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Some delay independent and delay dependent conditions are derived for the global stability of
the bidirectional associative memory neural networks with delayed self-feedback. Regarding the
self-connection delay as the parameter to be varied, the linear stability and Hopf bifurcation
analysis are carried out. An algorithm to determine the direction and stability of the Hopf
bifurcations is also worked out. Some examples and numerical simulations are presented.
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1. Introduction

Bidirectional associate memorial (BAM) neural net-
works are a type of network with the neurons
arrayed in two layers. Networks with such a bidirec-
tional structure have practical applications in stor-
ing paired patterns or memories and possess the
ability of searching the desired patterns via both
directions: forward and backward. See [Gopalsamy
& He, 1994a; Kosko, 1987, 1988, 1990; Mohamad,
2001] for details about the applications on learn-
ing and associative memories of neural networks. A
BAM neural network can be described by the fol-
lowing system of ordinary differential equations (see
e.g. [Kosko, 1987, 1988, 1990])



ẋi(t) = −xi(t) +
n∑

j=1

aijfj(yj(t)) + Ii

ẏi(t) = −yi(t) +
n∑

j=1

bijgj(xj(t)) + Ji.

(1)

where i ∈ N(1, n) = {1, 2, . . . , n}, and aij , bij , i, j ∈
N(1, n) := {1, 2, . . . , n} are the connection weights

between the neurons in two layers: the I-layer and
the J-layer. On the I-layer, the neurons with states
denoted by xi(t) receive the inputs Ii from out-
side and the inputs outputted from those neurons in
the J-layer via activation functions (input–output
functions) fi; while on the J-layer, the neurons
whose associated states denoted by yi(t) receive the
exterior inputs Ji and the inputs outputted from
those neurons in the I-layer via activation func-
tions gi.

Realizing the ubiquitous existence of delay in
neural networks (accounting, e.g. for the finite speed
of switch and the transmission delay in networks),
Gopalsamy and He [1994a] incorporated time delays
into the model and considered the following system
of delay differential equations


ẋi(t) = −xi(t) +
n∑

j=1

aijfj(yj(t − τij)) + Ii

ẏi(t) = −yi(t) +
n∑

j=1

bijgj(xj(t − rij)) + Ji.

(2)
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A diagonally dominant and delay independent cri-
terion for global stability of (2) was established
in [Gopalsamy & He, 1994a]. Recently, Mohamad
[2001] addressed the exponential stability of (2).
More recently, Wang and Zou [2004] considered a
special case of (2) when all delays in each layer are
identical, i.e. τij = τ and rij = r, and performed
local stability and Hopf bifurcation analysis for (2)
by using µ = τ + r as the bifurcation parameter.

On the other hand, recent work [van den
Driessche et al., 2001; van den Driessche & Zou,
1998; Wang & Zou, 2001] has shown that inhibitory
self-connections play a role in stabilizing a network
under some conditions on delays. This motivates
us to incorporate inhibitory self-connections terms
into the model system (2), and consider the follow-
ing system



ẋi(t) = −xi(t) + ciigi(xi(t − dii))

+
n∑

j=1

aijfj(yj(t − τij)) + Ii

ẏi(t) = −yi(t) + liifi(yi(t − mii))

+
n∑

j=1

bijgj(xj(t − rij)) + Ji.

(3)

We point out that although system (3) can be math-
ematically regarded as a Hopfield type neural net-
work, which was extensively investigated recently
(see, for example, [Bélair, 1993; Cao & Wu, 1996;
Feng & Plamondon, 2000; Forti, 1994; Gopalsamy
& He, 1994b; Guan et al., 2000; Hopfield, 1984; Lu,
2000; Marcus & Westervelt, 1989; Matsuoka, 1992;
Tank & Hopfield, 1986; van den Driessche & Zou,
1998; Wu, 1999]), with dimension 2n, we will retain
the model (3) as it stands since we do not want
to alter the bidirectional interplay of the input–
output nature of the two layers. We also point out
that with the presence of multiple delays, the char-
acteristic equations of the system usually become
very complicated and this would make the stabil-
ity and bifurcation analysis extremely hard and
challenging. Due to such a complexity, no work
has been accomplished for bifurcation analysis of
general Hopfield type neural networks with mul-
tiple delays. However, attempts have been made
in some special cases, among which are the fol-
lowing (in addition to [Wang & Zou, 2004] men-
tioned above): Chen et al. [2000], Wu [1999], Wu
and Zou [1995] studied networks with a single delay
case and some symmetric connection structure; for

planar systems, i.e. the networks with two neu-
rons, we refer to [Chen et al., 2000; Chen & Wu,
2001a, 2001b; Faria, 2000; Olien & Bélair, 1997;
Ruan & Wei, 1999; Wei & Ruan, 1999] for related
bifurcation analysis, in which it was assumed that
either two delays are equal or there are two differ-
ent delays but there is no self-connection (this is
the case of n = 1 in (2)); for networks with ring
structure and one or two distinct delays, Campbell
[1999], Campbell et al. [1999], Ncube et al. [2003],
Shayer and Campbell [2001] obtained some detailed
results for occurrence of the bifurcations. The men-
tioned papers have already shown that networks
with delays can demonstrate very rich and inter-
esting dynamics.

