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ABSTRACT

We investigate the co-evolutionary relationship between sex-ratio bias and sex-specific dispersal
behaviour using an inclusive fitness approach. We consider two models: (i) DDM, in which
dispersal of both sexes occurs before mating; and (ii) DMD, in which male dispersal precedes
mating and female dispersal follows mating. Under DDM, at equilibrium, there is no bias in
either the sex ratio or the sex-specific dispersal rates unless the sex-specific dispersal costs are
different. However, under DMD, and at equilibrium, equal sex-specific dispersal costs imply a
female bias in the sex ratio and a female dispersal rate at least as great as that of males. The
present work highlights the role of sex differences – in either dispersal costs or the timing of
dispersal – to the co-evolution of the sex ratio and dispersal.

Keywords: co-evolution, inclusive fitness, kin selection, local competition, sex ratio, sex-specific
dispersal, stability.

INTRODUCTION

The proportion of a fixed parental resource devoted to sons is a social behaviour known, by
convention, as the ‘sex ratio’. The adaptive nature of sex-ratio decisions has occupied many
researchers (see Charnov, 1982). In particular, the evolution of resource allocation strategies
that favour one or the other sex (i.e. ‘sex-ratio’ bias) has received much attention.

In geographically structured populations, local competition among same-sex relatives is
known to be a major determinant of sex-ratio bias. Optimal sex ratios favour females when
local competition occurs only among males (Hamilton, 1967), but favour males when the
local competition occurs exclusively among females (Clark, 1978). Overall, sex ratios in
geographically structured populations appear to be biased towards the sex that suffers less
from local competition (see Perrin and Mazalov, 2000, and references therein).

Dispersal from one’s natal site is another remarkable social behaviour, especially when
that dispersal is costly. Like the sex ratio, local competition (or rather, avoiding local
competition) provides an incentive for adaptive adjustment of the dispersal rate (Hamilton
and May, 1977; Frank, 1986; Taylor, 1988a; Motro, 1991). With a greater likelihood of kin
competition comes a higher rate of dispersal.
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Of course, a situation might arise where local competitive pressures are different for
males than they are for females. These situations represent a sort of ‘asymmetry’ between
the sexes that encourages the evolution of dispersal conditional upon sex – that is,
‘sex-specific’ dispersal (Perrin and Mazalov, 2000). In this way, the evolution of sex-specific
dispersal parallels the evolution of sex-ratio bias.

Theoretical models have traditionally considered the evolution of the sex ratio or
dispersal independently. That is, when investigating the evolution of one of these
behaviours, the other is fixed. Given the parallels described above, investigating the
co-evolution of both sex ratio and dispersal seems especially important.

In this paper, we explore kin selection models for the co-evolution of the sex ratio and
dispersal under two different life histories. The first life history assumes that both sexes
disperse before mating takes place. The second assumes that males disperse before mating,
whereas females disperse after mating. In the first scenario, both sex-ratio bias and
sex-specific dispersal behaviour are possible at equilibrium – but only when the cost of
dispersal differs between the sexes. In the second scenario, equal sex-specific dispersal costs
imply a female bias in the equilibrium sex ratio, and an equilibrium female dispersal rate
that is at least as great as that of males.

AN INCLUSIVE FITNESS MODEL

Basic model

We have tabulated all notation and symbols used for easy reference (see Table 1).
We consider a dioecious diploid organism undergoing discrete, non-overlapping

generations. Our model assumes an infinite patch-structured population. Each patch is
identical, supporting N breeding females and their mates.

Table 1. Summary of symbols used in the main text

Symbol Explanation

* indicates the equilibrium level of a particular behaviour
αi proportion of any brood devoted to sex-i offspring
ci probability that a sex-i offspring perishes during dispersal
di proportion of sex-i offspring that disperse
δ small positive deviation from ‘normal’ behaviour
∆Wαm

= ∆Wm − ∆Wf

∆Wi inclusive fitness effect of a sex-i offspring
∆Wdi

inclusive fitness effect of sex-i dispersal
ki = (1 − di)/(1 − cidi), the probability that a random sex-i competes on its native patch
N number of fertilized adult females on any patch
r = Ri/Rj for i, j = m, f
Ri relatedness of mother to her own sex-i offspring
Ri relatedness of mother to a random sex-i offspring born on her patch
σX

2 genetic variance of trait X
σXY genetic covariance between traits X and Y, assumed to be 0
t unit of evolutionary time
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At the beginning of a season, each breeding female produces a brood of large but
constant size. A proportion αm of the brood is male, and a proportion αf (= 1 − αm) is female.
We refer to αm as the sex-ratio strategy (or simply sex ratio). It is assumed that αm is under
maternal control (i.e. dependent only on the genotype of the mother).

