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models of finite populations
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We investigate two methods of measuring fitness in evolutionary games played among members of a finite

population. Classical notions of stability account for the action of selection only, and use immediate repro-

ductive gains as a measure of fitness. This classical interpretation of fitness is what we call reproductive fit-

ness (RF), and is found in the early studies of evolutionary stability in finite populations. More recent work

has incorporated the influence of random genetic drift by applying fixation probability (FP) as a measure of

fitness. When defined in this way, fitness represents a measure of ultimate evolutionary success. Our main

result describes an equivalence between candidate evolutionarily stable strategies under both the RF and FP

interpretations of fitness. We apply this result to matrix games in which the use of mixed strategies is permit-

ted, and find here an equivalence between the RF and FP conditions for evolutionary stability.
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1. INTRODUCTION
The theory of games (e.g. Maynard Smith 1982) is now

standard fare in evolutionary biology. Game theoretic

models of evolution describe the fitness of a mutant who

competes in a social group, composed mainly of normal

(wild-type) individuals. From the description of fitness,

certain strategies are identified as being ‘evolutionarily

stable’. Such strategies are typically regarded as the end

result of evolution (Hammerstein 1996).

Evolutionary game theory is well developed for infinite

populations. That is to say, there are accepted ways to

define ‘fitness’ (Metz et al. 1992), and there are several

meaningful concepts of evolutionary stability (Maynard

Smith & Price 1973; Eshel 1983; Taylor 1989; Chris-

tiansen 1991; Abrams et al. 1993; Apaloo 1997). However,

the same cannot be said for finite populations.

There are, typically, two approaches to defining fitness in

a finite population. The first approach considers only

immediate gains, for example, the payoff in a two-player

contest (Vickery 1987; Maynard Smith 1988; Schaffer

1988; Neill 2004), and is usually employed when model-

ling a large population. With the assumption that immedi-

ate gains are translated into offspring, we refer to this

approach as reproductive fitness (RF). The second

approach incorporates the possibility that any strategy with

non-zero RF can persist over evolutionary time by genetic

drift. Fitness in this second sense is described by the prob-

ability that a mutant strategy (or allele) becomes fixed in

the population (e.g. Proulx & Day 2001, and references

therein; Rousset 2003). This approach, which we refer to

as fixation probability (FP), is especially appropriate in

smaller finite populations. Understandably, with various

definitions of fitness come various interpretations of stab-

ility concepts (cf. Schaffer 1988; Neill 2004; Nowak et al.

2004).

We consider evolutionary games in which strategies are

chosen from a continuum of possibilities. We derive fitness
functions using both RF and FP approaches. We then

define three concepts of evolutionary stability that can be

applied during the analysis of these fitness functions. Our

main result states that, under certain conditions, RF and

FP result in equivalent conclusions about candidate evolu-

tionarily stable strategies. The main result is elaborated for

the case of matrix games with so-called ‘mixed strategies’.
2. FITNESS FUNCTIONS
We consider a population of haploid, asexual organisms

that is of constant size N > 2. We posit a normal or ‘wild-

type’ behaviour that is subject to recurrent mutation; how-

ever we assume that the mutation rate is low enough that

we can disregard the possibility that two different types of

mutant coexist. With this assumption we define the state i

of the population to be the number of mutant individuals

present (i ¼ 0; 1; . . . ;N ). Let q and p denote the strategies

used by the mutant and wild type, respectively, in the evol-

utionary game (06 q, p61) thought of as the probability of

a certain type of behaviour.

We work with an overlapping generation model in which

each individual, mutant and normal, independently of the

others, reproduces in any small time-interval according to

an exponential distribution with rate parameters fi and gi.