In this paper, first, we give two sets of delay
independent conditions for global stability of sys-
tem (3) in Sec. 2. For clarity of presentation, the
proofs are deferred to Sec. 6. Some delay dependent
conditions are also obtained in Sec. 2, which demon-
strate the stabilization role of the inhibitory self-
connections. Then, in Sec. 3, we analyze the local
stability of (3) and thereby, study the Hopf bifur-
cation. As in [Wang & Zou, 2004] we also assume
identical delay in each layer and take advantage
of the connection structure of the BAM networks
(3) and the Schur complementary theorem. Yet,
unlike in [Wang & Zou, 2004] where self-connections
are absent, here we assume that all delays in the
self-connections are identical and use this identi-
cal delay as the bifurcation parameter. In Sec. 4,
we give an algorithm for computing the direction
and stability of the Hopf bifurcation, which are
obtained by applying the theory in [Hassard et al.,
1981] or [Kazarinoff et al., 1978]. In Sec. 5, we
give some examples to show the feasibility of our
results; in particular, we show that our results can
be applied to networks of even number of neurons
with ring structure. Some numerical simulations are
also given in this section.

2. Global Stability of (3)

We assume that (3) has at least one equilibrium.
Indeed, by using the Brouwer fixed point theorem
[Deimling, 1985], we can establish

Lemma 2.1. Suppose the activation functions fi,
gi, i ∈ N(1, n) are continuous and bounded, then
(3) has at least one equilibrium.

Hence we can always perform a transforma-
tion such that the origin is the equilibrium of the
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new system. Therefore, without loss of generality,
in what follows, we assume that Ii = Ji = 0
and fi(0) = gi(0) = 0 for i ∈ N(1, n). Then (3)
reduces to



ẋi(t) = −xi(t) + ciigi(xi(t − dii))

+
n∑

j=1

aijfj(yj(t − τij))

ẏi(t) = −yi(t) + liifi(yi(t − mii))

+
n∑

j=1

bijgj(xj(t − rij)).

(4)

In this section, we assume that all the activation
functions fi, gi, i ∈ N(1, n) are Lipschitz contin-
uous with Lipschitz constants Lip(fi), Lip(gi), i ∈
N(1, n).

Theorem 2.1. Assume that there exist some pi > 0,
qi > 0, i ∈ N(1, n) such that



|cii|Lip(gi)pi + Lip(gi)
n∑

j=1

|bji|qj < pi

|lii|Lip(fi)qi + Lip(fi)
n∑

j=1

|aji|pj < qi.

(5)

Then the zero solution of (4) is globally exponen-
tially stable.

Theorem 2.2. Assume that there are some real pos-
itive numbers pi, qi, ξ, ηi, i ∈ N(1, n) such that



pi

(
|cii| + |cii|Lip2(gi) +

n∑
j=1

|aij |ξj

)

+
Lip2(gi)

ηi

n∑
j=1

|bji|qj < 2pi,

qi

(
|lii| + |lii|Lip2(fi) +

n∑
j=1

|bij |ηj

)

+
Lip2(fi)

ξi

n∑
j=1

|aji|pj < 2qi

(6)

holds. Then system (4) is globally asymptotically
stable.

In the above two theorems, the signs of cii and
lii, i ∈ N(1, n), do not play a role in conditions (5)
and (6). In order to identify the stabilization role of

inhibitory self-connections (i.e. cii < 0 and lii < 0),
we first consider the case when all delays are absent.

Lemma 2.2. Assume that there are some positive
real numbers pi, qi such that


picii +
1
2

n∑
j=1

(pi|aij | + qj|bji|) <
pi

Lip(gi)

qilii +
1
2

n∑
j=1

(qi|bij| + pj|aji|) <
qi

Lip(fi)

(7)

hold for i ∈ N(1, n). Then system (4) admits a
unique equilibrium which is globally asymptotically
stable if no delay is present.

Proof. This lemma can be proved by using the fol-
lowing Liapunov function

V (t) =
n∑

i=1

(
pi

∫ xi

0
gi(s)ds + qi

∫ yi

0
fi(s)ds

)
. (8)

�

Taking

V (t) =
n∑

i=1

(pi|xi(t)| + qi|yi(t)|), (9)

we may establish

Lemma 2.3. Assume that there are some positive
constants pi, qi such that



picii +
n∑

j=1

qj|bji| <
pi

Lip(gi)

qilii +
n∑

j=1

pj|aji| <
qi

Lip(fi)

(10)

hold for i ∈ N(1, n) and no delay is present in (4).
Then system (4) admits a unique equilibrium which
is globally exponentially stable.

As in [van den Driessche et al., 2001; van den
Driessche & Zou, 1998], we may expect that if (7)
or (10) holds, then the global stability remains true
when the self-delays (i.e. dii and mii, i ∈ N(1, n))
are sufficiently small in (4).

Applying the delay dependent stability results
established in [Wang, 2004] to (4), we have

Theorem 2.3. Assume that the activation func-
tions fi, gi, i ∈ N(1, n) are nondecreasing and
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Lipschitz continuous and the delays dii, mii

corresponding to cii < 0, lii < 0 for i ∈ N(1, n)
satisfy

dii ≤ 1
d∗

, mii ≤ 1
m∗ , (11)

where d∗ and m∗ are the unique positive roots of
equations

1 +
1
d
− ln

d

|cii|Lip(gi)
= 0,

1 +
1
m

− ln
m

|lii|Lip(fi)
= 0,

(12)

respectively. If for some positive constants pi, qi, i ∈
N(1, n), either (7 ) or (10 ) holds, then the trivial
solution of system (4) is globally attractive.

Remark 2.1. Note that in the above theorem, condi-
tions (7) and (10) are much weaker than conditions
(5) and (6) in Theorems 2.1 and 2.2. This allows us
to easily design a stable BAM network with nega-
tive self-feedback for real applications.