Dispersal of offspring occurs soon after birth. The quantity dm (or df ) denotes the
proportion of sons (or daughters) that disperse. Like the sex ratio, sex-specific dispersal is
assumed to be under maternal control.

Dispersal is assumed to be costly: a proportion cm of males and a proportion cf of females
are removed from the dispersal pool. In a patch-structured model, such as this one,
individuals that disperse do not encounter any relatives.

Males compete at random with one another for mates, whereas fertilized females compete
at random with one another for breeding sites on a patch. We consider two basic life
histories characterized by the order in which mating and intrasexual competition occur:

1. DDM model: mating follows dispersal by both sexes.
2. DMD model: males disperse before mating, whereas (fertilized) females disperse after

mating.

The kin selection model we develop below is based on a classical inclusive fitness
argument (Hamilton, 1964). The genetic validity of the inclusive fitness approach has
been demonstrated elsewhere (see Taylor, 1988b, 1989, 1996a, and references therein).
An equivalent model can be constructed using the more recent ‘direct fitness’ approach
(Taylor and Frank, 1996). Unfortunately, the direct fitness approach can obscure biological
interpretation of the model. In contrast, a biological narrative forms the basis of the
classical approach; and so the classical approach is often the more desirable one.

An inclusive fitness argument estimates the fitness of a rare, nearly neutral mutant in
a ‘normal’ population (i.e. ‘mutant fitness’). Mathematically speaking, this estimate is
made accurate to first-order in mutant frequency and in the deviation in mutant behaviour
(Taylor, 1988b). That is to say, the estimate considers only the additive effects of deviant
behaviour.

The difference between (estimated) mutant fitness and normal fitness determines
whether mutant behaviour is increasing or decreasing in the population, and so this
difference, the so-called ‘inclusive fitness effect’, is the object of our interest.

Sex ratio: the inclusive fitness effect of a son

To develop our model for sex-ratio evolution, we fix the sex-specific dispersal rates, dm and df,
at arbitrary levels. Our approach, typical of sex-ratio models (Charnov, 1982), is to compare
the inclusive fitness effect of a son with the inclusive fitness effect of a daughter.

Consider a mutant mother (the ‘actor’) in a population using normal sex-ratio strategy,
αm. The mutant’s ‘deviation’ comes in the form of an extra δ units of a reproductive
resource, to be allocated either entirely to the production of more sons or entirely to
the production of more daughters. We suppose δ is small compared with brood size. The
inclusive fitness effect of a son, ∆Wm, describes the net benefit to the mutant who puts those
δ units towards sons.

We will express the costs and benefits of a behaviour in units of reproductive success. We
measure reproductive success in terms of numbers of offspring that reach breeding age,
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weighted by genetic contribution to the future population. In a diploid sexual organism,
males (as a group) and females (as a group) make equal genetic contributions to future
populations (Fisher, 1930). The expected genetic contribution made by any individual male
(or female) offspring, then, will be proportional to 1/αm (or 1/αf ). Readers familiar with
sex-ratio theory will recognize 1/αm and 1/αf as the individual reproductive value of a male
and female, respectively (Taylor and Frank, 1996). Individual reproductive value is precisely
the weighting we need to use in our units of reproductive success.

Under DDM and DMD, the benefit of the mutant sex-ratio strategy is, of course,
the reproductive success of extra male offspring. Our first-order method of estimation
allows us to assume that these extra offspring have normal reproductive success equal
to 1. Allocating the extra reproductive resource to sons, then, contributes δ/αm units of
reproductive success to the actor’s fitness. However, we only wish to count the actor’s
‘genetic share’ of this reproductive success. That is to say, before we count the benefit δ/αm,
it must be multiplied by Rm, the relatedness of the actor to her own male offspring
(see Appendix 1).