More precisely, at any time, a mutant individual has prob-

ability fidt of having a single offspring within a differential

time interval of length dt, and the corresponding prob-

ability for a normal individual is gidt. The rates fi and gi
depend on the population state i , but they also depend on

the mutant and normal strategies. Thus fi ¼ fi(q, p) and

gi ¼ gi(q, p). To maintain a constant population size, each

time a birth occurs we replace a random individual with the

newborn offspring.
(a) TheRF interpretation

The RF approach to mutant fitness works with the rela-

tive reproductive rate:

WRF
i (q, p) ¼ fi(q, p)=gi(q, p): (2:1)
#2004The Royal Society
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When the mutant behaves normally, fi and gi are the same;

hence

WRF
i ( p, p) ¼ 1: (2:2)

We will assume that WRF
i is sufficiently ‘well behaved’,

mathematically.

(b) The FP interpretation

The model we consider here is based on the so-called

Moran model from population genetics (Moran 1958,

1962), which belongs to a class of stochastic processes

known as continuous timeMarkov chains.

When the population is in state i (16 i6N � 1) we let

kidt (resp. lidt ) denote the probability that the population
will move to state i þ 1 (resp. i � 1) within a differential

time-interval of length dt. It follows from this that in state i ,

the time until the process moves to state i þ 1 is exponen-

tially distributed with mean 1=ki and is independent of the

time until the process moves to state i � 1, which itself is

exponentially distributed withmean 1=li.
From our definition of fi and gi, it follows that

ki ¼ ifi(q, p)
N � i

N

� �
, (2:3)

li ¼ (N � i)gi(q, p)
i

N

� �
: (2:4)

Given that the population is currently in state i , we know

that with probability one it will end up in either state 0 or

state N; that is, either the mutant becomes fixed or it does

not. The measure of fitness we use here is the probability

that, beginning in state i , the population ends up in stateN.

This is the mutant fixation probability, and a standard con-

ditional probability argument (e.g. Ross 2000; Nowak et al.

2004; Appendix A) yields

W FP
i (q, p) ¼ W FP

1 (q, p) 1þ
Xi�1

k¼1

Yk
j¼1

gj(q, p)

fj(q, p)

 !
, (2:5)

where

W FP
1 (q, p) ¼ 1þ

XN�1

k¼1

Yk
j¼1

gj(q, p)

fj(q, p)

 !�1

: (2:6)

Note that W FP
i ( p, p) ¼ i=N; that is, the probability that a

neutral mutant is the sole founder of a future population is

equal to its initial frequency in the population. As before,

we assume thatW FP
i (q, p)is sufficiently ‘well behaved’.
3. STABILITY CONCEPTS
We will use the term evolutionary stability, broadly, to

describe a behaviour or trait that (i) is favoured by selection

to be the outcome of the evolutionary process, and (ii) once

attained is favoured by selection to persist over time. More

precise notions of stability are outlined below. Each defi-

nition refers to a function Wi, and either WRF
i or W FP

i can

be substituted in its place.

Definition 1: A strategy, p�, is said to be a Nash equilib-

rium (NE) provided

Wi(q, p
�)6Wi( p

�, p�) (3:1)

for all q and for all i ¼ 1, . . .,N�1. If the inequality in equa-
Proc. R. Soc. Lond.B (2004)
tion (3.1) is strict for all q 6¼ p� and for all i ¼ 1, . . ., N�1,

we call p� a strictNE.

If the strategy p� is a mixed NE, meaning 0 < p�< 1, the

equilibrium condition

@Wi

@q

����
q¼ p¼ p�

¼ 0 for all i ¼ 1, . . . ,N � 1 (3:2)

must hold. A standard local second derivative condition,

which guarantees a local (q close to p�) strict NE is

@2Wi

@q2

����
q¼ p¼ p�

< 0 for all i ¼ 1, . . . ,N � 1: (3:3)

Definition 2: If p� is a NE, then it is said to be conver-

gence stable (CS) provided that for all p 6¼ p� but suffi-

ciently ‘close’ to p�, and for any q 6¼ p but sufficiently ‘close’

to pwe can say

Wi(q, p) > Wi( p, p) if and only if q� p�j j < p� p�j j (3:4)

for all i ¼ 1, . . .,N�1.

This definition of stability is ‘local’ in the sense that only

arbitrarily small variations in CS strategies are considered.

