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Capacity of Stable Periodic Solutions in Discrete-Time
Bidirectional Associative Memory Neural Networks

Lin Wang and Xingfu Zou

Abstract—The existence, stability, and even the number (ca-
pacity) of stable periodic solutions in discrete-time bidirectional
associative memory neural networks are investigated in this paper.
Some fundamental mathematical techniques instead of the bifurca-
tion method, are employed to prove the existence of periodic solu-
tions and establish the relation of the number of periodic solutions
and the magnitude of delays. Our results show that we can simply
design a delayed neural network model to store memories or pat-
terns as stable periodic solutions.

Index Terms—Bidirectional associative memory (BAM), delay,
equilibrium, neural networks, periodic solution, stability.

I. INTRODUCTION

ONE OF THE main tasks that artificial neural networks
can fulfill is associate memory. In an associative memory

neural network, the addressable memories or patterns are stored
as stable equilibria or stable periodic solutions. Thus, for the
purpose of the associate memories, it is desirable for the network
to have as large a capacity as possible for retrievable memories.
In terms of the terminology of dynamical systems, this requires
that the network admits as many stable equilibria or stable peri-
odic solutions as possible.

In continuous-time models, the series papers [1]–[4] es-
tablished the co-existence of multiple periodic solutions and
described their domains of attraction. However, all these
periodic solutions, except one, are unstable and they have
large domains of attraction only in some submanifolds. On the
contrary, for the discrete-time models, a large number of stable
periodic solutions can possibly coexist. In this context, Zhou
and Wu [17], [18] proved the existence of two stable periodic
solutions with special periods for a class of discrete-time neural
network model with two identical neurons. For this model,
Wu and Zhang [15] recently explored the existence of periodic
orbits with all possible periods and even provided a formula to
compute the number of all possible stable periodic orbits. More
recently, Wu et al. [16] extended the idea in [15] to a model with
ring structure and showed that the number of neurons and the
delays all have impacts on the periodic solutions capacity of the
neural network model under certain conditions. One naturally
wonders what would happen if the network has other types of
connection structure. For a general connection topology, it is
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very difficult, if not impossible, to answer this question. In this
paper, we will further consider a class of discrete-time neural
network models with more trainable parameters and with
another special connection topology: bidirectional associative
memory (BAM) models. As is seen in [13], a ring network
with an even number of neurons is a special case of BAM
networks. More precisely, we study the delayed discrete-time
BAM neural network model described by

(1.1)

where are decay
rates; are the connection weights be-
tween the neurons in two layers, the layer with neurons whose
states denoted by and the layer with neurons
whose states denoted by ; and the positive in-
tegers are the associated delays due to the
finite transmission speed among neurons in different layers in
the network. The activation functions are of
class , where

and the constants as well as
will be specified later. We will show that

for this network, the delays, together with the size of the net-
work, also have advantageous impact on the capacity of stable
periodic solutions.

Note that it is Kosko (see [8]–[10]) who first proposed
the continuous-time BAM neural network model (which can
be regarded as a generalization of the well-known Hopfield
neural networks [6]) and discussed its applications. Networks
with the bidirectional structure have practical applications in
storing paired patterns or memories and the ability to search
the desired patterns via both directions: forward and backward.
See [5], [8]–[10], and [11], where, in [5] and [11], the delayed
continuous-time BAM neural networks were discussed.

The delays in (1.1) do not change the number of its equilibria;
however, as we will show, they are related to the number of pe-
riodic solutions of (1.1) under certain assumptions and indeed
the delayed discrete-time BAM neural networks can have large
periodic solution capacity to store the paired patterns or memo-
ries.

The rest of this paper is organized as follows. In Section II,
we give some preliminaries. Section III is devoted to the study
of capacity for periodic solutions in (1.1). Some discussions are
given in Section IV.
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II. PRELIMINARIES

As usual, a solution of (1.1) is a sequence

of points in , which is defined for every integer
and satisfies (1.1) for

. In what follows, we denote

and suppose that is strongly diagonally dominant, that is

and is strongly quasi-diagonally dominant, i.e.,

where . Let

for

Denoting

by

and letting

we may rewrite (1.1) as

(2.2)

where is defined in (2.3), shown at the
bottom of the page, with

and

We denote the solution of (2.2) with initial value by
. For ,

its norm is defined by

Let

We assume that the second equation shown at the bottom of the
page, holds. Let and define

for

In the sequel, we will use the following notations:

for

for

We point out that and include those frequently
used sigmoid functions when and are properly chosen.

and
(2.3)
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III. MULTIPLICITY OF STABLE PERIODIC SOLUTIONS

Define a mapping by

for
for .

(3.4)

For , the mapping is given by

and it follows that
for
for

and

We denote by

the set of all periodic points of in for . Thus,
is the set of all fixed points of in .

The following Lemma is needed in the proofs of our main
results.

Lemma 3.1: Assume that and are positive integers.
Then the following hold.

1) For each .
2)
3) For each , the number of elements in

, denoted by , is given by

is prime
otherwise

Proof: See [15] or [16].
We next give an existence result for periodic solutions of

(2.2).
Theorem 3.1: Assume that is satisfied and

for . Then, for any and with
and , (2.2) has a -periodic solution .