3. Linear Stability and Hopf
Bifurcation

Note that in Theorem 2.3, under condition (7) or
(10), only restrictions on the self-delays dii and mii

are imposed, allowing the other delays τij and rij

as arbitrary. This suggests that the self-delays may
destroy the stability of the network when they are
increased to some level. In this section, we will
confirm the destabilization of the network by the
self-delays via local stability and Hopf bifurcation
analysis. Throughout this section, we assume that
all the activation functions are sufficiently smooth
and we will explore the impact of increasing the
self-delays. For simplicity, we assume, from now on,
that
cii = lii = β; dii = mii = σ; τij = τ1;

rij = τ2, i, j ∈ N(1, n).

The linearization of (3) at the origin is


ẋi(t) = −xi(t) + βxi(t − σ) +
n∑

j=1

aijyj(t − τ1)

ẏi(t) = −yi(t) + βyi(t − σ) +
n∑

j=1

bijxj(t − τ2)

(13)

Denote the n× n identity matrix by En, A = (aij),
B = (bij) and τ = (τ1 + τ2)/2 and let

W =
(

(z + 1 − βe−zσ)En −e−zτ1A

−e−zτ2B (z + 1 − βe−zσ)En

)

and

W ∗ =
( −e−zτ2B (z + 1 − βe−zσ)En

(z + 1 − βe−zσ)En −e−zτ1A

)
.

Then the associated characteristic equation of (13)
is given by

detW = 0. (14)

Note that

det W = (−1)n detW ∗.

In what follows, we assume that

detB �= 0, (15)

which implies that e−zτ2B is nonsingular. Then
from Theorem 1.23 of [Fielder, 1986] we have

detW ∗ = det(e−zτ2B)det
[

W ∗

e−zτ2B

]
,

where [W ∗/e−zτ2B] is the Schur complement of
the block e−zτ2B in W ∗ (see, e.g. [Fielder, 1986]).
Therefore, (14) is equivalent to

det[(z + 1 − βe−zσ)2En − e−2zτBA] = 0. (16)

It is easily seen that z is a solution of (16) if and
only if there is a λ ∈ σ(BA) such that

(z + 1 − βe−zσ)2 − λe−2zτ = 0. (17)

Hence, if λj, j ∈ N(1, n) are eigenvalues of BA,
then (14) is equivalent to n scalar equations

(z + 1 − βe−zσ)2 − λje
−2zτ = 0, j ∈ N(1, n).

(18)

For any λj ∈ σ(BA), j ∈ N(1, n), we can write it as

λj = |λj |eiθj , θj ∈ [0, 2π),

and then (18) is equivalent to

z + 1 − βe−zσ ±
q
|λj|e−zτei

θj
2 = 0. (19)

Though the left-hand side of (19) is a polyno-
mial with a principal term, it is very difficult to
apply Bellman and Cook’s general result, namely,
Theorem 13.7 of [Bellman & Cooke, 1963], to get
sufficient conditions ensuring all zeros of (19) have
negative real parts. In the following, we will use a
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quite straightforward method to derive some condi-
tions obtaining the linear stability of system (3).

Let z = µ + iω, then (19) is equivalent to


R(µ, ω) := µ + 1 − βe−µσ cos(ωσ)

±√|λj |e−µτ cos
(

ωτ − θj

2

)
= 0

I(µ, ω) := ω + βe−µσ sin(ωσ)

∓√|λj |e−µτ sin
(

ωτ − θj

2

)
= 0.

Noticing that

R(µ, ω) ≥ 1 − |β| −√|λj |,
for all µ ≥ 0, σ ≥ 0, τ ≥ 0,

we immediately have

Theorem 3.1. Assume that (15) holds. If√
|λ| + |β| < 1, σ ≥ 0, τ ≥ 0, (20)

where

|λ| := max{|λj |, λj ∈ σ(BA)},
then all roots of (18) have negative real parts, and
hence the trivial solution of (3) is asymptotically
stable.

From R(µ, ω) = 0 and I(µ, ω) = 0, we obtain

µ = −1 + βe−µσ cos(ωσ)

∓
q
|λj |e−µτ cos

(
ωτ − θj

2

)
, (21)

ω = −βe−µσ sin(ωσ)

±
q
|λj |e−µτ sin

(
ωτ − θj

2

)
. (22)

and hence,

(µ + 1 − βe−µσ cos(ωσ))2

+ (ω + βe−µσ sin(ωσ))2 = |λj |e−2µτ ,

or

(µ + 1)2+ ω2− 2βe−µσ [(µ + 1) cos(ωσ)− ω sin(ωσ)]

+ β2e−2µσ − |λj |e−2µτ = 0. (23)

If we assume that

β < 0, and
√

|λ| < −β, σ ∈
[
0,

1
−2β

]
, (24)

then, it follows from (22) that

ω < −2β for µ ≥ 0, τ ≥ 0, and ωσ ∈ [0, 1].

Letting the left-hand side of (23) be M(µ), we then
have

M(0) = 1 + ω2 − 2β(cos(ωσ) − ω sin(ωσ))

+ β2 − |λj |
= 1 + β2 − |λj | − 2β cos(ωσ) + ω2

+ 2βω sin(ωσ)

> ω2 + 2βω(ωσ)

= ω2(1 + 2βσ)

≥ 0.

Moreover, we have
dM(µ)

dµ

∣∣∣∣
µ≥0

= 2{(µ + 1)[1 + βσe−µσ cos(ωσ)]

−βe−µσ[cos(ωσ) + βσe−µσ ]

+ |λj|τe−2µτ − βσωe−µσ sin(ωσ)}
≥ 0.