A strategy p� is CS when selection, in populations fixed for

a ‘nearby’ strategy p, favours only those mutants q that

more closely resemble p� itself. This concept of stability is

presented in Taylor (1989) and Christiansen (1991), and a

similar one is presented in Eshel (1983), who demonstrates

that p� is CS if

@2Wi

@q2
þ @2Wi

@q@p

����
q¼ p¼ p�

< 0 for all i ¼ 1, . . . N � 1: (3:5)

Definition 3: The NE p� is said to be a neighbourhood

invader strategy (NIS) if, for all p 6¼ p� but sufficiently close
to p�,

Wi( p, p) < Wi( p
�, p) for all i ¼ 1, . . . ,N � 1: (3:6)

The NIS was introduced by Apaloo (1997). A strategy is

NIS when selection favours it to replace other strategies. If

equations (2.2) and (3.2) hold, Courteau & Lessard (2000)

show that @Wi=@pjq¼ p¼ p� ¼ 0; so that a sufficient condition

for anNIS is

@2Wi

@p2

����
q¼ p¼ p�

> 0 for all i ¼ 1, . . . , N � 1: (3:7)

In general, the strict NE, CS and NIS are not equivalent.

The reader is referred to examples of this non-equivalence

in the game theoretic literature for infinite populations (e.g.

Christiansen 1991; Abrams et al. 1993; Apaloo 1997).

These examples extend, mutatis mutandis, to the case of

finite populations.

The main result of this paper concerns strategies p� that

satisfy the equilibrium condition (3.2).

Theorem 3.1: If p� is a mixed strategy, then p� satisfies

the equilibrium condition (3.2) under RF if and only if p�

satisfies equation (3.2) under FP.

The proof of Theorem 3.1 is given in Appendix B. It tells

us that, when seeking a candidate stable strategy for a game

played in a finite population, it does not matter which

interpretation of fitness we adopt. Unfortunately, no sim-

ple equivalence exists, in general, between stability as it is

understood under RF, and stability as it is understood

under FP. Still, there are examples in which stability con-

ditions (3.3), (3.5) and (3.7) are identical under both defi-

nitions of fitness, and we explore one such example below.
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4. EXAMPLE:MATRIXGAMES
Consider a symmetric two-player game in which an indi-

vidual can adopt one of two pure strategies, A or B. There

are four possible outcomes to any contest, and these are

described by the 2� 2 payoff matrix,

G ¼
A B

A a b

B c d

, (4:1)

where payoffs are given to the row player, for example, an

A-player gains a against another A-player, but gains b

against a B-player.

This particular matrix game has been studied repeatedly

for finite populations (Vickery 1987;Maynard Smith 1988;

Schaffer 1988; Neill 2004; Nowak et al. 2004). In one

study, Nowak et al. (2004) propose a definition of evol-

utionary stability for pure strategies, which invokes both

the RF and FP approaches. By their definition, a strategy A

is considered evolutionarily stable if it satisfies two con-

ditions: (i) the RF of a single mutant (i.e. i¼ 1) in a popu-

lation otherwise fixed for A is less than that of an A-

strategist; and (ii) in a population consisting of

N � 1 A-individuals and one mutant individual, the

mutant has probability less than 1=N of ultimately fixing, if

the population is held at constant size N. In this section we

investigate the consequences of modifying the model of

Nowak et al. (2004) and allow players to use mixtures of

pure strategies according to some probability rule.

Let q and p denote the probability with which mutant

and wild-type individuals, respectively, use strategy A. The

proportions 1� q and 1� p, then, give the probability with

which strategy B is used. We will refer to the vectors

q¼ ½q,1� q� and p¼ ½ p,1� p� as mixed strategies. Assuming

that the population is well mixed at the time opponents are

chosen, we can calculate an individual’s expected payoff as

(probability of a mutant opponent)� (expected payoff

given mutant opponent) + (probability of a wild-type oppo-

nent)� (expected payoff given wild-type opponent). We

use the expected payoff to formulate fi and gi. Specifically,

fi(q, p) ¼ R0 þ
i � 1

N � 1

� �
qGq0 þ N � i

N � 1

� �
qGp0, (4:2)

gi(q, p) ¼ R0 þ
i

N � 1

� �
pGq0 þ N � i � 1

N � 1

� �
pGp0, (4:3)

where R0 is a constant that ensures fi, gi > 0, and a prime

denotes the vector-transpose.