The cost of allocating reproductive resources to sons is due to male–male competition
for mates. Because there are only a fixed number of matings, the extra δ/αm units of
reproductive success must displace exactly the same amount. We are again interested only in
the actor’s genetic share of this cost. Let km = (1 − dm)/(1 − cmdm) be the probability that a
random male is competing on his native patch. Under DDM or DMD, then, a proportion
km of the extra reproductive success will be won on the native patch; and here other native
males will be displaced with probability km. If Rm is the relatedness of the actor to a random
male offspring born on her patch, we can summarize the cost of the mutant behaviour
under DDM and DMD as Rmk2

mδ/αm.
To compute ∆Wm we subtract the costs from the benefits. In the final calculation we omit

δ, simply writing

DDM or DMD: ∆Wm = (Rm − Rmk2
m)/αm (1)

Sex ratio: the inclusive fitness effect of a daughter

We use a similar approach to determine ∆Wf, the inclusive fitness effect of a daughter. Now,
the actor allocates the δ units of resource to the production of daughters.

As above, the direct benefit to the actor is extra female reproductive success. This direct
benefit is described by Rf δ/αf, where Rf is the relatedness of the actor to her own female
offspring.

Since males compete for mates, there is also an indirect benefit: more daughters
provide more mating opportunities for related males. Let kf = (1 − df )/(1 − cfdf ) denote the
probability that a random female is competing on her native patch. Under DDM only
kf δ/αf units of female reproductive success are available to related males, whereas under
DMD all δ/αf units are available to native males. Of the available female reproductive
success, only a proportion km is won by native males. It follows that the indirect benefit of
the deviant behaviour is Rmkmkf δ/αf under DDM and Rmkmδ/αf under DMD.

We can summarize the overall benefit to the actor as

DDM: δ(Rf + Rmkmkf )/αf (2)

DMD: δ(Rf + Rmkm)/αf (3)
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We now focus attention on costs. As above, direct costs include displaced female com-
petitors: under both DDM and DMD, kf δ/αf units of reproductive success are displaced on
the native patch, and these belonged to a native female with probability kf. If Rf is the
relatedness of the actor to a random female offspring born on her patch, then the direct cost
to the actor is Rf k2

f δ/αf.
We must also account for the indirect cost due to displaced mates of competitors. Under

DDM the displaced reproductive success belonged to native males with probability km,
whereas under DMD the displaced reproductive success belonged to native males with
probability kmkf.

The overall cost to the actor can be summarized as

DDM: δ(Rf k2
f + Rmkmkf )/αf (4)

DMD: δ(Rf k2
f + Rmkmk2

f )/αf (5)

We subtract costs (4) or (5) from benefits (2) or (3) and omit δ to get

DDM: ∆Wf = (Rf − Rf k2
f )/αf (6)

DMD: ∆Wf = (Rf + Rmkm − Rf k2
f − Rmk2

f km)/αf (7)

Sex-specific dispersal

In this subsection, we fix αm at some arbitrary level and we seek expressions for ∆Wdm
, the

inclusive fitness effect of male dispersal, and ∆Wdf
, the inclusive fitness effect of female

dispersal. In the case of sex-specific dispersal, we need not include reproductive value as part of
our units for reproductive success.

To calculate ∆Wdm
, we consider a mother who uses deviant male-dispersal strategy dm + δ

in a population of dm-strategists. As with the sex ratio, δ is considered to be positive and
small.

Under both DDM and DMD, the deviant actor loses an additional cmδ sons during
dispersal. Her genetic share of this cost is given by Rmcmδ. The benefit of the deviant
dispersal behaviour is reduced male–male competition. The dispersed sons effectively give a
gift of δ units of reproductive success to a random competitor on the actor’s patch. This
random competitor is a native with probability km. The benefit to the actor is given by
Rmkmδ under DDM and under DMD. It follows that

DDM or DMD: ∆Wdm
= Rmkm − Rmcm (8)

where we have again omitted the behavioural deviation in the final expression.
Now we look at female dispersal. An argument similar to the one for male dispersal gives

us

DDM: ∆Wd f
= Rf kf − Rf cf (9)