This shows that M(µ) > 0 for all µ > 0 and thus
we have

Theorem 3.2. If (15) and (24) hold, then for all
τ ≥ 0, the trivial solution of (3) is asymptotically
stable.

In the following, we will regard σ as the param-
eter and try to find its critical value at which the
bifurcation occurs.

Letting σ = 0 in (19), we have

R(µ, ω) = µ + 1 − β ±
q
|λj |e−µτ cos(ωτ − θj/2)

and hence

R(µ, ω) ≥ 1 − β −
q
|λj | for all µ ≥ 0,

which indicates

Lemma 3.1. If

β < 1 −
q
|λj |, (25)

then all roots of (19) have negative real parts at
σ = 0 for all τ ≥ 0.

Next we investigate if σ > 0 will destroy the
stability. Theorem 3.1 and Lemma 3.1 suggest that
in order to explore the possibility that σ > 0
destroys the stability, we need to assume that (25)
and |β| +√λj ≥ 1 hold, or equivalently,

β < −
∣∣∣1 −

q
|λj |
∣∣∣. (26)

Under this assumption, we know for any fixed τ ≥ 0,
all roots of (19) have negative real parts when σ = 0
and it is possible for some roots having non-negative
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real parts when σ > 0. It follows from [Campbell
et al., 1999] that the only way to achieve this is by
way of crossing the imaginary axis.

Note that z = 0 cannot be a root of (19) due to
(26) and z = iω with ω > 0 is a root of (19) if and
only if




β cos(ωσ) = 1 ±
q
|λj | cos

(
ωτ − θj

2

)

β sin(ωσ) = −ω ±
q
|λj | sin

(
ωτ − θj

2

)
.

(27)

From which we have

β2 = 1 + |λj | + ω2 ± 2
q
|λj |

×
(
cos
(

ωτ − θj

2

)
− ω sin

(
ωτ − θj

2

))
. (28)

Equation (28) can have either finitely many or
no root for ω > 0. In the case of finitely many roots,
we denote them by ω±

l (λj), l = 1, 2, . . . ,m. It fol-
lows from (27) that

σ =
1

ω±
l (λj)

×


arccos

1 ±√|λj | cos
(
ω±

l (λj)τ − θj

2

)
β

+ 2kπ




=: σ±
l,j(k), (29)

where k ∈ N(0) = N. In the case where (28) has
no root, we denote the corresponding σ±

l,j(0) = ∞.
The above analysis and a direct calculation give

Lemma 3.2. Assume that (26) holds. Then

(i) all roots of (19) have negative real parts for any
fixed τ ≥ 0 and for

σ ∈ [0, σ(λj)); (30)

(ii) Eq. (19) has a pair of simple purely imagi-
nary roots and all other roots have negative real
parts at σ = σ(λj);

(iii) at least one root of (19) has positive real part if

σ > σ(λj). (31)

Here σ(λj) := min{σ+
l,j(0), σ

−
l,j(0), l ∈ N(1,m)}.

Moreover,

dRe(z)
dσ

∣∣∣∣
z=iω

�= 0

if and only if

τ �= τ±(λj , ω),

where τ±(λj , ω) is the solution of

ω

(
1 ∓ τ

q
|λj | cos

(
ωτ − θj

2

))

= ±
q
|λj |(1 + τ) sin

(
ωτ − θj

2

)
, (32)

and in the case that (32) has no solution, we denote
τ±(λj , ω) = ∞.

Let

σ∗ = min{σ(λj), j ∈ N(1, n)}
= σ(λj0), for some j0 ∈ N(1, n).

Then σ∗ is the first critical value at which Hopf
bifurcation possibly occurs. Corresponding to such
value, we denote iω by iω0, λj0 by λ0, and σ by
σ0. Summarizing the above analysis and applying
the standard Hopf bifurcation Theorem in [Hassard
et al., 1981], we have

Theorem 3.3. Assume that (15) holds. Let |λ| =
max{|λj | : j ∈ N(1, n)}.

(I) If

β < 1 −
√

|λ|, (33)

then the trivial solution of (3) is asymptoti-
cally stable at σ = 0 for all τ ≥ 0;

(II) If

β < −|1 −
√

|λ||, (34)

then the trivial solution of (3) is asymptot-
ically stable for σ ∈ [0, σ0) and unstable if
σ > σ0.

(III) Hopf bifurcation occurs at σ = σ0 provided

m(λ0) = 1, τ �= τ±(λ0, ω0),

where m(λ0) is the multiplicity of λ0 being an
eigenvalue of the matrix BA.
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4. Direction and Stability of the
Hopf Bifurcation at τ = 0

The direction and stability of the Hopf bifurcation
established in the previous section is not easy to
confirm and thus in this section, we will focus on a
special case: τ = 0, and give the Hopf bifurcation
theorem and an algorithm for direction and stabil-
ity. Note that (3) is now reduced to



ẋi(t) = −xi(t) + βs1,i(xi(t − σ))

+
n∑

j=1

aijfj(yj(t))

ẏi(t) = −yi(t) + βs2,i(yi(t − σ))

+
n∑

j=1

bijgj(xj(t))

(35)

Let

ω±
j =

√
β2 −

(
1 ±

q
|λj | cosθj

2

)2

∓
q
|λj | sinθj

2

and

σ±
j (0) =

1
ω±

j

arccos
1 ±√|λj | cosθj

2
β

.

If ω±
j /∈ R

+, we denote the corresponding σ±
j (0) =

∞, where λj = |λj |eiθj is the jth eigenvalue of BA
and j = 1, 2, . . . , n. Let σ(λj) = min{σ+

j (0), σ−
j (0)}

and

σ0 = min{σ(λj), j ∈ N(1, n)}
= σ(λj0) for some j0 ∈ N(1, n).

