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Abstract
In this paper, we introduce the notion of practically susceptible population, which
is a fraction of the biologically susceptible population. Assuming that the fraction
depends on the severity of the epidemic and the public’s level of precaution (as a
response of the public to the epidemic), we propose a general framework model with
the response level evolvingwith the epidemic.We firstly verify thewell-posedness and
confirm the disease’s eventual vanishing for the framework model under the assump-
tion that the basic reproduction number R0 < 1. For R0 > 1, we study how the
behavioural response evolves with epidemics and how such an evolution impacts the
disease dynamics. More specifically, when the precaution level is taken to be the
instantaneous best response function in literature, we show that the endemic dynamic
is convergence to the endemic equilibrium; while when the precaution level is the
delayed best response, the endemic dynamic can be either convergence to the endemic
equilibrium, or convergence to a positive periodic solution. Our derivation offers a
justification/explanation for the best response used in some literature. By replacing
“adopting the best response”with “adapting toward the best response”, we also explore
the adaptive long-term dynamics.

Keywords Infectious disease · SIS model · Non-pharmaceutical interventions ·
Precaution · Severity of epidemics · Practically susceptible · Stability · Bifurcation

Mathematics Subject Classification 34D20 · 34k18 · 34K20 · 91A22 · 92B20 · 92D30

Dedicated to Professor Glenn Webb in the occasion of his 80th birthday. Partially supported by NSERC of
Canada (RGPIN-2022-04744).

B Xingfu Zou
xzou@uwo.ca

1 Department of Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-024-02100-0&domain=pdf
http://orcid.org/0000-0002-8403-3314


    1 Page 2 of 22 T. Cheng, X. Zou

1 Introduction

In modelling infectious disease dynamics, most models assume a homogeneous sus-
ceptibility for the susceptible population, and such an assumption canmake themodels
moremathematically tractable.However, in reality, susceptibilitymay differ from indi-
vidual to individual. Physiologically or immunologically, this is due to the differences
in, e.g., responses of individuals’ immune systems to different pathogens, as well as
in the effect of vaccination (taking vaccine or not, the efficacy of the vaccine taken,
etc.). There have been some studies that use structured models to reflect such het-
erogeneity of susceptibility and explore its impact on disease dynamics. See, e.g.,
Gomes et al. (2022), Inaba (2014), Hyman and Li (2005), Katriel (2012), Ketcheson
(2021), Lorenzi et al. (2021), May and Anderson (1979), Thieme (1985, 2009) and
the references therein.

In addition to the physiological/immunological factors, there are also social/
behavioural factors that may affect susceptibility of a population. For instance, during
the pandemic covid-19 from 2020–2023, in addition to the development and wide
use of vaccines and drugs for treatment, various non-pharmaceutical interventions
(NPIs) in all countries in the world have also played an essential role in controlling the
transmission/spread of covid-19. Although specific forms of NPIs differ from country
to country, region to region, and city to city, and although such NPIs varied as the
disease evolved, such NPIs, together with massive media coverage and education,
typically raised the awareness of the public about this disease, making themmore pre-
cautious and less social. As a consequence of such precautions and reduced sociality,
some epidemically susceptible people are practically non-susceptible or less suscep-
tible. In other words, during a pandemic or epidemic, due to the precaution, only a
fraction P ∈ [0, 1] of the epidemiologically susceptible population S(t), denoted by
Sp(t) = PS(t), is actually susceptible due to precaution caused by NPIs and media
coverage. This would, of course, impact the disease dynamics (transmission dynamics
in the population).

In a recent work Cheng and Zou (2022), based on the above observation, we pro-
posed a new perspective for understanding the notion of the force of infection (or
infection force), which can not only explain many existing infection force functions
used in the literature but also motivate new forms of infection force functions. To
be more specific, if the mass action infection mechanism β I (t)S(t) is adopted, then
replacing the population of the epidemiologically susceptible population S(t)with the
practically susceptible population Sp(t) would revise the incidence rate β I (t)S(t) to

β I (t)Sp(t) = β I (t)PS(t) = [βP I (t)] · S(t),

leading to an overall infection force fm(t) = [βP I (t)]. Here, the fraction P naturally
depends on the severity of the epidemic, denoted by L(t), in such a way that the more
severe the epidemic is, the smaller the fraction P is. Accordingly it is reasonable to
assume P = P(L(t)) satisfies the following condition:

P(L) is non-increasing, P(0) ≤ 1 and P(∞) ≥ 0. (1.1)
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Below are some prototypes of such a fraction function satisfying (1.1):

(A) P1(L) = m1L+1
m2L+1 where m1,m2 are all positive constants satisfying

m1
m2

< 1;

(B) P2(L) = m1L+b
cL2+m2L+b

, where all parameters are positive constants and satisfy
m1
m2

< 1;

(C) P3(L) = e−hL , where h > 0.

There are various ways to measure the severity L(t) at time t . In the simplest case,
the severity is measured by the current prevalence of the disease, i.e., L(t) = I (t), the
above three forms with this severity lead to the infection force the function used many
models in the literature, such as, Cui et al. (2008), Liu et al. (2007),McCluskey (2010),
Ruan and Wang (2003), Wang (2006), Xiao and Ruan (2007) and some references
therein. We point out that the severity measurement may also consider the infections
in some past times, meaning that L(t) has the form

L(t) =
∫ τ

0
w(ξ)I (t − ξ) dξ (1.2)

where the constant τ > 0 represents a length of time interval and w(ξ) is the weight
function that reflects the variation of the impact of disease surveillance in the past
interval [t − τ, t] on the severity at the present time, or its discrete version

L(t) =
k∑

i=0

wi I (t − τi ) with 0 = τ0 < τ1 < τ2 < · · · < τk . (1.3)

Practically, the form (1.3) is more feasible because case reporting is done at discrete
times in reality. In Cheng and Zou (2022), through a SIR model incorporated with the
exponential decay function P(L) = P3(L) = e−hL with L(t) given by (1.3) for k = 1,
we demonstrated the impacts of the information delay τ = τ1 > 0 and information
weights k0 and k1 on the disease dynamics.

