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In this paper, we consider a class of delay reaction–diffusion equations (DRDEs) with a
parameter 3 > 0. A homogeneous Neumann boundary condition and non-negative initial
functions are posed to the equation. By letting 3 → 0, such an equation is formally reduced
to a scalar difference equation (or map dynamical system). The main concern is the
relation of the absolute (or delay-independent) global stability of a steady state of the
equation and the dynamics of the nonlinear map in the equation. By employing the idea of
attracting intervals for solution semiflows of the DRDEs, we prove that the globally stable
dynamics of the map indeed ensures the delay-independent global stability of a constant
steady state of the DRDEs. We also give a counterexample to show that the delay-
independent global stability of DRDEs cannot guarantee the globally stable dynamics of
the map. Finally, we apply the abstract results to the diffusive delay Nicholson blowfly
equation and the diffusive Mackey–Glass haematopoiesis equation. The resulting criteria
for both model equations are amazingly simple and are optimal in some sense (although
there is no existing result to compare with for the latter).

Keywords: delay-independent global stability; delay reaction–diffusion equation;
map dynamical system

1. Introduction

In the absence of spatial heterogeneity, many model equations from biology and
other areas are of the form of the following delay differential equation:

du
dt

= −du(t) + f (u(t − t)). (1.1)

Here, the time delay t > 0 may account for various contexts depending on the
practical problem under consideration. A prototype of such equations is the well-
known delayed Nicholson blowfly equation (Nicholson 1954; Gurney et al. 1980)

du
dt

= −du(t) + bu(t − t)e−au(t−t), (1.2)
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where u(t) is the adult population of the fly and t > 0 explains the maturation
time of the fly (Gurney et al. 1980; Cooke et al. 1999). Equation (1.2) has
been very well studied (e.g. Kulenovic & Ladas 1987; Karakostas et al. 1992;
Kuang 1993; So & Yu 1994; Cooke et al. 1999; Györi & Trofimchuk 1999; Faria
2006). The more general form (1.1) has also been extensively and intensively
studied (e.g. Kuang 1993; Walther 1995; Cooke et al. 1999; Györi & Trofimchuk
1999; Krisztin et al. 1999; Faria 2006; Röst & Wu 2007; Krisztin 2008; Liz & Röst
2009, in press; and references therein). Depending on the nonlinear function f ,
equation (1.1) can demonstrate very rich and complicated dynamics (e.g. Walther
1995; Krisztin et al. 1999; Krisztin 2008). For equation (1.2), the global dynamics
can be summarized as given below (e.g. Kuang 1993; Cooke et al. 1999; Györi &
Trofimchuk 1999; Wei & Li 2005; Faria 2006; Berezansky et al. 2010)

(i) when 0 < b/d ≤ 1, u = 0 is the only equilibrium of equation (1.2) that is
globally asymptotically stable for any t ≥ 0;

(ii) when 1 < b/d, u = 0 becomes unstable and there is a unique positive
equilibrium u = (1/a) ln(b/d) =: u1;

(iii) when 1 < b/d ≤ e2, u1 is globally asymptotically stable for all positive
solutions, regardless of the value of t > 0 and

(iv) when b/d > e2, u1 remains stable for small t > 0, but larger values of t > 0
will destroy the stability of u1 giving rise to periodic solutions around u1
via Hopf bifurcation.

When the spatial heterogeneity becomes an issue (e.g. random diffusion in
population dynamics), the model equation (1.1) is modified to the following delay
partial differential equation:

vu
vt

(t, x) = dDu(t, x) − du(t, x) + f (u(t − t, x)), (1.3)

and accordingly, equation (1.2) is replaced by

vu
vt

(t, x) = dDu(t, x) − du(t, x) + bu(t − t, x)e−au(t−t,x). (1.4)

In recent years, there have been many works dealing with delay reaction–
diffusion equations, particularly the diffusive Nicholson blowflies equation (1.4)
and various versions of diffusive delay logistic equations that serve as the models
for population dynamics and ecological problems (Busenberg & Mahaffy 1985;
Friesecke 1993; Yang & So 1996; Huang 1998; So & Yang 1998; So & Zou 2001;
Mei et al. 2004; Yi & Zou 2008; Yi et al. 2009). These equations fall into the
category of partial functional differential equations (PFDEs) and the monograph
by Wu (1996) serves as a good source for fundamental theory of PFDEs.

For equations (1.3) and (1.4), depending on the practical situation, one may
face a bounded or an unbounded spatial domain. When an unbounded domain is
considered, travelling wavefront solutions are an important topic and have been
discussed by many researchers (e.g. So & Zou 2001; So et al. 2001; Wu & Zou
2001; Mei et al. 2004).

When a bounded domain U is considered, boundary conditions need to be
posed on the boundary vU of the domain, depending on the practical scenarios.
Taking population dynamics as an example, the homogeneous Dirichlet boundary
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Reaction–diffusion equations with delay 2957

condition represents the situation where the boundary is hostile, while the
homogeneous Neumann boundary condition accounts for the case when the
domain is isolated from outside. In this paper, we are only interested in the
Neumann boundary condition, that is, we consider the following boundary initial
value problem (BIVP):

vu
vt

(t, x) = dDu(t, x) − du(t, x) + f (u(t − t, x)),

for (t, x) ∈ (0, ∞) × U,

vu
vn

= 0, for (t, x) ∈ (0, ∞) × vU

and u(q, x) = f(q, x), for (q, x) ∈ [−t, 0] × Ū.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.5)

Here, U ⊆ Rm is a bounded domain with smooth boundary vU, D is the Laplacian
operator, (v/vn) represents the differentiation in the direction of the outward
normal to vU, parameters d, d > 0 and f : R −→ R is a continuous function.