For this special case, one can easily show that the
condition τ �= τ±(λj , ω) holds. Thus, Theorem 3.3
reads in this case as following

Theorem 4.1. Assume that (15) holds.

(i) If

β < 1 −
√

|λ|, (36)

then the trivial solution of (35) is asymptoti-
cally stable at σ = 0.

(ii) If

β < −|1 −
√

|λ||, (37)

then the trivial solution of (35) is asymptot-
ically stable for σ ∈ [0, σ0) and unstable if
σ > σ0.

(iii) Hopf bifurcation occurs at σ = σ0 provided
m(λ0) = 1.

We assume for simplicity that the activation
functions in (35) satisfy

f ′′
i (0) = g′′i (0) = s′′1,i(0) = s′′2,i(0) = 0,

for i ∈ N(1, n).

Prototype of such functions includes tanh(x) and
arctan(x) which have been widely used as activa-
tion functions in neural networks. Then the Taylor
expansion of (35) at zero has the form


ẋi(t) = −xi(t) + βxi(t − σ) +
n∑

j=1

aijyj(t)

+ γix
3
i (t − σ) +

n∑
j=1

a∗ijy
3
j (t) + h.o.t.

ẏi(t) = −yi(t) + βyi(t − σ) +
n∑

j=1

bijxj(t)

+ αiy
3
i (t − σ) +

n∑
j=1

b∗ijx
3
j(t) + h.o.t.

(38)

where h.o.t. stands for the high order terms, γi =
βs′′′1,i(0)/6, αi = βs′′′2,i(0)/6, a∗ij = aijf

′′′
j (0)/6, b∗ij =

bijg
′′′
j (0)/6, i, j ∈ N(1, n). Let σ = σ0 + µ, then

Theorem 4.1 implies that Hopf bifurcation occurs
at µ = 0. By using the general theory developed in
[Hassard et al., 1981], we can derive a specific algo-
rithm to determine the direction and stability of
such Hopf bifurcation as below. Note that a direct
calculation shows that

dRe(z)
dσ

∣∣∣∣
z=iω0

> 0.

Our algorithm is given as follows:

Algorithm

1. Put α0 := 1 + iω0 − βe−iω0σ0 ;
2. Find an eigenvector Q = (q1, q2, . . . , qn)T for

matrix BA corresponding to its eigenvalue
λ0, i.e.

(λ0En − BA)Q = 0;

3. Let

P = α0B
−1Q, P ∗ = α0B

−1Q,

where P = (p1, p2, . . . , pn)T , P ∗ = (p∗1, p∗2, . . . ,
p∗n)T , α0 is the conjugate of α0;



August 2, 2005 12:22 01326

2152 L. Wang & X. Zou

4. Compute D, which is defined by

D =
1

(1 + βσ0e−iω0σ0)
n∑

j=1

(qjpj + p∗jqj)

,

5. Let

C1(0) = 3D

{
n∑

j=1

qj

(
γj|pj |2pje

−iω0σ0

+
n∑

k=1

a∗jk|qk|2qk

)

+
n∑

j=1

p∗j

(
αj |qj|2qje

−iω0σ0

+
n∑

k=1

b∗jk|pk|2pk

)}
,

6. Let
µ2 = −Re(C1(0)).

Then we have

Theorem 4.2. If µ2 > 0 (< 0), then the Hopf bifur-
cation of (35) at σ = σ0 is supercritical (subcritical)
and the periodic solutions of (35) bifurcating from
Hopf bifurcation value are asymptotically orbitally
stable (unstable).

The derivation of the above algorithm is stan-
dard but tedious (using the results in [Hassard
et al., 1981]), so we omit the details here.

5. Some Examples and Numerical
Simulations

Example 5.1. Consider the BAM neural model
with three delays

Consider the following BAM neural network
with two neurons on each layer


ẋ1(t) = −x1(t) + βf(x1(t − σ)) + a11f(y1(t − τ1))

+ a12f(y2(t − τ1))

ẋ2(t) = −x2(t) + βf(x2(t − σ)) + a21f(y1(t − τ1))

+ a22f(y2(t − τ1))

ẏ1(t) = −y1(t) + βf(y1(t − σ)) + b11f(x1(t − τ2))

+ b12f(x2(t − τ2))

ẏ2(t) = −y2(t) + βf(y2(t − σ)) + b21f(x1(t − τ2))

+ b22f(x2(t − τ2))
(39)

where f(x) = tanh x.

Corollary 5.1. If

|β|q1 + |a11|p1 + |a21|p2 < q1,

|β|q2 + |a12|p1 + |a22|p2 < q2

(40)

and

|β|p1 + |b11|q1 + |b21|q2 < p1,

|β|p2 + |b12|q1 + |b22|q2 < p2

(41)

hold for some positive pi, qi, i = 1, 2, then the zero
solution of (39) is globally asymptotically stable for
all σ ≥ 0, τ1 ≥ 0 and τ2 ≥ 0.

Take β = −2, and

A =
(

1.0 −1.0
−1.0 1.2

)
, B =

(
0.8 1.0
1.0 −2.0

)
.