For the fraction P of the practical susceptible population, in addition to the severity
of the epidemic, it should also depend on the response level of the public. Given the
same severity L(t), the response level may vary for different age groups (e.g., senior
people tend to be more precautious than young people during an epidemic), genders,
education levels, ethnic groups and regions/countries. Because of the sophistication
of human’s physiology and societal structures, response levels can be impacted by
many factors and can evolve with the severity of the epidemics. This has particularly
been demonstrated in the past COVID-19 pandemic. Thus, with the same severity L ,
different response levels may lead to different fractions P . Such a response level is
heterogeneous, differing from individual to individual in a community. For simplicity,
we just use the average response level denoted by X ∈ [0, 1] to avoid the heterogeneity
in the response level. With all the above considerations, P is now denoted P =
P(X , L), and accordingly, the properties given in (1.1) is revised to

⎧⎨
⎩

∂P(X , L)

∂X
< 0,

∂P(X , L)

∂L
< 0,

P(0, L) = 1, P(1, L) ≥ 0, P(X ,∞) ≥ 0, P(X , 0) ≤ 1.
(1.4)
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We point out that from their meanings described above, the severity L(t) is an epi-
demiological notion while the response level is a behavioural factor.

We also point out that the incorporation of such a fraction function P(X , L) is moti-
vated by the recent worksWang et al. (2016) andWang and Zou (2017) that investigate
the fear effect in predator-pray systems. There is a similarity here: in a predator–prey
system, when a prey perceives the risk from the predator as an anti-predation response,
the prey will typically adjust their behaviour to reduce the risk of being caught by the
predator; during an epidemic, aware of the severity of the epidemics, susceptible indi-
viduals will also typically change their behaviours (reducing social activities, using
EPPs, or even locked down by the government’s mandatory rules), either actively (vol-
untarily) or passively (forcedly) to reduce the chances of being infected. We note that
there are many research works on modelling non-pharmaceutical interventions (NPIs)
(see, e.g., Ketcheson 2021; Li et al. 2021 and the references therein), but here in this
paper, we focus on the impact of the precaution on infectious disease dynamics. Such
precaution can be attributed to the various interventions from governments/public
health agencies, media coverage, or increased knowledge of the public on the dis-
ease. The level of such precaution is, in general, not easy to quantify, and neither is its
impact. As such, this study is mainly of amechanistic nature. However, we believe that
different NPIs may serve different purposes and have different effects; accordingly,
the associated response of the public may be reflected in different ways. For example,
Qiu et al. (2022) use the fraction of the mask-wearing population as a measurement of
response to an epidemic, and Morsky et al. (2023) use the fraction of the population
adopting general NPIs.

Two questions naturally arise:

(Q1) How does the response level (together with the severity) impact the disease
dynamics?

(Q2) How does the response level evolve with the disease dynamics?

This paper aims to explore these two questions through some specific SIS type of
disease models. In Sect. 2, we formulate a general framework for a class of SISmodels
with evolving precaution levels. With the aforementioned infection-force functions
fm , we establish the well-posedness of the general framework model, discuss the
stability of the disease-free equilibrium, identify the basic reproduction number R0
and discuss its relation to the stability of the disease-free equilibrium. Sections3 and 4
are devoted to the endemic dynamics, i.e., the long-term dynamics when R0 > 1, with
infection force function specified to f = fm and assuming some specific forms for
the precaution evolution rate M(t) that will be explained in Sect. 2 when formulating
the framework model, aiming to demonstrate the feasibility of the general framework.
Section 3 adopts an instantaneous form for M(t) but with infection force fm , resulting
in a system of ordinary differential equations (ODEs), while Sect. 4 adopts a form for
M(t) with a time delay, leading to a system of delay differential equations (DDEs).
We analyze the stability of the endemic equilibrium and explore the possibility for
Hopf bifurcation to occur. We also present some numerical simulations to illustrate
the theoretical results. In Sect. 5, we employ some ideas in Morsky et al. (2023), Qiu
et al. (2022) to explore the disease dynamics when the response level is assumed to
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be adapting to a given response function. Finally, in Sect. 6, we summarize the main
results and discuss their implications in epidemiological and social contexts.

2 A general frameworkmodel and some preliminary results

Recall that a classic SIS model is given

{
S′(t) = � − dS(t) − f (t)S(t) + r I (t),

I ′(t) = f (t)S(t) − (d + r)I (t),
(2.1)

Here S(t) and I (t) are the epidemiologically susceptible and infectious populations,
� is the recruitment rate of the population, d is the natural death rate of the population,
r is the recovery rate of infective individuals.

Now, for the infection force f (t), we will adopt

f (t) = fm(t) = β I (t)P(X(t), L(t)) (2.2)

where β is the transmission rate, and as discussed in the Introduction, L(t) is a mea-
surement of disease severity and X(t) is the average precaution level of the susceptible
population. X(t) is assumed to evolve continuously with time, depending on the sever-
ity or trend of the epidemics, and thus, X can be modelled by

dX

dt
= εX(1 − X)M(t). (2.3)

Note that the term X(1− X) ensures that X is enclosed in the interval [0, 1] (Takeuchi
et al. 2009), εM(t) then reflects the direction and speed of the evolution of X(t),
with ε > 0 being a positive constant and M(t) is dependent on the severity and/or
trend of the epidemics. A general consideration is that X(t) should evolve in the same
direction of the epidemics: when the epidemic is mitigating (resp. escalating), the
average protection level X(t) should be accordingly decreasing (resp. increasing).
To avoid complexity but demonstrate this co-evolving idea, we will simply use the
prevalence at the present or an earlier time to measure the severity, that is,

L(t) = I (t), or L(t) = I (t − τ) with τ > 0, (2.4)

and consider the following two simple choices for M(t)

M(t) = M1(t) = I ′(t), or M(t) = M2(t) = I ′(t − τ) with τ > 0.

(2.5)

Here, M1(t) accounts for a scenario using the current rate of change of the prevalence
to represent the trend of the epidemic evolution, while M2(t) is based on the same
logic as for M1(t), but takes into consideration the fact that there is usually a delay in
reality in obtaining and analyzing data that reflect the prevalence and its change; it also
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takes time for the public healthy agents and governments to plan and implement various
NPIs. Equation (2.3) is formally analogous to the replicator equations for evolutionary
population games (Hofbauer and Sigmund 1998), yet the fitness is time-dependent.