When f (u) = bue−au in equation (1.5), Yang & So (1996) showed that

(i) when 0 < b/d ≤ 1, u = 0 is the only steady state of equation (1.5) that is
globally asymptotically stable for any t > 0;

(ii) when 1 < b/d, u = 0 becomes unstable and there is a positive constant
steady state u = (1/a) ln(b/d) =: u1;

(iii) when 1 < b/d ≤ e, u1 is globally asymptotically stable for all positive
solutions, regardless of the value of t > 0 and

(iv) when b/d > e2, u1 remains stable for small t > 0, but larger values of t > 0
will destroy the stability of u1 giving rise to periodic solutions around u1
via Hopf bifurcation.

Note that comparing with the results (i)–(iv) for equation (1.2), there is a gap
(e, e2] for the ratio b/d for equation (1.5). In a recent work (Yi & Zou 2008), we
have filled this gap by showing that

(iii)′ when 1 < b/d ≤ e2, u1 is globally attractive for all positive solutions,
regardless of the value of t > 0.

From (i)–(iii)′–(iv) for equation (1.5) (as well as (i)–(iv) for equation (1.2)), we
see that b/d = e2 is a threshold value in terms of the delay-independent global
stability of u1. This makes one wonder what happens if the Ricker function
bue−au is replaced by another reproduction function f (u) satisfying the general
requirements for a birth function. This motivates us to consider the impact of
the map dynamics of f (·) on the dynamics of the BIVP (1.5).

For convenience, by rescaling

t
t

−→ t,
x√
dt

−→ x ,
1√
dt

U −→ U, td −→ m,

u(tt,
√

dtx) −→ u(t, x) and
1
d
f (·) −→ f (·),

⎫⎪⎪⎬
⎪⎪⎭

(1.6)
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we transform equation (1.5) to the following:

vu
vt

(t, x) = Du(t, x) − mu(t, x) + mf (u(t − 1, x)),

for (t, x) ∈ (0, ∞) × U,
vu
vn

= 0, for (t, x) ∈ (0, ∞) × vU

and u(q, x) = f(q, x), for (q, x) ∈ [−t, 0] × Ū.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.7)

Letting 3 = (1/m), equation (1.7) is further transformed to the following problem:

3
vu
vt

(t, x) = 3Du(t, x) − u(t, x) + f (u(t − 1, x)),

for (t, x) ∈ (0, ∞) × U,
vu
vn

= 0, for (t, x) ∈ (0, ∞) × vU

and u(q, x) = f(q, x), for (q, x) ∈ [−t, 0] × Ū.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.8)

Since we are interested in the delay-independent dynamics of equation (1.7), we
may formally let 3 → 0+ in equation (1.8), leading to the following equation:

u(t, x) = f (u(t − 1, x)), for (t, x) ∈ (0, ∞) × U. (1.9)

Obviously, the asymptotic behaviour of the solutions of equation (1.9) is
determined by the dynamics of

un+1 = f (un), (1.10)

which is governed by the one-dimensional map f (·) and is sometimes referred to
as the dynamics of the map f (·).

A question arises naturally: can one determine the dynamics of BIVP (1.8)
by the properties of equation (1.10) (or dynamics of map f ) and in what sense?
More concretely, relating to our main motivation stated above, what dynamics
of equation (1.10) would imply the delay-independent global stability of a steady
state for equation (1.8). We will address this question by using a dynamical
system approach. In §3, by employing the idea of attracting intervals for solution
semiflows of equation (1.8), we prove that the globally stable dynamics for
equation (1.10) indeed ensures the delay-independent global stability of a constant
steady state for the BIVP (1.8). A counterexample is also given to show that
the delay-independent global stability of equation (1.8) cannot guarantee the
globally stable dynamics of equation (1.10). To achieve this, we need to make use
of some existing results on globally stable dynamics for equation (1.10), which
are collected in §2 as a preliminary section. Then, by applying these results, we
obtain some very simple conditions that can assure the globally stable dynamics
for equation (1.10). In §4, we apply the main results in §3 to the delayed diffusive
Nicholson blowflies equation and another model equation arising from biology. For
the former, we re-confirm the existing optimal results summarized in (i)–(ii)–(iii)′,
while for the latter, we also obtain respective conditions for the delay-independent
global stability of the trivial steady state and that of a positive steady state.
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We point out that the idea of relating the dynamics of a map to the dynamics
of a delay ordinary differential equation has been used by some other researchers.
For example, by treating the delay ordinary differential equation

3u′(t) = −u(t) + f (u(t − 1)) (1.11)

as a singular perturbation of equation (1.10), Mallet-Paret & Nussbaum (1986),
Ivanov & Sharkovsky (1992), Hale & Verduyn Lunel (1993, §12.7) and Liz (2004)
obtained some information on the dynamics of equation (1.11) based on that of
equation (1.10). Our work can be considered a first attempt to further extend
this idea to the delay partial differential equations.

2. Some existing results on equation (1.10)

Let I ⊆ R be a closed (possibly infinite) interval and f : I −→ I be a continuous
function. Let If = ⋂

n≥1 f n(I ). Then, either If = ∅, or If ⊆ I is a closed (possibly
infinite) interval (e.g. Hale 1988). In §3, we will see that If actually attracts the
solutions of equation (1.8). Therefore, the set If plays a crucial role in determining
the asymptotic behaviours of solutions of equation (1.8). For convenience of
applications in later sections, we collect some known results on If below, with
some remarks on these results.

Firstly, by employing the main theorem in Coppel (1955) coupled with
proposition 1.2 in Mallet-Paret & Nussbaum (1986), one can obtain the following
result.