Under DMD, a female disperses after mating; hence the consequences of dispersal for
her mate and the mate of a random competitor must be included in our calculation. Using
reasoning analogous to that used above, we see that the benefits of a small, positive
behavioural deviation, δ, in a normal df -population are

δ(Rf kf + Rmkf km) (10)
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and the costs are

δ(Rf cf + Rmkmcf ) (11)

It follows that

DMD: ∆Wdf
= Rf kf + Rmkf km − Rf cf − Rmkmcf (12)

EQUILIBRIUM STRATEGIES

Equilibrium condition

Our analysis in this section will focus on ‘equilibrium strategies’. Formally, a particular
strategy (αm*, d m*, d f*) is said to be an equilibrium strategy provided

∆Wm = ∆Wf ∆Wdm
= 0 ∆Wd f

= 0 (13)

when αm = αm*, dm = d m* and df = d f*. Note that α f* = 1 − αm*.

DDM

We are primarily interested in the relationship (if any) between (a) the direction of sex-ratio
bias and (b) the relative extent of sex-specific dispersal. As outlined in the following pro-
position, sex-specific dispersal costs play a crucial role in this relationship, at equilibrium.

Proposition 1. Suppose cm, cf < 1. If (αm*, d m*, d f*) is an equilibrium strategy under DDM, then
(i) αm* − α f*, (ii) d m* − d f* and (iii) cf − cm all have the same sign (Fig. 1).

Proposition 1 sheds some light on previous work on the (independent) evolution of
dispersal and the (independent) evolution of the sex ratio.

Taylor (1988a) has considered the evolution of dispersal under DDM, setting cm = cf.
To simplify his analysis, he assumed a fixed, 1 : 1 sex ratio, and did not allow dispersal rates
to be conditional on sex. Proposition 1 provides the appropriate justification for these
simplifications. As one might expect, setting cm = cf = c in our co-evolutionary model yields
αm* = αf*. We also find

dm = df = d = 2/(1 + √1 + 4N(N − 1)c2 + 2Nc) (14)

an expression for equilibrium dispersal rate that is equal to that presented in Taylor (1988a).
Kirkpatrick and Bull (1987) and Nordborg (1991) have established that unbiased sex

ratios are to be expected in geographically structured populations – as long as patch sizes
are very large. When patch sizes are small, Proposition 1 indicates that cm = cf guarantees an
even equilibrium sex ratio – as long as sex-specific dispersal rates are allowed to co-evolve.

The proof of Proposition 1 relies on the fact that, under DDM, an equilibrium strategy
(αm*, d m*, d f*) satisfies

α*m/α*f = (1 − rk2
m)/(1 − rk2

f ) (15)

cm = rkm (16)

cf = rkf (17)
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where r = Ri /Rj for i, j = m, f is a ratio of relatedness coefficients (see Appendix 1). The
complete proof of Proposition 1 is presented in Appendix 2.

It has been proposed that optimal sex ratios are biased towards the more dispersive sex
(Bulmer and Taylor, 1980; Bulmer, 1986; Taylor, 1994). If αm* is the result of co-evolution
with dispersal, then this is certainly true (Proposition 1). However, if dispersal is not at
evolutionary equilibrium, there is no guarantee that sex-ratio bias follows this principle.
Consider the following proposition, whose proof is obvious from (15).

Proposition 2. If the sex ratio is at evolutionary equilibrium under DDM, then (i) αm* − α f*
and (ii) kf − km have the same sign (Fig. 1). This statement holds for arbitrary dispersal rates,
dm and df.

Proposition 2 tells us that the equilibrium sex ratio, under a DDM life history, is biased
towards the sex that is less likely to compete on its natal patch. This is not the same as saying
that sex-ratio bias favours the more dispersive sex. Consider the following example of
sex-ratio evolution with fixed dispersal rates and a DDM life history. We set df > 0 and cf = 0,
hence kf = 1 – df < 1. By choosing cm sufficiently close to one, we can get km > kf, even when

Fig. 1. Direction of sex-ratio bias and relative rates of sex-specific dispersal for all combinations
of sex-specific dispersal costs, cm and cf, under the DDM model. Along the solid line, cm = cf and
so αm* = α f* and d m* = d f*. By Proposition 1, we may also label the vertical axis kf and the horizontal
axis km.
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dm > df. It is possible, then, for selection to produce a sex-ratio bias that actually favours the
less dispersive sex.