Putting (2.1) and (2.3) together results in the following framework model

⎧⎪⎨
⎪⎩

S′(t) = � − dS(t) − f (t)S(t) + r I (t),

I ′(t) = f (t)S(t) − (d + r)I (t),

X ′(t) = εX(1 − X)M(t).

(2.6)

where f (t), M(t) and L(t) are given by (2.2), (2.4) and (2.5) with the involving
function P(X , L) satisfying (1.4).

Firstly, it is easy to show that the set.

� = {(S, I , X) | S ≥ 0, I ≥ 0, 0 ≤ X ≤ 1 and S + I ≤ �/d}

is invariant for (2.1). The proof is similar to that of Theorem 2.1 in Cheng and Zou
(2022) and is thus omitted here.

From the last equation in (2.6), X(t) can be expressed by M(t) as

X(t) = 1

1 + C0e−ε
∫ t
0 M(s)ds

(2.7)

where C0 = 1/X0 − 1 ≥ 0 for X0 = X(0) ∈ (0, 1]. With M(t) specified to I ′(t) or
I ′(t − τ), X(t) is given either by

X(t) = X1(I (t)) = 1

1 + C1e−ε I (t)
with C1 = C0e

ε I (0) (2.8)

or

X(t) = X2(I (t − τ)) = 1

1 + C2e−ε I (t−τ)
with C2 = C0e

ε I (−τ). (2.9)

We point out that the form (2.8) for the average response level function X(t) is referred
to as the “best response function” in some literature (see, e.g., Morsky et al. 2023),
while (2.9) may be accordingly called the “delayed best response function.” Actually,
even the general response form (2.7) is similar to the so-called SmoothedBest Response
( i.e the Logit dynamic) for evolutionary population game (see, e.g., Fudenberg and
Levine 1998). This can be seen by rewriting (2.7) as

X(t) =
exp

[
ε
∫ t
0 M(s)ds

]

exp
[
ε
∫ t
0 M(s)ds

]
+ C0

=
X0 exp

[
ε
∫ t
0 M(s)ds

]

X0 exp
[
ε
∫ t
0 M(s)ds

]
+ (1 − X0)

(2.10)
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To some extent, (2.10) can be interpreted in terms of the “perspective” of the evolution-
ary population game. For example, if the response level X is considered as the fraction
of the population “adopting” precaution behaviour, then X0 is the initial fraction of the
population with the “adopting” strategy, while (1 − X0) is the initial “non-adopting”
fraction. Treating U := ∫ t

0 M(s)ds as the total relative benefit (i.e. payoff gain) at
time t and splitting it as

U =
∫ t

0
M(s)ds = qa

∫ t

0
M(s)ds −

(
−qn

∫ t

0
M(s)ds

)
=: Ua −Un . (2.11)

Here qa, qn ∈ [0, 1] with qa + qn = 1 reflects the weights for “adopting” and “non-
adopting” in relative benefit; accordingly Ua = qaU represents the relative benefit of
“adopting” andUn = −qnU accounts for the relative benefit of “non-adopting”. With
these notations, (2.10) is then further expressed as

X(t) =
X0 exp

[
εqa

∫ t
0 M(s)ds

]

X0 exp
[
εqa

∫ t
0 M(s)ds

]
+ (1 − X0) exp

[
−εqn

∫ t
0 M(s)ds

] .

= X0 exp(εUa)

X0 exp(εUa) + (1 − X0) exp(εUn)
. (2.12)

which contains a memory component: the current response is affected by both the
current benefits of the strategies and the initial choice/response states. We emphasize
that the benefits here, i.e. Ua and Un , are time-varying. We also note the parameter ε

serves a similar role to the sensitivity parameter in Logit choice:

– when ε = 0, the response is independent of the epidemics’ severity, i.e. X(t) ≡ X0;
when ε → ∞, the response is certainly determined: X(t) approaches 0 or 1, relying
on the evolution of the epidemics’ severity;

– Low (reps.High) ε indicates the response is less (highly) sensitive to the epidemic’s
severity.

Plugging (2.8) (resp. (2.9)) into the first two equations of (2.6), one be reduced as
the following two-dimensional model:

{
S′(t) = � − dS(t) − f (t)S(t) + r I (t),

I ′(t) = f (t)S(t) − (d + r)I (t),
(2.13)

with f (t), M(t) and L(t) are given by (2.2), (2.4) and (2.5) with the involving
function P(X , L) satisfying (1.4), (2.13) is indeed an autonomous system for the
variables S(t) and I (t) for which

D = {(S, I ) | S ≥ 0, I ≥ 0, S + I ≤ �/d}. (2.14)

is invariant.

123



    1 Page 8 of 22 T. Cheng, X. Zou

Moreover, it is easy to see that (2.13) has a disease free equilibrium E0 = (S0, 0)
where S0 = �/d. To investigate the stability of E0, we linearize the model (2.13) at
E0 to obtain

{
S′(t) = −dS(t) − β I (t)PE S0 + r I (t)

I ′(t) = [βPE S0 − (d + r)]I (t). (2.15)

where

PE = P(X0, 0) for the case f (t) = fm(t). (2.16)

From (2.15),we can see that the stability of E0 is determined by the sign of the principal
eigenvalueλ0 = PE S0−(d+r): E0 is asymptotically stable ifλ0 < 0 and it is unstable
if λ0 > 0. Moreover, under the condition (1.4), there holds f (t) ≤ βPE I (t). Thus,
the second equation in (2.13) has the second equation in the linear system (2.15) as a
comparison equation from above. By a comparison argument, we then conclude that
E0 is actually globally asymptotically stable if λ0 < 0.

By tracking the average infection time and infection rate in the fully susceptible
population, we can easily identify the basic reproduction number R0 as

R0 = 1

d + r
· βPE S0 = βPE S0

d + r
. (2.17)

Obviously, R0 < 1 (resp. R0 > 1) if and only if λ0 < 0 (resp. λ0 > 0).
Summarizing the above, we have actually proved the following Theorem.