Proposition 2.1. Let I be a compact interval. Assume that

(H1) there is a u∗ ∈ I such that {u ∈ I : f 2(u) = u} = {u∗}.

Then, If = {u∗}.
Remark 2.2. Generally, in proposition 2.1, we cannot omit the assumption that

I is compact. For example, let I = R and f : R −→ R be given by f (u) = (1/2)u for
all u ∈ R. By taking u∗ = 0 and I = R, it is obvious that f satisfies the assumption
(H1). However, by the definition of If , we easily obtain If = R �= {0}.

Remark 2.3. If If = {u∗} for some u∗ ∈ I , then by the definition of If , {u ∈ I :
f n(u) = u} = {u∗} for every positive integer n and hence {u ∈ I : f 2(u) = u} = {u∗}.
Thus, by proposition 2.1, we know that in the case of a compact interval I ,
If = {u∗} if and if only the assumption (H1) holds; that is, u∗ is a globally stable
fixed point of f in I if and only if the assumption (H1) holds.

The following result can be obtained from Coppel (1955).

Proposition 2.4. Let I be compact. Assume that

(H2) there exists an u∗ ∈ I such that |f (u) − u∗| < |u − u∗| for all u ∈ I \ {u∗}.

Then, (H1) holds.

Proc. R. Soc. A (2010)
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Remark 2.5. Assumption (H1) does not imply (H2). This can be seen by the
function f : [−1, 2] −→ [−1, 2] defined by

f (u) =
{−2u, u ≤ 0,
0, u > 0.

Obviously, this function does not satisfy (H2) on I = [−1, 2]. However, it can be
easily shown that If = {0}. Thus, by remark 2.3, f satisfies (H1).

3. On the global stability of equation (1.7)

For convenience, we begin by introducing some notations. Let U be a bounded
domain in Rm with smooth boundary vU, D be the Laplacian operator
and (v/vn) be the derivative in the outward normal direction of vU. Let R
(R+, respectively) be the set of all real (non-negative, respectively) numbers. Let
C = C (Ū, R) and X = C ([−1, 0] × Ū, R) be equipped with the usual supremum
norm || · ||. Also, let C+ = C (Ū, R+) and X+ = C ([−1, 0] × Ū, R+).

For any f, j ∈ X , we write f ≥X j if f − j ∈ X+, f >X j if f ≥ j and
f �= j, f X j if f − j ∈ Int(X+). Similarly, for any x, h ∈ C , we write x ≥C h
if x − h ∈ C+, x >C h if x ≥C h and x �= h, x C h if x − h ∈ Int(C+). For simplicity
of notations, when there is no confusion about the spaces, we write ≥, > and 
for ≥∗, >∗ and ∗, respectively, where the asterisk stands for X or C .

For a real interval I , let I + [−1, 0] = {t + q : t ∈ I and q ∈ [−1, 0]}. For u : (I +
[−1, 0]) × Ū → R and t ∈ I , we write ut(·)(·) for the element of X defined by
ut(x)(q) = u(t + q, x), for −1 ≤ q ≤ 0 and x ∈ Ū. For any k ∈ R, we still denote by
k the constant functions in C and X taking value k when no confusion arises.

Let m > 0, I be a real interval and f : I −→ I be a continuous function. Consider
the following scalar delayed reaction–diffusion equation:

vu
vt

(t, x) = Du(t, x) − mu(t, x) + mf (u(t − 1, x)),

for (t, x) ∈ (0, ∞) × U,

vu
vn

= 0, for (t, x) ∈ (0, ∞) × vU

and u(q, x) = f(q, x), for (q, x) ∈ [−1, 0] × Ū,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where f ∈ C ([−1, 0] × Ū, I ).
Let T (t)(t ≥ 0) be the semigroup on C generated by the closure operator of

D − mId under the homogeneous Neumann boundary condition, where Id is the
identity operator on C . Then, by the general results on this semigroup (e.g. Wu
1996), we have the following.

Lemma 3.1. Let T (·) be defined as above. Then, the following statements are
true:

(i) T (t)(t ≥ 0) is an analytical strongly continuous semigroup on C;
(ii) T (t)a = ae−mt for all t ∈ R+ and a ∈ R and
(iii) T (t)(C+ \ {0}) ⊆ Int(C+) for all t > 0.
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We first consider a bounded and closed I = [a, b] ⊆ R. Denote by f̃ the expansion
of f from I to R, that is, f̃ : R −→ R is defined by

f̃ (u) =
⎧⎨
⎩

f (a), u < a,
f (u), a ≤ u ≤ b,
f (b), u > b.

Then, f̃ is a continuous function on R, f̃ (R) = f̃ (I ), f̃ |I ≡ f and ∩n≥1f̃ n(R) = If .
Moreover, define F : X → C by F(f)(x) = mf̃ (f(−1, x)) for all x ∈ Ū and f ∈ X .
Associated with equation (3.1) is the following integral equation with the given
initial function:

u(t) = T (t)f(0, ·) +
∫ t

0
T (t − s)F(us)ds, t ≥ 0,

u0 = f ∈ X .

⎫⎪⎬
⎪⎭ (3.2)

For a given f ∈ X , by the step argument and the definition of F , one can
solve equation (3.2) inductively on [0, 1], [1, 2], . . ., giving a unique solution of
equation (3.2) defined for all t ≥ 0. Denote this solution of equation (3.2) by
uf(t, x), which is the mild solution of equation (3.1) in the sense of Martin &
Smith (1990, 1991).