Then from Theorem 2.3 we know that the zero solu-
tion of (39) is globally attractive for all τ1 ≥ 0 and
τ2 ≥ 0 provided σ ≤ 0.1572. The eigenvalues of
matrix BA are: λ1 = 0.1391, λ2 = −3.7391. If
τ = (τ1 + τ2)/2 = 0, then a direct calculation gives
σ0 = 0.5598 with the associated λ0 = 0.1391, ω0 =
1.4543. This shows that the zero solution of (39)
is asymptotically stable when σ ∈ [0, 0.5598), τ1 =
τ2 = 0 and local periodic solutions appear via Hopf
bifurcation near σ = 0.5598. The numerical sim-
ulations are shown in Figs. 1 and 2. If τ1 + τ2 =
0.02, we can compute that σ0 = 0.5544 and the

200 210 220 230 240 250 260 270 280 290 300

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x 1
(t

)

x1(t)

Fig. 1. Hopf bifurcation occurs when σ is near the critical
value σ0, here we use τ = 0, σ = 0.58 and just give the first
component x1(t) versus t. The behavior of x2(t), y1(t) and
y2(t) are similar to that of x1(t).



August 2, 2005 12:22 01326

BAM Neural Networks with Delayed Self-Feedback 2153
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0.5
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x 1
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)

x1(t)

Fig. 2. Locally stable solution of (39) is obtained when
σ < σ0, here τ1 = τ2 = 0, σ = 0.55 and x1(t) versus t is
shown. The behavior of x2(t), y1(t) and y2(t) are similar to
that of x1(t).
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Fig. 3. Long time behavior of solution of (39) which bifur-
cates from the zero solution when σ is near the critical value
σ0, here we use τ1 = 0.008, τ2 = 0.012, σ = 0.57. The com-
ponent x1(t) is shown here and the behavior of x2(t), y1(t)
and y2(t) are similar to that of x1(t).

associated λ0 = −3.7391, ω0 = 3.7038. This implies
that in this case the zero solution of (39) is asymp-
totically stable when σ ∈ [0, 0.5544) and Hopf bifur-
cation occurs around σ = 0.5544. The numerical
simulations, are given in Figs. 3 and 4. We acknowl-
edge that all numerical simulations presented here
were performed by the DDE23 Solver developed by
Shampine and Thompson [2001].

Example 5.2. Ring structured neural network
models.

0 50 100 150
−1

−0.5

0

0.5

t

x 1
(t

)

x1(t)

Fig. 4. The zero solution of (39) is locally stable when
σ < σ0, here τ1 = 0.008, τ2 = 0.012, σ = 0.54. The behavior
of x2(t), y1(t) and y2(t) are similar to that of x1(t).

A general neural network model with a spe-
cial connection architecture, i.e. ring structure, was
investigated by Campbell [1999]. A simplified such
model takes the form

u̇j(t) = −uj(t) + sj(uj(t − σ)) + hj(uj−1(t − τ)),
(42)

where j = 1, 2, . . . , k and u0 = uk. In the case where
k = 4, the local stability and Hopf bifurcation of
(42) was discussed in [Campbell et al., 1999]. Note
that we can topologically regard (42) as a simple
BAM model when the number of neurons k is an
even number. For example, a ring of six neurons
shown in Fig. 5 can be reorganized as a BAM neu-
ral model with n = 3 shown in Fig. 6.

For a general even number, k = 2n. Let

xj(t) = u2j−1(t), yj(t) = u2j(t), j = 1, 2, . . . , n.

Then we can rewrite (42) as


ẋj(t) = −xj(t) + s2j−1(xj(t − σ))

+ h2j−1(yj−1(t − τ))

ẏj(t) = −yj(t) + s2j(yj(t − σ)) + h2j(xj(t − τ)),

(43)

where y0(t) = yn(t). For convenience, we may fur-
ther rewrite (42) as


ẋj(t) = −xj(t) + s1,j(xj(t − σ))

+ fj−1(yj−1(t − τ))

ẏj(t) = −yj(t) + s2,j(yj(t − σ)) + gj(xj(t − τ)),

(44)
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Fig. 5. A ring of six neurons.

Fig. 6. The BAM neural network obtained from the ring of
six neurons.

Without loss of generality, we can assume that zero
is an equilibrium of (44), then its linearization at
zero is{

ẋj(t) = −xj(t) + ajxj(t − σ) + bj−1yj−1(t − τ)

ẏj(t) = −yj(t) + aj+nyj(t − σ) + bj+nxj(t − τ),
(45)

where aj = s′1,j(0), aj+n = s′2,j(0), bj+n = g′j(0),
j = 1, 2, . . . , n and bj = f ′

j(0), j = 1, 2, . . . , n −
1, b0 = bn = f ′

0(0). If we let aj = β for j =

1, 2, . . . , 2n, and denote

A =




0 0 0 . . . bn

b1 0 0 . . . 0
0 b2 0 . . . 0

. . . . . .

0 0 . . . bn−1 0




,

B =




bn+1 0 . . . 0
0 bn+2 . . . 0
...

. . .
...

0 . . . 0 b2n


.

then we can apply our results to this model to
discuss the local stability and Hopf bifurcation,
regarding the self-connection delay σ as the param-
eter. Note that in [Campbell, 1999], β works as the
parameter, and in [Campbell et al., 1999], τ does
that job. Using our main results, we can obtain the
bifurcation analysis by varying σ and this together
with [Campbell, 1999] and [Campbell et al., 1999]
can enrich the bifurcation analysis for the neural
networks with ring structure.

In the following, we restrict our attention to a
special case: τ = 0 and bj = b for j = 1, 2 . . . , 2n.
We then have

BA =




0 0 0 . . . b2

b2 0 0 . . . 0
0 b2 0 . . . 0

. . . . . .