Theorem 2.1 E0 is globally asymptotically stable if R0 < 1 and unstable if R0 > 1.
In the case R0 < 1, there holds

lim
t→∞ X(t) = 1

1 + C1
= 1

1 + C0eε I (0)
≈ 1

1 + C0
= X0

(since I (0) is generally very small).

By the above theorem, we just need to discuss the disease dynamics of (2.6) under
the endemic condition R0 > 1. To make the demonstration convenient, we specify
P(X , L) as the exponential decay function P(X , L) = e−hLX in the subsequent
sections and explore the following two cases:

(A) L(t) = I (t), M(t) = I ′(t) and f (t) = fm(t);

(B) L(t) = I (t − τ), M(t) = I ′(t − τ) and f (t) = fm(t).
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3 The endemic dynamics for case (A): L(t) = I(t), M(t) = I′(t) and
f (t) = fm(t)

For this case with P(X , L) = e−hLX , PE = 1 and the model system (2.13) becomes

{
S′(t) = � − dS(t) − β I (t)P1(I (t))S(t) + r I (t) := B1,

I ′(t) = β I (t)P1(I (t))S(t) − (d + r)I (t) := B2,
(3.1)

where the fraction for this case becomes P(X , L) = P(X1(I ), I ) =: P1(I ) with

P1(I (t)) = exp

( −hI (t)

1 + C1e−ε I (t)

)
, (3.2)

For this 2-D ODE system, an endemic equilibrium is given by the intersection of
the following two curves:

⎧⎪⎪⎨
⎪⎪⎩

S = �

d
− I =: g1(I )

S = d + r

β
exp

(
hI

1 + C1e−ε I

)
=: g2(I )

(3.3)

Noting that g1(I ) is decreasing g2(I ) is increasing, and hence, (3.3) has a positive
solution (unique) if and only if g1(0) > g2(0), that is

�

d
>

d + r

β

which is equivalent to

R0 = β�PE
d(d + r)

= β�

d(d + r)
> 1.

Assume R0 > 1 so that (3.1) has a unique endemic equilibrium E∗
1 = (S∗

1 , I
∗
1 ).

Denote

m = d + r and X∗
1 = 1

1 + C1e−ε I ∗
1
.

Then, the Jacobian matrix at E∗
1 is:

J =
⎡
⎣−mI ∗

1
S∗
1

− d mhI ∗
1 X

∗
1

(
ε(1 − X∗

1)I
∗
1 + 1

) − d
mI ∗

1
S∗
1

−mhI ∗
1 X

∗
1

(
ε(1 − X∗

1)I
∗
1 + 1

)
⎤
⎦

det(J ) =
(
1 + S∗

1 X
∗
1h(1 + I ∗

1 ε(1 − X∗
1))

)
md I ∗

1

S∗
1

> 0, tr(J ) = −det(J ) + d2

d
< 0.
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Thus, E∗
1 is asymptotically stable.

We can actually prove that E∗
1 is globally asymptotically stable. To this end, we

consider the following Dulac function. Q(S, I ) = 1/[I P1(I )], (S, I ) ∈ D. Then
we have

∂(QB1)

∂S
+ ∂(QB2)

∂ I

= ∂

∂S

(
� − dS

P1(I )I
− βS + r

P1(I )

)
+ ∂

∂ I

(
βS − d + r

P1(I )

)

= −
(

d

P1(I )I
+ β

)
+ (d + r)P ′

1(I )

P1(I )2
.

Differentiating P1(I ) = P(X1(I ), I ) with respect to I shows

P ′
1(I ) = dP1(I )

d I
= ∂P(X1, I )

∂X1

dX1

d I
+ ∂P(X1, I )

∂ I

= ε(1 − X1)X1
∂P(X1, I )

∂X1
+ ∂P(X1, I )

∂ I

= ε(1 − X1)X1hP1(I )[−I − X1] = −P1(I )hX1(1 − X1)(I + X1) < 0.

Thus

∂(QB1)

∂S
+ ∂(QB2)

∂ I
< 0, for (S, I ) ∈ D.

According to the Bendixson Dulac theorem, System (3.1) does not have endemic
periodic orbits, implying that E∗

1 is globally asymptotically stable. Hence, we have
proved the following theorem.

Theorem 3.1 Assume that R0 > 1. Then (3.1) has an unique endemic disease equilib-
rium E∗

1 = (S∗
1 , I

∗
1 )which is globally asymptotically stable with X(t) evolving toward

a steady level

X∗
1 = lim

t→∞ X(t) = 1

1 + C1e−ε I ∗
1

(3.4)

where

C1 = C0e
ε I (0) =

(
1

X0
− 1

)
eε I0 . (3.5)

From this theorem and Theorem 2.1, we can see that the specific disease model
(3.1) actually has a global threshold dynamics: when R0 < 1 all feasible solutions
approach the disease free equilibrium; when R0 > 1 all feasible solution approaches
to an endemic equilibrium E∗

1 = (S∗
1 , I

∗
1 ) defined by (3.3).

We highlight a new and interesting phenomenon for the above-stated global thresh-
old dynamics: the globally stable endemic equilibrium E∗

1 depends on the initial
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Fig. 1 While the endemic level I∗1 is always decreasing in X0, its monotonicity on ε various with I0 and
X0: a I (0) ≈ 0; b I (0) = 3 and c I (0) = 8. Other parameters are chosen to be � = 0.12, β = 0.1, h = 1,
d = 0.012, r = 0.388 and then S0 = 10

prevalence I0 = I (0) and the initial response level X0 = X(0). This is because
when reducing the 3-D system (2.6) to the 2-D system (3.1) through the best response
function (2.8), the parameter C1 in (2.8) depends on X0 = X(0) and I0 = I (0) as
well as the evolution speed ε, so does I ∗

1 . Note from (3.3) and (3.5) that g1(I ) and
g2(0) are independent of the these values, while g2(I ) for I > 0 can be rewriting as

g2(I ) = d + r

β
exp

(
hI

1 + (1/X0 − 1)e−ε(I−I0)

)
.

From this formula and (3.3), we can observe how I0, X0 and ε affect the final endemic
level I ∗

1 , as summarized below:

(O1) g2(I ) is increasing in X0, implying that I ∗
1 (the I component of the endemic

equilibrium E∗
1 ) is decreasing in X0.