Since the semigroup T (t) is analytical, by corollary 2.2.5 in Wu (1996), we
know that the mild solution uf(t, x) of equation (3.1) is also the classical solution
of equation (3.1) (e.g. Travis & Webb 1974; Martin & Smith 1990, 1991; Wu 1996)
for all t > 1. From now on, we will not distinguish ‘mild’ and ‘classical’, and simply
use the word ‘solution’. This allows us to study the dynamics of equation (3.1)
via that of equation (3.2).

Define the map U : R+ × X −→ X by U (t, f) = (uf)t for (t, f) ∈ R+ × X , then
U (t, ·) is a semiflow on X called the solution semiflow of equation (3.2). We first
introduce some terminologies from dynamical systems theory.

Definition 3.2. An element f ∈ X is called an equilibrium of U if U (t, f) = f for
all t ≥ 0. A subset M of X is said to be positively invariant under U if U (t, f) ∈ M
for every f ∈ M and t ≥ 0.

Definition 3.3. Let u∗ be an equilibrium and M be a positively invariant set of
the semiflow U .

(i) we say that u∗ is a stable equilibrium in M if, for every neighbourhood
V of u∗ in M , there exists a neighbourhood W of u∗ in M such that
U (t, f) ∈ V for all (t, f) ∈ R+ × W ;

(ii) we say that u∗ is globally attractive in M if limt→+∞ U (t, f) = u∗ for all
f ∈ M and

(iii) we say u∗ is globally asymptotically stable in M if u∗ is a stable equilibrium
as well globally attractive in M .

As usual, we will omit M in definition 3.2 if M = X .
Remark 3.4. If u∗ is a globally asymptotically stable equilibrium in M and

u∗ ∈ M ′ ⊆ M is another positively invariant set of the semiflow U , then u∗ is also
globally asymptotically stable in M ′.

Proc. R. Soc. A (2010)
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Lemma 3.5. If f ∈ C ([−1, 0] × Ū, I ), then (uf)t ∈ C ([−1, 0] × Ū, I ) for all
t ∈ R+, namely, C ([−1, 0] × Ū, I ) is a positively invariant set of U .

Proof. We firstly notice that I = [a, b] where a, b ∈ R. We now show that

uf(t, x) ≥ a, for all t ∈ R+ and x ∈ Ū.

Indeed, from the definition of uf(t, x), we can obtain

uf(t, x) = [
T (t)f(0, ·)](x) + m

∫ t

0

[
T (t − s)f̃ (uf(s − 1, ·))](x)ds.

Let t1 = sup{t ≥ 0 : uf(s, x) ≥ a for all s ∈ [0, t] and x ∈ Ū}. For each (t, x) ∈
[t1, t1 + 1] × Ū, we have

uf(t, x) ≥ [
T (t)a

]
(x) + m

∫ t

0

[
T (t − s)a

]
(x)ds

≥ e−mta + m

∫ t

0
e−m(t−s)a ds

= e−mta + ma
∫ t

0
e−m(t−s)ds

= e−mta + a(1 − e−mt)

= a,

where the first inequality follows from lemma 3.1(iii) and the second inequality
follows from lemma 3.1(ii). This contradicts the choice of t1. Similarly, we
can prove

uf(t, x) ≤ b for all t ∈ R+ and x ∈ Ū. �

Remark 3.6. By the same argument as for the case I = [a, b], we can prove a
similar result of lemma 3.5 for the case I = [a, ∞) or (−∞, a] or (−∞, −∞).

Let A ⊆ X . For 3 > 0, the 3-neighbourhood of A is defined by O(A, 3) = {j ∈ X :
||j − f|| < 3 for some f ∈ A}; for f ∈ X , the distance between f and A is defined
by dist(f, A) = inf{||f − j|| : j ∈ A}.

Let P(t) ∈ X for large t. As is customary, by limt→+∞ dist(P(t), A) = 0,
we mean that for any 3 > 0, there exists T = T3 > 0 such that P(t) ∈ O(A, 3)
for all t > T .

Lemma 3.7. Let f ∈ X and J ≡ [c, d], K ≡ [c∗, d∗] be real closed intervals.
Assume that (uf)t ∈ C ([−1, 0] × Ū, J ) and f̃ (uf(t − 1, x)) ∈ K for all t ∈ R+ and
x ∈ Ū. Then, limt→+∞ dist((uf)t , C ([−1, 0] × Ū, K )) = 0.
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Proof. It suffices to show that for any 3 > 0, there exists T > 0 such that (uf)t ∈
C ([−1, 0] × Ū, (c∗ − 3, d∗ + 3)) for all t > T . Firstly, by equation (3.2) and (ii,iii)
in lemma 3.1, we know that for all t ≥ 0 and x ∈ Ū,

uf(t, x) = [
T (t)f(0, ·)](x) + m

∫ t

0

[
T (t − s)f̃ (uf(s − 1, ·))](x)ds

≥ [
T (t)c

]
(x) + m

∫ t

0

[
T (t − s)c∗](x)ds

≥ e−mtc + m

∫ t

0
e−m(t−s)c∗ds

= e−mtc + mc∗
∫ t

0
e−m(t−s)ds

= e−mtc + (1 − e−mt)c∗.

Hence, for any 3 > 0, taking T1 = 1 + max{0, (1/m) ln((1 + |c∗ − c|)/3)}, we have
(uf)t ∈ C ([−1, 0] × Ū, (c∗ − 3, +∞)) for all t > T1. A similar argument also shows
that for any 3 > 0, there exists T2 > 0 such that (uf)t ∈ C ([−1, 0] × Ū, (−∞, d∗ +
3)) for all t > T2. So, (uf)t ∈ C ([−1, 0] × Ū, (c∗ − 3, d∗ + 3)) for all t > T ≡
max{T1, T2}. �

Lemma 3.8. Let f ∈ X and J ≡ [c, d] be real closed intervals. If limt→+∞ dist
((uf)t , C ([−1, 0] × Ū, J )) = 0, then limt→+∞ dist((uf)t , C ([−1, 0] × Ū, f̃ (J ))) = 0.
Consequently, limt→+∞ dist((uf)t , C ([−1, 0] × Ū, f̃ n(J ))) = 0 for every non-
negative integer n.