An alternative principle suggests that sex ratios in geographically structured populations
are biased toward the sex that ‘suffers’ less from competition with relatives (Perrin and
Mazalov, 2000). Still, this alternative formulation, itself, suffers from a measure of
imprecision. If there are more females than males, is it true that female–female competition,
even among relatives, is less ‘intense’? The answer is not clear.

We simply suggest that the most ‘universal’ principle of sex-ratio evolution (or sex-ratio/
dispersal co-evolution) in geographically structured populations is set out in Proposition 2:
optimal sex ratios, under DDM, should be biased towards the sex that is less likely to
compete on its natal patch.

DMD

Setting (1) equal to (7), routine algebra shows that under DMD and at equilibrium

αm*

α f*
=

1 − rk2
m

1 − r(k2
f − km) − rkmk2

f

(18)

We rely primarily on equation (18) to prove the following proposition about sex-ratio
evolution, an analogue to Proposition 2.

Proposition 3. If the sex ratio is at evolutionary equilibrium under DMD, then (i) αm* − α f* and
(ii) k2

f − km have the same sign (Fig. 2). This statement holds for arbitrary dispersal rates, dm

and df.

Sex-ratio evolution under DMD is not as clear-cut as it is under DDM. The fact that a
female is less likely than a male to compete on her native patch is still sufficient to produce
a female-biased sex ratio under DMD. However, the same cannot be said for males (Fig. 2).
For a male-biased sex ratio to evolve under DMD, km must be less than k2

f , the probability
that two randomly chosen females are competing on their native patch.

How are we to understand this seemingly strange condition for the evolution of male-
biased sex ratios? Consider equation (18). We are actually interested in understanding why
the numerator in (18) is greater than the denominator. If km < k2

f , there are two reasons why
this is so (a similar argument demonstrates why female-biased sex ratios are expected
when km > k2

f , but km < kf ).
First, consider the last terms in both the numerator and denominator of (18). If km < k2

f ,
then rk2

m < rkmk2
f (the converse is also true). In biological terms, km < k2

f means an actor
is less likely to be related to her son’s competitor than she is to be related to the mate
of her daughter’s competitor. In this case, an actor considers male fitness lost through
increased female–female competition a more serious expense than that lost through
increased male–male competition. As a result, the investment in sons is favoured.

Next, focusing attention on the second term in the denominator of (18), we note that
km < k2

f is equivalent to r(k2
f − km) > 0 – a mathematical fact that diminishes the size of

the denominator further. Biological interpretation requires us to recall that one benefit
of producing a daughter is that she provides a mate to a related male. However, km < k2

f

means that this benefit does not outweigh the loss of inclusive fitness – through daughters –
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due to increased female–female competition. Again we see that investment in sons is
favoured.

Let us now consider sex-specific dispersal under DMD. Referring to equations (8) and
(12) we see that ∆Wdm

= 0 if, and only if,

cm = rkm (19)

and ∆Wd f
= 0 if, and only if,

cf = r(kf + kf km − kmcf ) (20)

In general, we cannot solve (19) and (20) explicitly for d m* and d f*. The case N = 1,
however, is exceptional. When N = 1, the ratio r = 1, and so

α*m
α*f

=
1 − cm

1 − c2
f

d*m =
1

1 + cm

d*f =
1

1 + cf

(21)

It follows from equations (21) that we may choose values of cm and cf such that d m* > d f*,
while αm* < α f*. Thus, under DMD, sex-ratio bias does not always favour the more
dispersive sex.

Equations (21) also demonstrate that a strong sex-ratio bias can be the product of
sex-ratio/dispersal co-evolution under DMD – even without strong differences between

Fig. 2. Direction of sex-ratio bias under the DMD model for all combinations of km and kf, the sex-
specific probabilities of competing on the native patch. Along the solid line, km = k2

f and so αm* = α f*.
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sex-specific rates of dispersal. For example, in the extreme situation where cm and cf are both
very close to one, equations (21) show that (a) d m* and d f* are about 1/2 but (b) daughters
make up almost 2/3 of a brood!