(O2) g2(I ) is decreasing in I0, implying that I ∗
1 is increasing in I0.

(O3) g2(I ) is increasing in ε when I > I0; and it is decreasing in ε when I < I0. On
the other hand, I0 is generally very small, and thus, under the endemic condition
R0 > 1, there holds

g2(I0) = d + r

β
ehI0X0 <

�

d
− I0 = g1(I0) for small I0.

This means that the unique solution I ∗
1 is larger than I0. Noting that I (t) → I ∗

1
as t → ∞, we then have I (t) > I0 for large t . Thus, we just need to consider
the scenario of I > I0, under which g2(I ) is increasing in I provided that I0 is
small, and therefore, implying that I ∗

1 is indeed decreasing in ε.

The above observations are demonstrated in Fig. 1. Particularly we note that (O3) is
only for small I0; for larger I0 it may not be valid, as illustrated in Fig. 1b, c. In Fig. 1a,
I0 is small and I ∗

1 is decreasing in ε. In Fig. 1b, I0 is in an intermediate range for
which, while I ∗

1 is decreasing in ε for small X0 but it is increasing in ε for large X0.
Figure1c is with large value I0 for which, I ∗

1 is increasing in ε.
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4 Endemic dynamics for case (B): L(t) = I(t − �), M(t) = I′(t − �) and
f (t) = fm(t)

This case corresponds to the scenario of delayed responses, which is common in
reality. For this case, the general framework model (2.6) reduces to the following
specific system of delay differential equations:

⎧⎪⎨
⎪⎩

S′(t) = � − dS(t) − β I (t)
(
e−hI (t−τ)X2(t)S(t)

)
+ r I (t),

I ′(t) = β I (t)
(
e−hI (t−τ)X2(t)S(t)

)
− (d + r)I (t),

(4.1)

where X2(t) is given by (2.9):

X2(t) = 1

1 + C2e−ε I (t−τ)
with C2 = C2(τ ) = C0e

ε I (−τ) =
(

1

X0
− 1

)
eε I (−τ).

(4.2)

Rewrite (4.1) with (4.2) as

{
S′(t) = � − dS(t) − β I (t) (P2(Iτ (t))S(t)) + r I (t),

I ′(t) = β I (t) (P2(Iτ (t))S(t)) − (d + r)I (t),
(4.3)

with

P2(Iτ (t)) = P2(I (t − τ)) = exp

( −hI (t − τ)

1 + C2e−ε I (t−τ)

)
. (4.4)

When τ = 0, (4.3)–(4.4) simply reduces to (3.1)–(3.2).
As for (3.1)–(3.2), an endemic equilibrium is an intersection of the following two

curves:

⎧⎪⎪⎨
⎪⎪⎩

S = �

d
− I =: ĝ1(I )

S = d + r

β
exp

(
hI

1 + C2e−ε I

)
=: ĝ2(I )

(4.5)

Note that (4.5) is the same as (3.3) except that C1 = (1/X0 − 1) exp(ε I0) is now
replaced by C2 = (1/X0 − 1) exp(ε I (−τ)). Therefore, by the analysis in Sect. 3,
we conclude that (4.3)–(4.4) has a unique endemic equilibrium if and only if R0 =
β�/d(d + r) > 1.

Assume R0 > 1, so that the unique endemic equilibrium E∗
2 = (S∗

2 , I
∗
2 ) exists and

denote

X∗
2 = lim

t→∞ X(t) = 1

1 + C2e−ε I ∗
2
. (4.6)
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In the sequel, we will analyze the stability of the endemic equilibrium E∗
2 . Note that

C2 = C0eε I (−τ) is dependent on the delay τ through I (−τ). However, if we assume
the epidemics stars at t = 0, meaning that I (−τ) = 0, then C2 = C0 no longer
depends on τ . The analysis below is based on such an assumption: epidemics start at
t = 0.

The linearization of (4.3) at E∗
2 is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′(t) = −
(
d + mI ∗

2

S∗
2

)
S(t) − d I (t) − mI ∗

2 P
′
2(Iτ )

P2(Iτ )

∣∣∣∣
Iτ =I ∗

2

I (t − τ)

I ′(t) = mI ∗
2

S∗
2

S(t) + mI ∗
2 P

′
2(Iτ )

P2(Iτ )

∣∣∣∣
Iτ =I ∗

2

I (t − τ).

(4.7)

The corresponding characteristic equation(CE) can be derived as

F(λ, τ ) := (d + λ)
(
a0e

−λτ + λ + b0
) = 0, (4.8)

where

a0 = mI ∗
2 hX

∗
2(ε(1 − X∗

2)I
∗
2 + 1)

=
mI ∗

2 h
(
1 + C2

(
ε I ∗

2 + 1
)
e−ε I ∗

2

)
(
1 + C2 e−ε I ∗

2

)2 and b0 = mI ∗
2

S∗
2

.
(4.9)

When τ = 0, the transcendental equation (4.8) reduces to the following polynomial:

F(λ, 0) = (d + λ)(λ + a0 + b0) = 0. (4.10)

Obviously, since the roots of F(λ, 0) = 0 are −d and −(a0 + b0), E∗
2 = (S∗

2 , I
∗
2 ) is

locally asymptotically stable when τ = 0.
We denote

G(λ, τ ) = a0e
−λτ + λ + b0. (4.11)

Next, we discuss if there is a root of (4.11) that crosses the pure imaginary axis in
the complex plane from the left half to the right half when τ increases from zero.
Since G(0, τ ) = a0 + b0 > 0, a crossing can only possibly occur in pairs of purely
imaginary roots ±iω when τ increase and pass through some critical values.