Proof. Obviously, there exist c∗, d∗ ∈ R such that f̃ (J ) = [c∗, d∗]. For any 3 > 0,
the continuity of f̃ implies that there exists d ∈ (0, (3/3)) such that f̃ ([c − d, d +
d]) ⊆ [c∗ − (3/3), d∗ + (3/3)]. Now, assume that limt→+∞ dist((uf)t , C ([−1, 0] ×
Ū, J )) = 0. Then, there exists T1 > 0 such that (uf)t ∈ C ([−1, 0] × Ū, (c − d, d +
d)) for all t ≥ T1. Thus, by the choices of d and T1, we obtain that (uf)t ∈
C ([−1, 0] × Ū, [c − d, d + d]) and f̃ (uf(t − 1, x)) ∈ [c∗ − (3/3), d∗ + (3/3)] for all
t > T1 and x ∈ Ū.

On the other hand, by the semigroup property of the solution semiflow, we
know (u(uf)T1+1)t = (uf)(t+T1+1) for all t ≥ 0. Applying lemma 3.7 to (uf)T1+1, we
infer that there exists T2 > 0 such that (u(uf)T1+1)t ∈ C ([−1, 0] × Ū, (c∗ − 3, d∗ +
3)) for all t > T2. Taking T = 1 + T1 + T2, we have shown that (uf)t ∈ C ([−1, 0] ×
Ū, (c∗ − 3, d∗ + 3)) for all t > T . This proves limt→+∞ dist((uf)t , C ([−1, 0] ×
Ū, f̃ (J ))) = 0. The second conclusion is a consequence of inductive use of the
first conclusion. �

Proposition 3.9. For each f ∈ X, limt→+∞ dist((uf)t , C ([−1, 0] × Ū, If )) = 0.
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Proof. By the continuity of f, there are a ′, b′ ∈ R such that [a, b] ⊆ I ′ = [a ′, b′]
and f ∈ C ([−1, 0] × Ū, I ′). Let a∗ = inf If , b∗ = sup If , an = inf f̃ n(I ′) and bn =
sup f̃ n(I ′) for all n ≥ 0 with a0 = a ′ and b0 = b′. It is obvious that an = inf f n(I )
and bn = sup f n(I ) for all n ≥ 1.

For arbitrarily given 3 > 0, we need to show that there exists T =
T3 > 0, such that (uf)t ∈ C ([−1, 0] × Ū, (a∗ − 3, b∗ + 3)) for all t > T . By the
definition of If , there is an integer k such that [ak − (3/3), bk + (3/3)] ⊆ (a∗ −
3, b∗ + 3). Thus, it suffices to prove that there exists T ∗ = T ∗

3 > 0 such that
(uf)t ∈ C ([−1, 0] × Ū, [ak − (3/3), bk + (3/3)]) for all t > T ∗. This is implied
by limt→+∞ dist((uf)t , C ([−1, 0] × Ū, [ak , bk ])) = 0, which is a consequence of
applying lemmas 3.5 and 3.8 to (uf)t . �

We are now in a position to state and prove our first main result.

Theorem 3.10. Assume that (H1) holds. Then, u∗ is a globally asymptotically
stable equilibrium in C ([−1, 0] × Ū, I ).

Proof. Lemma 3.5 implies that C ([−1, 0] × Ū, I ) is a positively invariant
set under U . It suffices to prove that u∗ is a globally asymptotically stable
equilibrium.

Note that proposition 2.1 implies If = {u∗}. By proposition 3.9, we have
limt→+∞(uf)t = u∗ for all f ∈ X , that is, u∗ is a globally attractive equilibrium.

Next we prove the stability of u∗. Indeed, for every neighbourhood V
of u∗, there exists 3 > 0, such that V ⊇ C ([−1, 0] × Ū, (u∗ − 3, u∗ + 3)). By
proposition 2.1, there exists an open interval J ⊆ R such that the length of J
is less than (3/2), u∗ ∈ J and f̃ (J̄ ) ⊆ J̄ .

By applying lemma 3.5 to f̃ |J̄ , we have (uf)t ∈ C ([−1, 0] × Ū, J̄ ) for all
t ∈ R+ and f ∈ C ([−1, 0] × Ū, J ). Thus, ||(uf)t − u∗|| < 3 for all f ∈ C ([−1, 0] ×
Ū, J ) and t ∈ R+. Therefore, (uf)t ∈ V for all f ∈ C ([−1, 0] × Ū, J ) and t ∈ R+,
implying the stability of u∗. �

As a result of proposition 2.4 and theorem 3.10, we have the following corollary.

Corollary 3.11. Assume that (H2) holds. Then, u∗ is a globally asymptotically
stable equilibrium in C ([−1, 0] × Ū, I ).

The above results are all for I = [a, b], a compact interval. In the case that I is
only a closed interval (that is I = [a, ∞) or I = (−∞, b] or even I = (−∞, ∞)),
we have the following result.

Theorem 3.12. Let I ⊆ R be a closed interval (may be unbounded). Assume that
(H1) or (H2) holds. Moreover, suppose that |f (u)| ≤ |u| for all sufficient large
u ∈ I (in particular, it is the case when f (I ) is bounded). Then, u∗ is a globally
asymptotically stable equilibrium in C ([−1, 0] × Ū, I ).