Proof: We first show that for any and

Define

where

with

We claim that

and

To this end, we have two cases: 1) and , to be
considered. If , we then have

and

which are due to

and

Similarly, for case 2), we can show that

Therefore, our claim is true. Using this argument and the defi-
nition of , we can show that

for

and

This shows that for any . Notice
that is convex and closed. Also, for any

and . Now, by
the well-known Brouwer’s fixed point theorem, the continuous
mapping admits a fixed point in , which is exactly a

-periodic solution, denoted by , of (2.2) with
initial value in . The proof is complete.

Theorem 3.2: In addition to the conditions in Theorem 3.1,
assume that with

Then, the following hold.
i) For any and , (2.2) has a unique -pe-

riodic solution with and
this solution is exponential stable in the sense that for any

with , we have

where

and

ii) If is a -periodic solution of (2.2) in ; then,
and there exists a unique and some

such that .
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iii) For any solution of (2.2) with
there exist a unique

with and a unique such that

iv) For any with , (2.2) has
periodic solutions in , which are all exponentially

stable. If , (2.2) has no -periodic solution
in .

To prove this theorem, we first establish the following useful
lemmas under the same assumptions.

Lemma 3.2: For , we have

(3.5)

Proof: This can be easily proved by the fact that
and the definition of .

Lemma 3.3: If is a -periodic solution of
(2.2) in , then .

Proof: Since is a -periodic solu-
tion of (2.2) in , we can then obtain a -periodic solution

for (1.1). We
will show that

where

By way of contradiction, suppose that for some , there exists
such that , say,

(the proof for the case is similar) for some
. Then, from (1.1), we have

since

Repeating this procedure, we can show
which is a contradiction. Thus, we have shown that for all

which implies that

and the proof is complete.
Lemma 3.4: If is a -periodic solution of

(2.2) in , then and for some
, and .

Proof: Note that

(3.6)

Then, there exist and with and such that
. From Lemma 3.3, we further know

. Moreover, for such and , it follows from Theorem 3.1
and Lemma 3.3 that (2.2) has a -periodic solution denoted by

with for . Therefore,
for each , we have

which shows that for and
and hence .

Now we are in a position to prove Theorem 3.2.
Proof of Theorem 3.2:

i) The existence and the uniqueness follow from Theorem
3.1 and Lemma 3.4. We just need to show the exponential
stability. For any , we write
with , and then for any
with , it follows from Lemma 3.2 that

ii) The proof follows from Lemma 3.4.
iii) We may find a such that .

Now, let with , that is,
. Since , there must

exist a unique such that . For such and
, there exists a -periodic solution .

The rest of the proof follows from Lemma 3.2 and (I).
iv) This follows from the definition of , (I), and

Lemma 3.4.
Remark 3.1: (I) gives a domain of attraction for each stable

periodic solution of (2.2).
It is possible for two periodic solutions to have the same orbit.

To distinct orbits, we give a definition for equivalent periodic
solutions:

Definition 3.1: Two -periodic solutions
and are said to be equivalent, denoted by

if there exists such that

In other words, two -periodic solutions are equivalent if they
generate the same orbit.

Lemma 3.5: For any and any with
; then, the two -periodic solutions and

generated by and are equivalent if and
only if there exists a such that ,
or .
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TABLE I
N(� ) AND n(p) FOR SOME p

TABLE II
n(K + L) FOR SOME K + L

Proof: Suppose and for some
. Note that

and , which implies that
is a -periodic solution with initial value

. On the other hand, we
know that is a -periodic solution with initial value

too. Therefore, we have

That is, and are equivalent.
Next, suppose that Then, there exists

such that . It follows
that

This completes the proof.
Consequently, we have
Corollary 3.1: For any and any , we have

If we use to denote the number of all -periodic orbits
of (2.2) (and thus that of (1.1)), then we have

Theorem 3.3: with ,

Proof: The proof follows immediately from the definition
of and Corollary 3.1.

Remark 3.2: The number of all periodic orbits of (1.1) is

The related numbers for and are given
in Tables I and II.

IV. DISCUSSIONS

We have shown that the delayed discrete-time BAM neural
network (1.1) can admit stable periodic solu-
tions. We have also investigated the relation between the number
of periodic solutions and the sum of all delays and dis-
cussed the multistability of those periodic solutions. This shows

that (1.1) is a network model admitting large capacity of stable
periodic solutions and thus, has great potential for applications
in associative memories of periodic patterns.

Note that for a simple two-neuron discrete-time neural
network with delayed feedback, [15], [17] and [18] discussed
the existence and stability of periodic solutions, and [15] also
showed the large capacity of periodic solutions. However,
in their models, there are just a few parameters, and thus as
pointed out in [15], it is hard to train the network to store the
large number of stable periodic solutions. In contrast, many
parameters are adopted in (1.1), which can be used to train
the network to have the ability to generate a large number
of stable periodic solutions so that the network can serve the
purpose storing large number of content-addressable memories
or patterns.
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