We plug λ = iω (assuming ω > 0 without loss of generality) into (4.11) and
separate the real part and imaginary part of G(iω, τ) = 0 to obtain

a0 cos (ωτ) = −b0, a0 sin (ωτ) = ω. (4.12)
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Equivalently,

cos(ωτ) = −b0
a0

, sin(ωτ) = ω

a0
. (4.13)

From (4.13), ω
a0

= sin(ωτ) ≤ ωτ , and thus τ ≥ 1
a0
. This implies that when τ is small

(e.g., τ < 1/a0), roots of (4.11) cannot cross the pure imaginary axis in the complex
plane and, hence all roots still remain in the left half plane, ensuring the endemic
equilibrium remains asymptotically stable when τ is small. To further investigate the
critical value(s) of τ that result in roots of (4.11) crossing the pure imaginary axis, we
square both equations in (4.13) and add the two resulting equations to obtain

ω2 = (a20 − b20) (4.14)

which is valid if and only if a0 > b0.
Assuming a0 > b0, (4.13) and (4.14) defines a sequence of critical values for the

delay parameter τ given by

τn = τ0 + 2nπ

ω
, τ0 = 1

ω
arccos

(
−b0
a0

)
(4.15)

Taking derivative in f1(λ, τ ) = 0 with respect to τ , we obtain

dλ

dτ
= −

∂ f1(λ,τ )
∂τ

∂ f1(λ,τ )
∂λ

= − λ(λ + b0)

1 + (λ + b0)τ
. (4.16)

Since f1(iω, τn) = 0, then

d Re (λ)

dτ

∣∣∣∣
τ=τn

= Re

(
dλ

dτ

∣∣∣∣
τ=τn

)
= Re

(
− iω(iω + b0)

1 + (iω + b0)τn

)
= b0 + ω2 > 0.

(4.17)

This verifies the transversality condition at critical value τn, n = 0, 1, 2, . . ..
Combining the above analysis, we have proved the following theorem based on the

Hopf bifurcation Theorem for DDE.

Theorem 4.1 Assuming R0 > 1 so that E∗
2 exists. Then, there can be two cases.

(i) If a0/b0 ≤ 1, then E∗
2 is locally asymptotically stable for all τ ≥ 0.

(ii) If a0/b0 > 1, then E∗
2 is locally asymptotically stable for τ ∈ (0, τ0) and unstable

for τ > τ0, where a0, b0 are given in (4.9) and τ0 satisfying τ0 > 1/a0 is given
in (4.15). Furthermore, system (4.1) undergoes Hopf bifurcation around E∗

2 at
τ = τn, n = 0, 1, 2 . . . where τn is given in (4.15).
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From this theorem, we see that the ratio a0/b0 plays a decisive role in determining
whether or not there will be Hopf bifurcation. Let us explore a bit more about this ratio
in terms of the initial precaution level X0. Firstly, as mentioned before, we assume that
t = 0 is the time when the epidemic starts, and hence I (−τ) = 0, and accordingly
C2 = C0eε I (−τ) = C0 = 1/X0 − 1. Secondly, by calculation, we obtain

a0
b0

= − S∗
2 P

′
2(Iτ )

P2(Iτ )

∣∣∣∣
Iτ =I ∗

2

= S∗
2h

(
ε(1 − X∗

2)X
∗
2 I

∗
2 + X∗

2

)

=
S∗
2h

(
1 + C0

(
ε I ∗

2 + 1
)
e−ε I ∗

2

)
(
1 + C0 e−ε I ∗

2

)2 := fab(C0, h).

(4.18)

Note that X0 → 0+ ⇐⇒ C0 → ∞ and X0 → 1− ⇐⇒ C0 → 0+; moreover

lim
X0→1−

a0
b0

= fab(0, h) = hS∗
2 = W

(
hS0 exp(hS0)

R0

)

and

lim
X0→0+

a0
b0

= fab(∞, h) = 0 < 1,

whereW is the LambertW function. Note that fab(0, h) is increasing in h ≥ 0. Solving
fab(0, h) = 1 for h leads to a unique solution

hcr = 1

S 0
· W (R0e) .

By the property of the LambertW function, R0 ≥ 1 implies hcr ≥ 1/S0. Thus,
fab(0, h) > 1 provided h > hcr . Therefore, for every h > hcr , there is a Ccr

0 > 0
such that a0/b0 = fab(C0, h) > 1 for C0 < Ccr

0 . By the relation between C0 and X0,
there is Xcr

0 = 1/(1 + Ccr
0 ) such that a0/b0 > 1 for X0 > Xcr

0 . Thus, the conditions
h > hcr and X0 > Xcr

0 give a range of parameters for Hopf bifurcation to occur at
those critical values of τ , according to Theorem 4.1.

Note that from the above analysis, h > hcr is only a sufficient condition for a0/b0 >

1. Numerical investigations show that even if h < hcr , there still can be values of X0
for which a0/b0 > 1 can hold and hence, Hopf bifurcation can occur as τ passes
those critical values. To illustrate this, we choose � = 0.06, β = 0.2, d = 0.012,
r = 0.388 and I (−τ) = 0. For these values hcr = W (R0e)/S0 ≈ 0.3014. Observe
that a0/b0 depends on ε as is seen directly from (4.18), while hcr is independent
of ε because both S0 and R0 are not affected by ε. This observation suggests us to
numerically explore different values of ε, at which X0 may affect a0/b0 in different
ways. Figure2 presents the numerical results for ε = 0.5 and ε = 2 respectively.
Figure2a with ε = 0.5 illustrates the scenario analyzed above: when h > hcr , there is
an Xcr

0 such that for X0 > Xcr
0 , there holds a0/b0 > 1. However, Fig. 2b with ε = 2

demonstrates a totally different pattern of dependence of a0/b0 on X0; particularly,
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Fig. 2 Impact of X0 ona0/b0 with different given values of h and ε:a ε = 0.5;b ε = 2.Other parameters are
chosen to be � = 0.06, β = 0.2, d = 0.012, r = 0.388 and I (−τ) = 0, leading to hcr = W (R0e)/S0 ≈
0.3014

when h = 0.28 < 0.3410 = hcr , there is an intermediate range of X0 in which
a0/b0 > 1.