Using the fitnessWRF
i (q, p) in equation (2.1), we see that

the NE condition (3.2) admits the unique solution

p� ¼ b(N � 1)=(N � 2)� d � c=(N � 2)

b� d þ c� a
: (4:4)

Equation (4.4) yields a mixed strategy (0 < p�< 1) exactly

when the expressions b� d þ c� a, (N � 2)(b� d)� (c�
b) and (N � 2)(c� a)� (b� c) all have the same sign.

Using the RF approach, Schaffer (1988) showed that equa-

tion (4.4) is a strict NE exactly when

b� d þ c� a > 0: (4:5)

A simple check of equations (3.5) and (3.7) using WRF
i

shows that equation (4.5) is also equivalent to the CS and

NIS conditions under RF. Using standard definitions of

fitness for infinite populations, Hofbauer & Sigmund
Proc. R. Soc. Lond.B (2004)
(1988) and Day & Taylor (2003) have presented similar

results about the equivalence of stability concepts for

matrix games.

By Theorem 3.1, equation (4.4) is also an equilibrium

state under FP. And in this case, condition (4.5) again tells

the stability story, as the following theorem shows.

Theorem 4.1: The RF stability condition (4.5) also

guarantees that p� in equation (4.4) is simultaneously a

strict NE, CS andNIS under FP.

In the mixed-strategies matrix game, we can identify a

strategy p� that satisfies something stronger than Nowak et

al.’s condition (i): p� enjoys a RF which exceeds that of any

mutant strategy, no matter howmany mutants are found in

the population. Moreover, the stronger RF condition on p�

appears to be equivalent to a stronger version of Nowak et

al.’s condition (ii): the probability that p� becomes fixed in

any polymorphic population always exceeds i/N. In the

mixed strategies case, then, such ‘two-part’ definitions of

stability—with one part invoking RF and the other invok-

ing FP—are not necessary.
5. CONCLUSIONSAND FUTUREWORK
In finite populations there are at least two ways to define

‘fitness’. In large populations reproductive fitness is often

the measure of choice (Vickery 1987; Maynard Smith

1988; Schaffer 1988; Neill 2004). In smaller populations,

researchers opt for probabilistic notions of fitness (Proulx

& Day 2001; Rousset 2003). The main result of this paper

states that both notions of fitness provide equivalent candi-

date ‘stable strategies’.

This result is particularly interesting because RF and the

mutant FP are, in a sense, very different definitions of fit-

ness. Whereas the former considers only ‘short-term’ or

immediate reproductive gains, the latter adopts a ‘long-

term’ perspective by considering the eventual contribution

to the population.

Recent work on two-person games in a finite population

has combined the RF and FP interpretations into a single

definition of fitness (Nowak et al. 2004). We present the

so-called ‘mixed-strategies’ case, in which individuals are

allowed to play alternative ‘pure’ strategies according to

some probability rule. In this example, we have found a

general equivalence, not only among the different

algebraic stability conditions for a given interpretation of

fitness but also between the algebraic conditions for the

same stability concept under these two different inter-

pretations of fitness.

This work can be extended in several ways. We have

assumed that the population is both well mixed and of

constant size, but rarely do these assumptions hold in

nature. Interesting modifications of our model, then,

would consider either a finite population arranged into

local social groups (Rousset 2003), or a finite population

whose size changes with time.

In addition, our FP model assumes an asymmetry

between adults and offspring. Specifically, a newborn

offspring will replace an established adult with probability

one. The consequences of relaxing this assumption deserve

to be explored. To this end, a relevant modification of

the current model considers the population to consist

of a finite number of territories, each one supporting a
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breeding adult. Conflict would then occur between adults

(i.e. ‘owners’) and offspring (i.e. ‘intruders’) for ownership

of these territories. In this case we might also be interested

in strategies played conditional on whether one is an

owner, or an intruder. Such a situation is reminiscent of the

familiar ‘Hawk–Dove–Bourgeois’ game (Maynard Smith

1982).