Proc. R. Soc. A (2010)

 on August 27, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Reaction–diffusion equations with delay 2965

Proof. Without loss of generality, we may assume that (H1) holds. Lemma 3.5
(see remark 3.6) implies that C ([−1, 0] × Ū, I ) is a positively invariant set under
U . It suffices to prove that u∗ is a globally asymptotically stable equilibrium.
f̃ : R −→ R is defined by

f̃ (u) =

⎧⎪⎪⎨
⎪⎪⎩

f (inf I ), u < inf I and u ∈ R,

f (u), u ∈ I ,

f (sup I ), u > sup I and u ∈ R.

Suppose f ∈ X . Then there exists A > 0 such that f̃ ([−A, A]) ⊆ [−A, A], u∗ ∈
(−A, A) and f ∈ C ([−1, 0] × Ū, [−A, A]). By applying theorem 3.10 to [−A, A]
and f̃ |[−A,A], we know that limt→+∞(uf)t = u∗ and u∗ is a stable equilibrium.
From the arbitrariness of f, we conclude that u∗ is a globally asymptotically
stable equilibrium. �

When the interval I is even not closed in R, we have the following results.

Theorem 3.13. Let I ⊆ R be a real interval and f (I ) ⊆ I . Assume that (H1) or
(H2) holds. Suppose that f can be continuously extended to Ī . Additionally, assume
that there exist a, b ∈ R such that one of the following conditions holds:

(i) I = (a, b) and there exist sequences {ak} and {bk} in I such that
limk→+∞ ak = a, limk→+∞ bk = b and f ([ak , bk ]) ⊆ [ak , bk ];

(ii) I = [a, b) and there exists sequence {bk} in I such that limk→+∞ bk = b and
f ([a, bk ]) ⊆ [a, bk ];

(iii) I = (a, b] and there exists sequence {ak} in I such that limk→+∞ ak = a and
f ([ak , b]) ⊆ [ak , b];

(iv) I = (a, +∞) and there exist sequences {ak} and {bk} in I such that
limk→+∞ ak = a, limk→+∞ bk = +∞ and f ([ak , bk ]) ⊆ [ak , bk ];

(v) I = (−∞, b) and there exist sequences {ak} and {bk} in I such that
limk→+∞ ak = −∞, limk→+∞ bk = b and f ([ak , bk ]) ⊆ [ak , bk ] and

(vi) I = (−∞, +∞) and there exist sequences {ak} and {bk} in I such that
limk→+∞ ak = −∞, limk→+∞ bk = +∞ and f ([ak , bk ]) ⊆ [ak , bk ].

Then, u∗ is a globally asymptotically stable equilibrium in {u∗} ⋃[C ([−1, 0] ×
Ū, Ī ) \ {inf I , sup I }].

Proof. We only give the proofs for (i) and (iv), since the rest of the theorem
can be proved by a similar argument.

Assume that the assumption (i) holds. Clearly, a < f (x) < b for all x ∈ I . By the
continuous extension of f to Ī = [a, b] implies f ([a, b]) ⊆ [a, b]. Thus, lemma 3.5
shows that C ([−1, 0] × Ū, Ī ) is positively invariant.

Let f ∈ C ([−1, 0] × Ū, Ī ) \ {a, b}. We now claim that there exists (t1, x1) ∈
[0, 1] × Ū such that U (t1, f)(0, x1) > a. Otherwise, U (1, f) = a. In view of
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f > a and f ((a, b)) ⊆ (a, b), we have f (f(q∗∗, x∗∗)) > a for some (q∗∗, x∗∗) ∈
[−1, 0] × Ū. It follows from equation (3.2) and lemma 3.1(ii, iii) that for any
(t, x) ∈ [1 + q∗∗, 1] × Ū,

U (t, f)(0, x) = (uf)t(0, x) = uf(t, x)

= [
T (t)f(0, ·)](x) + m

∫ t

0

[
T (t − s)f (uf(s − 1, ·))](x)ds

= e−mta + m

∫ t

0

[
T (t − s)f (f(s − 1, ·))](x)ds

> e−mta + m

∫ t

0

[
T (t − s)a

]
(x)ds

= e−mta +
∫ t

0
me−m(t−s)a ds

= e−mta + (1 − e−mt)a

= a,

a contradiction to U (1, f) = a.
By the above claim and lemma 3.1, and making use of the semigroup property,

we obtain that for any (t, x) ∈ (t1, +∞) × Ū,

uf(t, x) = U (t − t1, U (t1, f))(0, x)

= [
T (t − t1)U (t1, f)(0, ·)](x) + m

∫ t−t1

0

[
T (t − s − t1)

× f (uf(s + t1 − 1, ·))](x)ds

> e−m(t−t1)a + m

∫ t−t1

0

[
T (t − s − t1)f (uf(s + t1 − 1, ·))](x)ds

≥ e−m(t−t1)a +
∫ t−t1

0
me−m(t−s−t1)a ds

= e−m(t−t1)a + (1 − e−m(t−t1))a

= a.

Thus, U (2, f)  a. A similar argument also shows U (2, f) � b.
By the assumption (i), there exists k0 > 1 such that u∗ ∈ (ak0 , bk0) and U (2, f) ∈

C ([−1, 0] × Ū, (ak0 , bk0)). Now applying theorem 3.10 to f |[ak0 ,bk0 ], we can deduce
the conclusion of theorem 3.13.