Of course, we are interested in understanding co-evolution under DMD for arbitrary N.
The following proposition addresses the case cm = cf, in which timing of dispersal is the only
sexual asymmetry present in the model.

Proposition 4. Suppose (αm*, d m*, d f*) is an equilibrium strategy under DMD. If
0 < cm = cf = c < 1, then (i) αm* ≤ α f* and (ii) d m* ≤ d f*, with equality in either case if, and only if,
N = 1.

In simple terms, without sex differences in the cost of dispersal, selection under DMD
favours female-biased sex ratios and relatively higher rates of female dispersal (what we
term ‘female-biased dispersal’).

In the most general of DMD cases, equations (18–20) were solved numerically. We
investigated various parameter combinations, and observed both αm* > α f* and αm* < α f*,
as well as d f* > d m* and vice versa (e.g. Figs. 3 and 4). There are cases where cm < cf,
but d m* < d f* (Fig. 3); and there are cases where cm < cf, and d m* > d f*, but αm* < α f* (Fig. 4).

Fig. 3. Equilibrium rate of male dispersal, d m*, and equilibrium rate of female dispersal, d f*, under
the DMD model as the cost of female dispersal, cf, varies. Results are based on numerical solution of
the equilibrium condition using N = 2 and cm = 1/4. The dashed line indicates cf = cm.
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It should be noted, however, that in no instance did we observe d m* < d f* and
αm* > α f* simultaneously.

Since unequal dispersal costs ci are not the only source of sexual asymmetry in the DMD
model, we are not surprised that the relative size of these costs does not always predict
the direction of bias in equilibrium strategies. Still, there may be specific cases where
dispersal costs alone tell us something about the bias (if any) in (αm*, d m*, d f*). We propose
the following:

Conjecture 1. Suppose (αm*, d m*, d f*) is an equilibrium strategy under DMD. If cf ≤ cm, then
(i) αm* ≤ α f* and (ii) d m* ≤ d f*.

Our efforts to prove Conjecture 1 have been unsuccessful. We have been unable to
demonstrate, rigorously, (a) that d m* decreases with increasing cm, and (b) that d f* decreases
with increasing cf. At least one of (a), (b) appears to be a prerequisite for the proof of
Conjecture 1.

Instead of Conjecture 1, we have settled for a result that assumes costs of dispersal are
arbitrarily small.

Fig. 4. Equilibrium sex ratio, αm*, under the DMD model as the cost of female dispersal, cf, varies.
Results are based on numerical solution of the equilibrium condition using N = 2 and cm = 1/4. The
dashed line indicates αm* = α f*.
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Proposition 5. Suppose (αm*, d m*, d f*) is an equilibrium strategy under DMD. If cm and cf are
sufficiently small, then (i) d m* − d f* and (ii) cf − cm have the same sign. Furthermore, if cm > cf,
then αm* < α f*.

Proposition 5 is the DMD-analogue to Proposition 1. Interestingly, if dispersal cost is
small, the behaviour of the DMD model is quite similar to that of the DDM model.

STABILITY

We have been working under the tacit assumption that the equilibrium strategy (αm*, d m*,
d f*) is the endpoint of co-evolution by natural selection. This may not be the case, and in
this section we address the stability of (αm*, d m*, d f*).

We adopt the following dynamical description of evolution:

d

dt





αm

dm

df







=




σ
2
αm

σαmdm

σαmdf

σαmdm

σ
2
dm

σdmdf

σαmdf

σdmdf

σ
2
df











∆Wαm

∆Wdm

∆Wdf







(22)

The notation d/dt signifies differentiation with respect to evolutionary time; the constant σx
2

gives the genetic variance of trait X; the constant σXY gives the genetic covariance between
traits X and Y; and ∆Wαm

= ∆Wm − ∆Wf (Abrams et al., 1993; Greenwood-Lee et al., 2001).
We will assume that σXY = 0.