0 0 . . . b2 0




n×n

,

which implies that

σ(BA) = {λj , j = 1, 2, . . . , n}

with λj = b2eiθj , θj = (j − 1)2π/n. (In particular,
if n = 2, this corresponds to the model investigated
in [Campbell et al., 1999] and we have λ1 = b2 and
λ2 = −b2.) Let

ω1
j =

√
β2 −

(
1 + |b|cos θj

2

)2

− |b|sin θj

2
,

ω2
j =

√
β2 −

(
1 − |b|cos θj

2

)2

+ |b|sin θj

2
,
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and

σ1
j =

1
ω1

j

arccos
1 + |b|cos θj

2
β

,

σ2
j =

1
ω2

j

arccos
1 − |b|cos θj

2
β

,

for j ∈ N(1, n). If ωs
j /∈ R

+, s = 1, 2, j ∈ N(1, n),
we denote the corresponding σs

j = +∞. Set σ0 =
min{σs

j : j ∈ N(1, n), s = 1, 2} = σs0
j0

for some
j0 ∈ N(1, n) and s0 ∈ {1, 2}. We denote λ0 = λj0 =
b2eiθ0 and ω0 = ω

s0
j0

. Letting

α0 = 1 + iω0 − βe−iω0σ0 , qj = e−i(jθ0),

pj =
α0

b
qj, p∗j =

α0

b
qj, j ∈ N(1, n),

and

D =
b

2nα0(1 + βσ0e−iω0σ0)
.

This gives

C1(0) = 3D
n∑

j=1

e−i(2jθ0)

[
e−iω0σ0

b
(α0αj + α0γj)

+ d∗j + dj−1e
iθ0

]

and

µ2 = −Re(C1(0)), (46)

where γj = s′′′1,j(0)/6, αj = s′′′2,j(0)/6, d∗j = g′′′j (0)/6
and dj−1 = (f ′′′

j−1(0)/6), dn = d0 for j ∈ N(1, n).

Corollary 5.2. Suppose that b �= 0.

(1) If β < 1 − |b|, then the zero solution of (42) is
asymptotically stable at σ = 0.

(2) If β < −|1−|b||, then the zero solution of (42) is
asymptotically stable for σ ∈ [0, σ0) and unsta-
ble if σ > σ0.

(3) Hopf bifurcation occurs at σ = σ0 and its direc-
tion and stability are determined by µ2 given by
(46), namely, the Hopf bifurcation is supercrit-
ical (subcritical) and stable (unstable) if µ2 > 0
(µ2 < 0).

For example, taking k = 4, τ = 0, sj(x) =
−2 tanh(x) and hj(x) = 2 tanh(x) in (42), then we
have σ0 = 0.5612, λ0 = −4, ω0 = 3.7321, θ0 = π,
and µ2 > 0. This shows that in the case k = 4,

β = −2 and b = 2, Hopf bifurcation occurs at
σ = 0.5612, which is supercritical and the bifur-
cated periodic solutions are asymptotically orbitally
stable. The corresponding numerical simulations
are presented in Figs. 7 and 8.

If k = 6 and sj(x) and hj(x) remain the
same, then we can compute σ0 = 0.4209, λ0 =
−4(−(1/2) + (

√
3/2)i) = −4eiθ0 , θ0 = 2π/3 and

µ2 > 0. This shows supercritical Hopf bifurcation
occurs at σ = 0.4209 and the bifurcating periodic
solutions are asymptotically orbitally stable.

100 105 110 115 120 125 130 135 140 145 150
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t

x 1
(t

)

x1(t)

Fig. 7. A periodic solution of (42) bifurcates from zero solu-
tion at σ = 0.57. Here b = 2, β = −2, k = 4, the component
x1(t) is shown and the behavior of x2(t), y1(t) and y2(t) are
similar to that of x1(t).
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−0.5

0

0.5

t

x 1
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Fig. 8. The zero solution of (42) is locally stable when
σ = 0.55 < σ0. Here b = 2, β = −2, k = 4, the com-
ponent x1(t) is shown and the behavior of x2(t), y1(t) and
y2(t) are similar to that of x1(t).
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Remark 5.1. Our result works for (42) whenever k
is an even number.

6. Proofs of Theorems 2.1 and 2.2

6.1. Proof of Theorem 2.1

Let (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , yn(t))T

be the solution of (4) with initial data (φ1(s),
φ2(s), . . . , φn(s), ψ1(s), ψ2(s), . . . , ψn(s))T , s ∈
[−r, 0], where r is the maximum of delays, i.e. r =
max{τij , rij, dii, mii, i, j∈N(1, n)}. It follows from
(4) that

d|xi(t)|
dt

≤ −|xi(t)| + |cii|Lip(gi)|xi(t − dii)|

+
n∑

j=1

|aij |Lip(fj)|yj(t − τij)| (47)

d|yi(t)|
dt

≤ −|yi(t)| + |lii|Lip(fi)|yi(t − mii)|

+
n∑

j=1

|bij |Lip(gj)|xj(t − rij)|. (48)

By virtue of (5), we can choose a suitable real num-
ber δ > 0 such that

pi − piδ − |cii|Lip(gi)pie
δdii

−Lip(gi)
n∑

j=1

|bji|qje
δrij > 0 (49)

and

qi − qiδ − |lii|Lip(fi)qie
δmii

−Lip(fi)
n∑

j=1

|aji|pje
δτij > 0 (50)

for all i, j ∈ N(1, n). Let

ui(t) = eδt|xi(t)|, vi(t) = eδt|yi(t)|, i ∈ N(1, n).

