0 is the threshold index for the
global attractivity of the positive steady state Q̂ := (û1, û2, û3).

Theorem 3.1 Let R0 = kβλ
abm . Then the following statements hold

(i) If R0 > 1, then Q̂ := (û1, û2, û3) exists and is globally asymptotically stable in
the interior of X

+;
(ii) If R0 < 1, then Q0 := ( λa , 0, 0) is globally asymptotically stable in X

+.

Proof We first prove Part (i). Motivated by [36, Theorm 1.1], we define

V (u1, u2, u3) = û1(
u1

û1
− ln

u1

û1
)+ û2(

u2

û2
− ln

u2

û2
)+ b

k
û3(

u3

û3
− ln

u3

û3
),

W (t) =
∫
�

V (u1(x, t), u2(x, t), u3(x, t))dx,

where (u1(x, t), u2(x, t), u3(x, t)) is an arbitrary positive solution of (3.1). Denote the
reaction terms of (3.1) as follows:

f1(u1, u2, u3) = λ− au1 − βu1u3, f2(u1, u2, u3)

= βu1u3 − bu2, f3(u1, u2, u3) = ku2 − mu3. (3.3)

By direct computations and similar arguments to those in the proof of [36, Theorem 1.1],
we get

Vu1(u1, u2, u3) f1(u1, u2, u3)+ Vu2(u1, u2, u3) f2(u1, u2, u3)

+Vu3(u1, u2, u3) f3(u1, u2, u3)

= aû1(2 − u1

û1
− û1

u1
)+ bû2(3 − û1

u1
− u1

û1
· u3

û3
· û2

u2
− u2

û2
· û3

u3
).

Since the arithmetical mean is greater than or equal to the geometrical mean, the functions

2 − u1

û1
− û1

u1
and 3 − û1

u1
− u1

û1
· u3

û3
· û2

u2
− u2

û2
· û3

u3

are nonnegative for all ui > 0, i = 1, 2, 3. Hence,

Vu1(u1, u2, u3) f1(u1, u2, u3)+ Vu2(u1, u2, u3) f2(u1, u2, u3)

+Vu3(u1, u2, u3) f3(u1, u2, u3) ≤ 0,

for all ui > 0, i = 1, 2, 3.
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It then follows that

Ẇ (t) =
∫
�

[
Vu1(u1, u2, u3)

∂u1

∂t
+ Vu2(u1, u2, u3)

∂u2

∂t
+ Vu3(u1, u2, u3)

∂u3

∂t

]
dx

= b

k
û3

∫
�

(
1

û3
− 1

u3

)
(d�u3)dx +

∫
�

[
Vu1(u1, u2, u3) f1(u1, u2, u3)

+ Vu2(u1, u2, u3) f2(u1, u2, u3)+ Vu3(u1, u2, u3) f3(u1, u2, u3)
]

dx

= −d
b

k
û3

∫
�

1

u2
3

|∇u3|2dx +
∫
�

[
Vu1(u1, u2, u3) f1(u1, u2, u3)

+ Vu2(u1, u2, u3) f2(u1, u2, u3)+ Vu3(u1, u2, u3) f3(u1, u2, u3)
]

dx

≤ 0.

Therefore, W is a Lyapunov functional for the system (3.1), namely, for any t > 0, Ẇ (t) ≤ 0
along trajectories. Let C := {(u1, u2, u3) ∈ X

+ : Ẇ (t) = 0}. Note that

Ẇ (t) = 0 ⇔ (u1, u2, u3) = (û1, û2, û3).

By the similar arguments as in Theorem 2.1, we can show that the solution maps of (3.1)
admit a connected global attractor on X

+ and

lim
t→∞(u1(·, t), u2(·, t), u3(·, t)) → C

by LaSalle Invariant Principle (see, e.g. [37, Theorem 4.3.4]). Thus, (û1, û2, û3) is globally
asymptotically stable for (3.1).

We next point out that the result in Part (ii) is a special case of that in Theorem 2.2 (i).
For the completeness, we define the following functional ([36, Theorm 1.1]):

U (u1, u2, u3) = ũ1(
u1

ũ1
− ln

u1

ũ1
)+ u2 + b

k
u3,

W(t) =
∫
�

U (u1(x, t), u2(x, t), u3(x, t))dx,

where (u1(x, t), u2(x, t), u3(x, t)) is an arbitrary positive solution of (3.1) and ũ1 = λ
a .

By direct computations and the same arguments as in the proof of [36, Theorm 1.1], we
get

Uu1(u1, u2, u3) f1(u1, u2, u3)+ Uu2(u1, u2, u3) f2(u1, u2, u3)

+Uu3(u1, u2, u3) f3(u1, u2, u3)

= λ(2 − u1

ũ1
− ũ1

u1
)+ bm

k
(R0 − 1)u3 ≤ 0, ∀ ui > 0, i = 1, 2, 3,

where fi is defined in (3.3), for all i = 1, 2, 3. By the similar arguments as in Part(i), we
can also prove that W is a Lyapunov functional for the system (3.1), namely, for any t > 0,
Ẇ(t) ≤ 0 along trajectories. The proof is completed. �
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