The authors are grateful for the comments of three anony-
mous reviewers. This research was supported by consecutive
NSERC and Dorrace-OGSST scholarships awarded to G.W.,
and anNSERC grant awarded to P.D.T.
APPENDIX A. DERIVATION OF FP FITNESS
FUNCTION

Although theMoranmodel is a continuous-timeMarkov

chain, we are interested in the embedded discrete-time

process. This discrete-time process is sometimes called the

‘jump chain’, because time steps are separated by the

‘jumps’ made by the continuous-time process between

states.

Let Pi, j denote the probability that the process jumps

from state i to state j . The theory of continuous-time Mar-

kov chains tells us that

Pi, iþ1 ¼ ki
ki þ li

¼ fi

fi þ gi
,

Pi, i�1 ¼ li
ki þ li

¼ gi

fi þ gi
, ðA1Þ

Pi, i ¼ 0:

By conditioning on the outcome of the first jump we get

W FP
i ¼ Pi, iþ1W

FP
iþ1 þ Pi, i�1W

FP
i�1, (A 2)

for i ¼ 1; . . ., N�1, with boundary conditions W FP
0 ¼ 0

and W FP
N ¼ 1. We now use a recursive form of equation

(A 2), namely,

W FP
iþ1 �W FP

i ¼ Pi, i�1

Pi, iþ1

W FP
i �W FP

i�1

� �
, (A 3)

to show

W FP
i �W FP

i�1 ¼ Pi�1, i�2

Pi�1, i

� � � � � P1, 0

P12

W FP
1

¼ W FP
1

Yi�1

j¼1

gj

fj
: (A 4)

It follows that

W FP
i �W FP

1 ¼ W FP
1

Xi�1

k¼1

Yk
j¼1

gj

fj

() W FP
i ¼ W FP

1 1þ
Xi�1

k¼1

Yk
j¼1

gj

fj

 !
: (A 5)

UsingW FP
N ¼ 1, we see that

W FP
1 ¼ 1þ

XN�1

k¼1

Yk
j¼1

gj

fj

 !�1

: (A 6)

9>>>>>=
>>>>>;
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APPENDIX B. PROOFOF THEOREMS

(a)Proof of Theorem 3.1

The mixed strategy p� satisfies equation (3.2) under RF if

and only if

@fi=@q� @gi=@qjq¼ p¼ p�

gi(p�, p�)
¼ 0 (B 1)

for every i¼ 1, . . .,N � 1. DifferentiatingW FP
i in equation

(2.5) with respect to q and evaluating at q¼ p yields

� 1

N

Xi�1

k¼1

Xk
j¼1

@fj
�
@q� @gj

�
@q
��
q¼ p

fj( p, p)

 !

þ i

N2

XN�1

k¼1

Xk
j¼1

@fj
�
@q� @gj

�
@q
��
q¼ p

fj( p, p)

 !
(B 2)

which, by equation (B 1), is zero for any iwhen p ¼ p�. We

conclude that p� satisfies equation (3.2) under FP.

Conversely, suppose the mixed strategy p� satisfies equa-

tion (3.2) under FP. It follows that equation (B 2) vanishes

for i¼ 1, . . ., N � 1 when p¼ p�. Because the second term

in equation (B 2) has the same sign as @W FP
1

�
@q
��
q¼ p, it

vanishes when p¼ p�. Consequently, the first term in equa-

tion (B 2) will also vanish for all i¼ 2, . . ., N � 1 when

p¼ p�. This implies that equation (B 1) holds for all i¼ 1,

. . ., N � 2. Since @W FP
1

�
@q
��
q¼ p¼ p� ¼ 0, and since equa-

tion (B 1) holds for i¼ 1, . . .,N � 2 we must also have that

equation (B 1) holds for i¼N � 1. We conclude that p�

satisfies equation (3.2) under RF. This proves the theorem.
(b)Proof of Theorem 4.1