5 Adaptation toward the best response

In Sect. 2, we have seen that the equation X ′(t) = εX(t)[1−X(t)]M(t) governing the
changeof the response level can lead to various precaution level functionswhenM(t) is
chosen under various scenarios. In particular, when choosing M(t) = I ′(t), a scenario
that the precaution level evolves synchronously with the current disease prevalence, it
results in the response level function X(t) = X1(t) = X1(I (t)) given in (2.8), which is
referred to as the best response function in some literature (e.g.,Morsky et al. 2023;Qiu
et al. 2022). Thus, the above-governing equation provides one way to explain/justify
the best response strategy in Qiu et al. (2022) where the fraction of mask-wearing
susceptible population is used as a type of precaution measurement, and the strategy in
Morsky et al. (2023) where a general NPIs strategy is considered. Such a best response
strategy or any other response function generated from X ′(t) = εX(t)[1− X(t)]M(t)
by choosing different M(t), directly evolves with the severity of epidemics and hence,
it decouples the first two equations in the frameworkmodel (2.6) from the 3rd equation,
leading to the reduced model system (2.13) with two unknowns only. As is seen in
Sects. 3 and 4, this simplifies the analysis of the model to a certain extent. However,
the above-mentioned “direct evolution” ignores the possible impact of the individuals’
interactions, such as learning from each other’s successes or peer pressure. In this
section, we briefly discuss the issue of adaptation to a given strategy that is “best
response” in some sense.

Let B(t) be a given “best response” (in some sense), and denote the current
precaution level (strategy) by X p(t). An ideal situation is that the precaution level
instantaneously adapts to the best strategy B(t), that is, X p(t) = B(t). In reality,
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however, some transition time is involved, whichmeans individuals adapt their current
response X p(t) towards the best response B(t). Such an adaptation can be described
by

X ′
p(t) = η[B(t) − X p(t)] (5.1)

where η > 0 represents the speed of adaptation. Motivated by (2.8) and (2.9), we
assume that the best response B(t) satisfies the following condition:

(H) B(t) ∈ [0, 1] and it is differentiable for t ∈ R+.

With this condition, (5.1) leads to−ηX p ≤ X ′
p(t) ≤ η(1−X p), which further implies

X p(0) exp(−ηt) < X p(t) < 1 − (1 − X p(0)) exp(−ηt).

Thus, we immediately obtain the following lemma, confirming that X p(t) preserves
the properties stated in (H).

Lemma 5.1 The precaution level function X p(t) defined by (5.1) satisfies X p(t) ∈
[0, 1] if X p(0) ∈ [0, 1], and it is also differentiable.

With (5.1) governing the current strategy adapting toward the given strategy B(t) =
B(I (t)), the general framework model (2.6) is replaced by

⎧⎪⎨
⎪⎩

S′(t) = � − dS(t) − f p(t)S(t) + r I (t),

I ′(t) = f p(t)S(t) − (d + r)I (t),

X ′
p(t) = η

(
B(I (t)) − X p(t)

)
.

(5.2)

where

f p(t) = β I (t)P(X p(t), L(t)). (5.3)

For (5.2), it is reasonable to assume

X p(0) = B(I (0)) = X0,

since there is no pressure to adjust the actual behaviour X p(0) at the “germination”
stage of the epidemics, which can be considered the best response level X0.

Remark 5.1 The governing equation (5.1) gives a scenario of “chasing the strategy”
B(t): at any t0 ∈ [0,∞), if B(t0) < X p(t0) (resp. B(t0) > X p(t0) ), then X ′

p(t) < 0
(resp. X ′

p(t) > 0) for t ∈ (t0, t0 + δ) with δ 
 1, which means X p(t) is decreas-
ing (resp. increasing) when t ∈ (t0, t0 + δ); that is, when the actual level is higher
(lower) than the best response level at any fixed time point, the actual level will have
a downward (upward) trend in a while (can be very short time though). This leads one
to expect that X p(t) − B(t) → 0 as t → ∞. However, this expectation may not be
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true in general unless some extra condition is imposed on B(t). To see this, we can
solve (5.1), under the assumption that B(t) is differentiable, to obtain

X p(t) =
[
η

∫ t

0
B(a)eηada + X p(0)

]
e−ηt

= B(t) + [X p(0) − B(0)]e−ηt − e−ηt
∫ t

0
B ′(a)eηada. (5.4)

Thus, X p(t) − B(t) → 0 as t → ∞, provided that B ′(t) → 0 as t → ∞ (by
applying the L’Hôpital’s rule, the term e−ηt

∫ t
0 B ′(a)eηada → 0 as t → ∞). When

B(t) = X1(t) = X1(I (t)) given in (2.8), the requirement that B ′(t) → 0 as t → ∞
is ensured by the condition I ′(t) → 0 as t → ∞.

System (5.2) has a unique disease free equilibrium Ê0 = (S0, 0, X0) with S0 =
�/d and its reproduction number R0 remains the same as in (2.17), this is because
PE = P(XP (0), 0) = P(X0, 0) which is the same as in (2.16). The Jacobian matrix
of (5.2) at Ê0 is calculated as

⎡
⎣−d −βPE S0 + r 0

0 βPE S0 − d − r 0
0 0 −η

⎤
⎦ , (5.5)

from which we can conclude that Ê0 is locally asymptotically stable if βPE S0 − (d +
r) < 0, and is unstable if βPE S0− (d+r) > 0. This, together with the formula (2.17)
for R0, leads to the following theorem.

Theorem 5.1 For (5.2), Ê0 is locally asymptotically stable if R0 < 1, and it is unstable
if R0 > 1.

Next, we discuss the endemic dynamics of (5.2) when R0 > 1. As in Sects. 3 and
4, we specify

P(X p, L) = e−hLX p , L = I . (5.6)

Furthermore, for convenience of demonstration, in what follows, we choose B(t) to
be the best response given in (2.8), that is

B(t) = B(I (t)) = X1(I (t)) = 1

1 + C1e−ε I (t)
,

and if considering the individual’s interaction, we get the adjusted version B(t) =
B(I , X p).

It is easy to see that if E∗
3 = (S∗

3 , I
∗
3 , X∗

p) is an endemic equilibrium of (5.2), then
(S∗

3 , I
∗
3 ) solves the exactly the same system as for (S∗

1 , I
∗
1 ) (i.e, (3.3)), with

X∗
p = 1

1 + C1e−ε I ∗
3

= 1

1 + C1e−ε I ∗
1

= X∗
1 .
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As is shown in Sect. 3, E∗
3 = (S∗

3 , I
∗
3 , X∗

p) with (S∗
3 , I

∗
3 ) = (S∗

1 , I
∗
1 ) exists if R0 > 1.