Assume that the assumption (iv) holds. Suppose that f ∈ C ([−1, 0] × Ū, Ī ) \
{a}. An argument similar to that of the above implies U2(f)  a. By the
assumption (iv), there exists k0 > 1 such that u∗ ∈ (ak0 , bk0) and U (2, f) ∈
C ([−1, 0] × Ū, (ak0 , bk0)), and thus, by applying theorem 3.10 to f |[ak0 ,bk0 ], we can
also obtain the conclusion of theorem 3.13. �
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Remark 3.14. If one of the conditions of theorem 3.13(i–vi) holds, then by
proposition 2.1, we easily find that u∗ is a globally stable equilibrium in I for the
interval dynamical system {f n}n≥0.

Next we construct an example showing that the global asymptotic stability of
a steady state for equation (1.8) does not imply the globally stable dynamics for
equation (1.10).

Example 3.15. Define f : [−1, 1] −→ [−1, 1] by

f (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2u − 1, u ∈ [−1, − 1
2

]
,

0, u ∈ [− 1
2 ,

1
2

]
,

−2u + 1, u ∈ [ 1
2 , 1

]
.

(3.3)

Note that f satisfies neither (H1) nor (H2) in §3. Moreover, it is easily seen that
If = [−1, 1], and in particular, {−1, 1} a two-period orbit. Thus, this map does
not give the globally stable dynamics for equation (1.10). However, we have the
following result.

Theorem 3.16. Let f be defined by equation (3.3) and I = [−1, 1]. Then, 0
is a globally asymptotically stable equilibrium of equation (3.1) in C ([−1, 0] ×
Ū, [−1, 1]).

Proof. By simple computations, we obtain the following results:

(i) f (u) < u, for all u ∈ (0, 1];
(ii) f (u) > u, for all u ∈ [−1, 0) and
(iii) |f (u)| < |u|, for all u ∈ (−1, 1)\{0}.

This means that f |(−1,1) satisfies all the conditions in theorem 3.13(i). Hence, by
theorem 3.13(i), we conclude that 0 is a globally asymptotically stable equilibrium
in C ([−1, 0] × Ū, [−1, 1]) \ {−1, 1}. Moreover, from the definition of f and U , we
may deduce U (1, ±1) ∈ C ([−1, 0] × Ū, [−1, 1]) \ {−1, 1}. Hence, 0 is a globally
asymptotically stable equilibrium in C ([−1, 0] × Ū, [−1, 1]). �

The above example shows that the delay-independent globally asymptotical
stability of a steady state u∗ for equation (3.1) in general does not imply the global
stability of u∗ for equation (1.10); however, it does give some local information of
equation (1.10) near u∗ under the extra condition of differentiability, as is shown
in the following proposition.

Proposition 3.17. Let u∗ be a constant steady state of equation (3.1) and f
is differentiable in a neighborhood of u∗. If u∗ is globally asymptotically stable
(even locally stable) for equation (3.1) in {u∗} ∪ (C ([−1, 0] × Ū, I ) \ {inf I , sup I })
regardless of the value of m > 0, then |f ′(u∗)| ≤ 1.
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Proof. We only need to show that |f ′(u∗)| > 1 will contradict the delay-
independent stability of u∗ for equation (3.1). To this end, we consider the
subclass of solutions to equation (3.1) governed by the following equation:

du
dt

= −mu(t) + mf (u(t − 1)), t > 0

and u(q) = f(q), q ∈ [−1, 0],

⎫⎬
⎭ (3.4)

i.e. spatially independent solutions of equation (3.1). Obviously, instability of u∗
for equation (3.4) implies instability of u∗ for equation (3.1).

It is known that the stability/instability of u∗ for equation (3.4) is determined
by the characteristic equation

l + m − mf ′(u∗)e−l = 0. (3.5)

By the well-known result of Hayes (1950) (also see the appendix of Hale &
Verduyn Lunel (1993)), one knows that if f ′(u∗) > 1, then equation (3.5) has
a positive real root; and if f ′(u∗) < −1, then equation (3.5) will have complex
roots with positive real parts when m is large. That is, if |f ′(u∗)| > 1, then u∗
cannot be delay-independently asymptotically stable. �

4. Applications

In this section, we apply the results obtained in §3 to the diffusive delay
Nicholson blowflies equation and the diffusive Mackey–Glass haematopoiesis
equation arising from population biology.

Example 4.1. Consider the Nicholson blowflies equation with diffusion

vu
vt

(t, x) = dDu(t, x) − du(t, x) + bu(t − t, x)e−au(t−t,x),

for (t, x) ∈ (0, +∞) × U,

vu
vn

|vU = 0

and u(q, x) = f(q, x), for (q, x) ∈ [−1, 0] × Ū,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where a, d, b, d, t ∈ (0, +∞) and f ∈ X .

Rescaling equation (4.1) by

t
t

→ t,
x√
dt

→ x ,
1√
dt

U → U, td → m and au(tt,
√

dtx) → u(t, x),

(4.2)
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equation (4.1) is transformed to the following system corresponding to
equation (3.1):

vu
vt

(t, x) = Du(t, x) − mu(t, x) + m[(b/d)u(t − 1, x)e−u(t−1,x)],
for (t, x) ∈ (0, ∞) × U,

vu
vn

(t, x) = 0, on G ≡ (0, ∞) × vU

and u(q, x) = f(q, x), for (q, x) ∈ [−1, 0] × Ū.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.3)

Applying the results in §3 to this model, we can reproduce the conclusions for
this model mentioned in the introduction.

Theorem 4.2. If b/d ∈ (0, e2], then the following statements are true:

(i) if b/d ≤ 1, then 0 is globally asymptotically stable in X+ and
(ii) if b/d > 1, then ln(b/d) is globally asymptotically stable in X+ \ {0}.
Proof. Let f : R+ −→ R+ be defined by f (u) = (b/d)ue−u for all u ∈ R+.
Proof of (i). Suppose b/d ≤ 1 holds. If u > 0, then |f (u)| < |u|, that is |f (u) −

0| < |u − 0|. Thus, the assumption (H2) holds. By theorem 3.12, we conclude that
0 is globally asymptotically stable in X+.