First check the condition (3.3) withW FP
i :

@2W FP
i

@q2

����
q¼ p¼ p�

¼ � i

N2

XN�1

k¼1

Xk
j¼1

@2gj
�
@q2 � @2fj

�
@q2
��
q¼ p¼ p�

R0 þ p�Gp�
0

þ N

N2

Xi�1

k¼1

Xk
j¼1

@2gj
�
@q2 � @2fj

�
@q2
��
q¼ p¼ p�

R0 þ p�Gp�
0 : (B 3)

Substituting @2gj
�
@q2 � @2fj

�
@q2 ¼ 2( j � 1)(b� d þ c�

a)=(N � 1) into equation (B 3) yields

@2W FP
i

@q2

����
q¼ p¼ p�

¼ b� d þ c� a

N2(N � 1)(R0 þ p�Gp�0)

� �i
XN�1

k¼1

k(k� 1)þN
Xi�1

k¼1

k(k� 1)

 !

¼ � 1

3

b� d þ c� a

N2(N � 1)(R0 þ p�Gp�0)
iN(N þ i � 3)(N � i)ð Þ:

(B 4)

Since 16 i6N � 1 we have both N � i > 0 and

N þ i � 3>N � 2 > 0. It follows from equation (B 4), then,

that condition (3.3) is given by equation (4.5) under FP.

We can rewrite the CS condition (3.5) as

d

dp

@W FP
i

@q

����
q¼ p

" #
p¼ p�

< 0: (B 5)

WenowcheckCSusingequation(B 5).Fromequation(B 2)
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weget

d

dp

@W FP
i

@q

����
q¼ p

" #
p¼ p�

¼ � i

N2

XN�1

k¼1

Xk
j¼1

d

dp

@gj
�
@q� @fj

�
@q
��
q¼ p

fj( p, p)

" #
p¼ p�

þ N

N2

Xi�1

k¼1

Xk
j¼1

d

dp

@gj
�
@q� @fj

�
@q
��
q¼ p

fj( p, p)

" #
p¼ p�

: (B 6)

Using Theorem 3.1 and d
dp

@gj
�
@q� @fj

�
@q
��
q¼

h
p�p¼ p� ¼ (N � 2)(b� d þ c� a)=(N � 1), equation (B 6)

canbewrittenas

d

dp

@W FP
i

@q

����
q¼ p

" #
p¼ p�

¼ (N � 2)(b� d þ c� a)

N2(N � 1)(R0 þ p�Gp�0)

� N
Xi�1

k¼1

k� i
XN�1

k¼1

k

 !

¼ � 1

2

(N � 2)(b� d þ c� a)

N(N � 1)(R0 þ p�Gp�0)
i(N � i )ð Þ: (B 7)

It follows from equation (B 7) that inequality (4.5) guaran-

teesthatequation(B5)issatisfied.

We now check the NIS condition (3.7).

@2W FP
i

@p2

����
q¼ p¼ p�

¼ � i

N2

XN�1

k¼1

Xk
j¼1

@2gj
�
@p2 � @2fj

�
@p2
��
q¼ p¼ p�

R0 þ p�Gp�
0

þ N

N2

Xi�1

k¼1

Xk
j¼1

@2gj
�
@p2 � @2fj

�
@p2
��
q¼ p¼ p�

R0 þ p�Gp�
0 : (B 8)

We use @2gj
�
@p2 � @2fj

�
@p2 ¼ �2 1� i=(N � 1)ð Þ

(b� d þ c� a)to show

@2W FP
i

@p2

����
q¼ p¼ p�

¼ � 2(b� d þ c� a)

N2(R0 þ p�Gp�0)

� N
Xi�1

k¼1

k� k(k� 1)

2(N � 1)

� �
� i

XN�1

k¼1

k� k(k� 1)

2(N � 1)

� �" #

¼ 1

3

(b� d þ c� a)

N(R0 þ p�Gp�0)

i(N � i)(2N � i)

N � 1

� �
: (B 9)

It follows from equation (B 9) that inequality (4.5) guaran-

tees equation (3.7).
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