A direct calculation shows that

dui(t)
dt

= eδt
(
δ|xi(t)| + |xi(t)|′

)

≤ eδt

(
δ|xi(t)| − |xi(t)| + |cii|Lip(gi)|xi

× (t − dii)| +
n∑

j=1

|aij |Lip(fj)|yj(t− τij)|
)

= −(1 − δ)ui(t) + |cii|Lip(gi)eδdiiui(t − dii)

+
n∑

j=1

|aij |Lip(fj)eδτij vj(t − τij) (51)

and
dvi(t)

dt
= eδt(δ|yi(t)| + |yi(t)|′)

≤ eδt

(
δ|yi(t)| − |yi(t)| + |lii|Lip(fi)

× |yi(t− dii)| +
n∑

j=1

|bij |Lip(gj)|xj(t− rij)|
)

= −(1 − δ)vi(t) + |lii|Lip(fi)eδmiivi(t − mii)

+
n∑

j=1

|bij |Lip(gj)eδrij uj(t − rij). (52)

Define

V (t) = V (u, v)(t)

=
n∑

i=1

pi

(
ui(t) + |cii|Lip(gi)eδdii

∫ t

t−dii

|ui(s)|ds

+
n∑

j=1

|aij |Lip(fj)
∫ t

t−τij

eδτij vj(s)ds

)

+
n∑

i=1

qi

(
vi(t) + |lii|Lip(fi)eδmii

∫ t

t−mii

|vi(s)|ds

+
n∑

j=1

|bij |Lip(gj)
∫ t

t−rij

eδrij uj(s)ds

)

Then the upper right-hand derivative of V (t) along
the solution of (4) is

D+V (t) =
n∑

i=1

pi

(
u̇i(t) + |cii|Lip(gi)eδdii(ui(t)

−ui(t − dii)) +
n∑

j=1

|aij|Lip(fj)eδτij (vi(t)

− vj(t − τij))

)
+

n∑
i=1

qi

(
v̇i(t) + |lii|Lip(fi)

× eδmii(vi(t) − vi(t − mii)) +
n∑

j=1

|bij |

×Lip(gj)eδrij (ui(t) − uj(t − rij))

)
.
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This, combined with (51) and (52), gives

D+V (t) ≤
n∑

i=1

pi(−(1 − δ − |cii|Lip(gi)eδdii )ui(t))

+
n∑

i=1

pi

n∑
j=1

|aij|Lip(fj)eδτij vj(t)

+
n∑

i=1

qi(−(1 − δ − |lii|Lip(fi)eδmii )vi(t))

+
n∑

i=1

qi

n∑
j=1

|bij |Lip(gj)eδrij uj(t)

= −
n∑

i=1

(
pi − piδ − |cii|Lip(gi)eδdiipi

−Lip(gi)
n∑

j=1

qj|bji|eδrji

)
ui(t)

−
n∑

i=1

(
qi − qiδ − |lii|Lip(fi)eδmiiqi

−Lip(fi)
n∑

j=1

pj|aji|eδτji

)
vi(t)

≤ 0.

This shows that V (t) ≤ V (0) and V (0) can be con-
trolled by a finite positive number. In fact,

V (0) =
n∑

i=1

pi

(
ui(0) + |cii|Lip(gi)eδdii

∫ o

−dii

ui(s)ds

+
n∑

j=1

|aij |Lip(fj)
∫ 0

−τij

eδτij vj(s)ds

)

+
n∑

i=1

qi

(
vi(0) + |lii|Lip(fi)eδmii

∫ o

−mii

vi(s)ds

+
n∑

j=1

|bij |Lip(gj)
∫ 0

−rij

eδrij uj(s)ds

)

≤
n∑

i=1

pi

(
|φi(0) + |cii|Lip(gi)eδdiidii‖φi‖

+
n∑

j=1

|aij |Lip(fj)eδτij τij||ψj ||
)

+
n∑

i=1

qi

(
|ψi(0) + |lii|Lip(fi)eδmiimii‖ψi‖

+
n∑

j=1

|bij |Lip(gj)eδrij rij||φj ||
)

=: C1 < ∞,

where ‖φi‖ := max{|φi(s)|, s ∈ [−r, 0]} and ‖ψi‖
:= max{|ψi(s)|, s ∈ [−r, 0]} for i ∈ N(1, n). Then
it follows from V (t) ≤ V (0) ≤ C1 that

n∑
i=1

ui(t) ≤ C1

min{pi, i ∈ N(1, n)} =: C2,

n∑
i=1

vi(t) ≤ C1

min{qi, i ∈ N(1, n)} =: C3

and hence
n∑

i=1

|xi(t)| ≤ C2e
−δt,

n∑
i=1

|yi(t)| ≤ C3e
−δt,

for t ≥ 0.

This shows that any solution of (4) exponentially
converges to zero and the proof is complete.

6.2. Proof of Theorem 2.2

Define a Liapunov functional as

V (t) =
n∑

i=1

pi

(
x2

i (t) + |cii|
∫ t

t−dii

g2
i (xi(s))ds

+
n∑

j=1

|aij |
ξj

∫ t

t−τij

f2
j (yj(s))ds

)

+
n∑

i=1

qi

(
y2

i (t) + |lii|
∫ t

t−mii

f2
i (yi(s))ds

+
n∑

j=1

|bij |
ηj

∫ t

t−rij

g2
j (xj(s))ds

)
.

Using a similar argument as in Theorem 2.1 of [van
der Driessche & Zon, 1998], together with applying
the following inequality

2|a||b| ≤ a2η +
b2

η
, for η > 0

to estimate the upper right-hand derivative of V (t)
along the solution of (4), we can complete the proof
and the details are omitted here.
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