Proof of (ii). Suppose b/d > 1 holds. Then, by direct but careful use of calculus
(also see remark 4.7 below), one can obtain

{u ∈ (0, +∞) : f 2(u) = u} =
{
ln

b

d

}
. (4.4)

Note that for any 3 ∈ (0, ln(b/d)), we can verify that f ([3, +∞)) ⊆ [3, 1 + b/(de)].
Thus, theorem 3.13(iv) implies that ln(b/d) is globally asymptotically stable in
X+ \ {0}. �

Remark 4.3. We have seen from (i)–(ii)–(iii)′–(iv) in §1 that the trivial solution
u = 0 is globally asymptotically stable in X+ regardless of m if and only if
b/d ∈ (0, 1]; and the positive steady state u∗ = ln(b/d) exists and is globally
asymptotically stable in X+ \ {0} regardless of m if and only if b/d ∈ (1, e2]. We
can also obtain these conclusions by theorem 4.2 and proposition 3.17. Indeed, let
f (u) = (b/d)ue−u , u ∈ R+, with b, d ∈ (0, ∞), simple computation leads to f ′(0) =
b/d and f ′(ln(b/d)) = 1 − ln(b/d). Thus, |f ′(0)| ≤ 1 if and only if b/d ∈ (0, 1];
ln(b/d) > 0 and |f ′(ln(b/d))| ≤ 1 if and only if b/d ∈ (1, e2]. In other words, our
criteria for delay-independent global stability of a steady state of the equation
for equation (4.1) are optimal.

Example 4.4. Consider the following scalar delay diffusive equation:

vu
vt

(t, x) = Du(t, x) − mu(t, x) + m
pu(t − 1, x)

1 + (u(t − 1, x))n
,

vu
vn

|vU = 0

and u(q, x) = f(q, x), for (q, x) ∈ [−1, 0] × Ū,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5)

where p, m and n are all positive constants.
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Model (4.5) is a result of rescaling the diffusive version of the original model
system proposed by Mackey & Glass (1977) to model blood-cell production. The
original model without diffusion has been studied by many researchers. Among
other topics is the stability of a positive equilibrium, justifying a long-term stable
blood concentration level. See Kuang (1993), Tang & Zou (2003) and references
therein. However, the diffusive version (4.5) has not been discussed yet, to our
knowledge. Applying the results in §3 to this model, we obtain the following
theorem.

Theorem 4.5. We have the following statements:

(i) if p ≤ 1, then 0 is globally asymptotically stable in X+ for all m > 0 and
(ii) if either (p > 1 and 0 < n ≤ 2) or (1 < p ≤ n/(n − 2) and n > 2), then

(p − 1)1/n is globally asymptotically stable in X+ \ {0} for all m > 0.

Proof. Define f : R+ −→ R+ by f (u) = pu/(1 + un) for all u ∈ R+.
Proof of (i). Obviously, |f (u)| = |f (u) − f (0)| < |u − 0| when u > 0. By

theorem 3.12, we have 0 to be globally asymptotically stable in X+.
Proof of (ii). By subtle use of calculus (also see remark 4.7 below), one

can verify

{u ∈ (0, +∞) : f 2(u) = u} = {(p − 1)1/n} (4.6)

under the conditions of (ii) (see also remark 4.7 below). Thus, (H1) holds for
equation (4.5). Note that for any 3 ∈ (0, (p − 1)1/n), we have f ([3, +∞)) ⊆ [3, p +
1]. Thus, theorem 3.13(iv) implies that (p − 1)1/n is globally asymptotically stable
in X+ \ {0}. �

Remark 4.6. Let f : R+ −→ R+ be defined by f (u) = pu/(1 + un) for all u ∈
R+, where p, n ∈ (0, +∞). Then by a simple computation, we have f ′(0) = p
and f ′((p − 1)1/n) = (n + p − np)/p. Thus, |f ′(0)| ≤ 1 if and only if p ≤ 1; and
((p − 1)1/n > 0 and |f ′((p − 1)1/n))| ≤ 1) if and only if either (p > 1 and 0 < n ≤ 2)
or (1 < p ≤ n/(n − 2) and n > 2). So, by proposition 3.17 and theorem 4.5, we
easily find that 0 ((p − 1)1/n , respectively) is a globally asymptotically stable
equilibrium for equation (4.5) in X+ (X+ \ {0}, respectively), regardless of the
value of m > 0 if and only if p ≤ 1 (either (p > 1 and 0 < n ≤ 2), or (1 < p ≤
n/(n − 2) and n > 2), respectively). In other words, our criteria for global
asymptotic stability of an equilibrium of equation (4.5), regardless of the value
of m > 0 are also optimal and cannot be improved.

Remark 4.7. In the proofs of theorems 4.2 and 4.5, we have mentioned that
careful and subtle use of calculus can verify equations (4.4) and (4.6). In fact,
they can also be obtained by making use of some of the existing results on global
stability of fixed points of maps, e.g. those in Gopalsamy et al. (1998), Györi &
Trofimchuk (1999), Cull (2007) and Liz (2007). In particular, as one referee
pointed out, since the nonlinearities in equations (4.3) and (4.5) have negative
Schwarzian derivatives, those results obtained using Schwarzian derivatives are
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especially easy to verify (e.g. Singer 1978; Liz 2007; Liz & Röst in press; and
references therein). For example, by theorem 2.3, proposition 2.5 and corollary 2.7
in Liz (2007), together with some straightforward calculations, equations (4.4)
and (4.6) can be easily obtained.
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