For its stability, we calculate the Jacobian matrix of (5.2) at E∗
3 as

⎡
⎢⎢⎢⎣

−d − mI ∗
3

S∗
3

hX∗
pmI ∗

3 − d hm (I ∗
3 )2

mI ∗
3

S∗
3

−hX∗
pmI ∗

3 −hm (I ∗
3 )2

0 ηεX∗
p

(
1 − X∗

p

)
−η

⎤
⎥⎥⎥⎦ .

From this matrix, the characteristic equation is calculated as

(d + λ) f p(λ) = 0.

where

f p(λ) = λ2 + u1λ + u0.

with

u1 = hX∗
pmI ∗

3 + η + mI ∗
3

S∗
3

> 0,

u0 =
mI ∗

3 η
(
1 + X∗

ph
(
1 + I ∗

3

(
1 − X∗

p

)
ε
)
S∗
3

)

S∗
3

> 0.

(5.7)

Hence, all roots of the characteristic equation have negative real parts. This leads to
the following theorem confirming the stability of the endemic equilibrium E∗

3 for (5.2)
as long as it exists (i.e., if R0 > 1).

Theorem 5.2 When R0 > 1, the system (5.2) has a unique endemic equilibrium E∗
3 ,

which is locally asymptotically stable.

Remark 5.2 Now applying the results in Theorems 5.1 and 5.2 to the second equation
in (5.2), we concluded that when R0 < 1 and I0 = I (0) is small, or when R0 > 1
and I0 is close to I ∗

1 , then the right hand side of the second equation in (5.2) tends
to 0 as t → ∞ and hence I ′(t) → 0 as t → ∞; and by Remark 5.1, this implies
X p(t) − B(t) → 0 as t → ∞, meaning that X p(t) not only adapts toward B(t)
but actually approaches B(t). Unfortunately, we are unable (as of now) to expand the
local stability of Ê0 and E∗

3 in Theorems 5.1 and 5.2 to global stability, and hence, the
convergence of X p(t) − B(t) → 0 as t → ∞ is only in the local sense.

The above results show that the long-time (asymptotic) disease dynamics for model
(3.1) with the response X(t) being the best response B(t) = X1(t) and that of model
(5.2) with the response adapting toward X1(t) are essentially the same.

We point out that in a recent work (Qiu et al. 2022), Qiu et al. used the fractionm(t)
of mask-wearing population measure the collective (average) response in behaviour
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and discuss its evolution and impact by assuming the following adapting rule:

m(t)′ = r︸︷︷︸
Tracking rate

( F(I ,m)︸ ︷︷ ︸
Want to wear a mask

−m). (5.8)

with F(I ,m) being interpreted as the best behaviour strategy. The ideal scenario is that
all of those who want to will wear masks immediately, without a transitional period,
i.e.,

m = r F(I ,m).

In the same line of tracking the best strategy, Morsky et al. (2023) considered a general
behaviour: NPIs-adopting. Denoting by p the fraction of individuals adopting NPIs
(which serves as another indicator of average behaviour response), the authors propose
the following tracking rule for p:

p′ = ε︸︷︷︸
Behavioral change rate

( BR(I , p)︸ ︷︷ ︸
Best response

−p) (5.9)

with BR(I , p) being the best response given by

BR(I , p) = 1

1 + k exp( f (I , p))
(5.10)

which has a similar form to the expression (2.8) for X(t). Accordingly, p = BR(I , p)
may describe the ideal response. Both works consider the adaptation to best response
with formulas (5.8) and (5.9) holding a similar form as (5.1).

6 Conclusion and discussion

In this paper, by introducing the notion of practically susceptible, which is a fraction P
of the biologically susceptible population and assuming that the fraction P depends on
the severity L of the epidemic and the precaution level X of the public, we proposed
a general framework model with the response level X involving the epidemic. We
verified the well-posedness and confirmed the disease’s dying out for the framework
model under the assumption that the basic reproduction number R0 < 1. For R0 > 1,
when the precaution level X is taken to be the instantaneous best response function
X1, the endemic dynamic is shown to be the dynamic of converging to the endemic
equilibrium; while when the precaution level X(t) is the delayed best response X2;
the endemic dynamic can be either convergence to the endemic equilibrium, or con-
vergence to a periodic solution. In addition, our model framework (2.7) suggests that
time-varying and initial-state/choices-dependent strategy should be more thoroughly
characterized for application to evolutionary population game.

Observe that, in general, the basic reproduction number R0 depends on the initial
precaution level X0. We point out that X0 may be a reflection of many factors (such
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as cultures, traditions, ethics, lifestyle, genders, ages, professions, and even politics),
which is a result of long-term evolution from the past. Hence, such a dependence of
R0 on X0 is reasonable. This may explain why some infectious diseases can spread in
one community (areas, regions and countries, etc.) but cannot spread in another. An
interesting and novel finding is that, although R0 does not depend on the initial disease
prevalence I0 = I (0) and the threshold disease dynamics in terms of R0 is confirmed,
the endemic equilibrium or endemic periodic solution under R0 > 1 depends on I0
(and X0 as well).

In addition to the instantaneous adoption of the best response (with delay or without
delay), we also employed some ideas in the two recent works (Morsky et al. 2023; Qiu
et al. 2022) to explore the adaptive disease dynamics, meaning that instead of adopting
the best response, we assume the precaution level adapts toward the best response.
Our analysis shows that there is no difference in the threshold long-term dynamics of
the disease between the “adopting” and “adapting” if the target strategy B(t) is the
instantaneous best response X1. For a general target strategy B(t) satisfying condition
(H), the difference in the endemic dynamics between “adopting” and “adapting” is
not clear and remains an open problem.

We remark that here in this paper, we have chosen the “average precaution level
X(t)” to avoid heterogeneity in precaution level, and the word “average” can also
be termed “collective” as in some works (e.g., Morsky et al. 2023; Qiu et al. 2022).
In reality, responses to epidemics can be significantly different from individual to
individual, from society to society and from government to government. The COVID-
19 epidemic/pandemic has clearly demonstrated such big differences. Therefore, it
would be more desirable to incorporate the heterogeneity in precaution level to dis-
ease models by using response-structured equations. We leave this as future research
projects.
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