We have adopted a continuous-time dynamic primarily for mathematical convenience.
There are discrete-time versions of (22) available (Iwasa et al., 1991; Taylor, 1996b), but
demonstrating stability under these dynamics is substantially more difficult. Since life
histories have been cast in discrete time, the validity of (22) rests on the assumption that t
measures time on a scale that is much longer than one generation.

By definition, an equilibrium strategy is also a rest point of (22). Equilibria that
correspond to asymptotically stable rest points of (22) are considered to be the end result of
selection. We call such equilibria ‘dynamically stable strategies’ (DSSs).

The DSS differs from the concept of stability perhaps most familiar to biologists, the
so-called evolutionarily stable strategy (ESS; Maynard Smith and Price, 1973). We have not
pursued the ESS concept here, because inclusive fitness effects do not, in general, yield
genetically valid ESS conditions (Taylor, 1989; Day and Taylor, 1998).

The DSS also differs from the concept of convergence stability (Taylor, 1989;
Christiansen, 1991; Day and Taylor, 2003, and references therein). Although inclusive
fitness effects can be used to test for convergence stability, our preference for a dynamical
description of evolution makes this ‘static’ concept unattractive.

With stability properly defined, we may now state the main result of this section.

Proposition 6. If cm, cf < 1, then all equilibrium strategies under DDM are DSSs.

Proposition 6 tells us that the results of the previous section about equilibria under DDM
can also be stated for DSSs under DDM – provided dispersal is not lethal. Proposition 6
does not necessarily hold when we assume σXY ≠ 0.

Unfortunately, no similar result can be found for equilibrium strategies under DMD.
Dynamic stability for DMD equilibria can be verified for the special case, N = 1 (see
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Appendix 2). Dynamic stability has been verified numerically for all DMD equilibria
identified in the previous section.

DISCUSSION

This is not the first paper to consider the co-evolution of the sex ratio and sex-specific
dispersal. Leturque and Rousset (2003) have also addressed the present co-evolutionary
problem, but in the context of a spatially heterogeneous model. Although Leturque
and Rousset (2003) use a kin selection approach, their results are based on numerical
investigations and are limited to the case of DDM. This leaves open the question of the
precise effect of life-history asymmetries on sex ratio/dispersal co-evolution.

The present work establishes, in a formal way, the importance of such asymmetries to the
joint evolution of sex-ratio bias and sex-specific dispersal. Our models account for two basic
types of asymmetry between the sexes: (i) sex-specific costs of dispersal and (ii) a difference
in timing of life-history events, namely dispersal.

The result of co-evolution of the sex ratio and sex-specific dispersal is not immediately
clear. Using models similar to ones used here, Perrin and Mazalov (2000) demonstrated
that optimal dispersal rates are higher in the sex that suffers more from local com-
petition. An analogous result has been shown, herein, to hold for the sex ratio under
a DDM life history: optimal sex ratios are biased towards the sex that is less likely
to compete on its natal patch (Proposition 2). At first glance, it appears that sex-ratio
bias and sex-specific dispersal respond to local competitive influences in different and
opposite ways. One might wonder, then, whether sex-ratio bias and dispersal bias could ever
co-evolve so as to favour the same sex. Clearly, a careful co-evolutionary argument is
necessary.

Our model shows that dispersal and the sex ratio do not respond oppositely to local
competition. The sex ratio does not figure in the equilibrium condition for either d m* or d f*,
but both d m* and d f* are required for the calculation of αm*. The sexual asymmetries that
influence the optimal level of sex-specific dispersal are modified by dispersal rates them-
selves. The optimal sex ratio is then based on this modified asymmetry.

We have demonstrated that, in the absence of both forms of sexual asymmetry con-
sidered, neither sex-ratio bias nor sex-specific dispersal is to be expected. Furthermore,
when only one source of asymmetry is present, sex-ratio bias and dispersal bias favour
the same sex. Interestingly, when both sex-specific dispersal costs and sex-specific timing
of dispersal are considered simultaneously, almost any combination of sex-ratio bias and
dispersal bias seems possible (the exception being the joint occurrence of female-biased
dispersal and male-biased sex ratios).

Given the importance of sex-specific costs and sex-specific timing of dispersal in the
present work, it is reasonable to ask for biological examples of these asymmetries.

Although dispersal costs are often impossible to measure in the field (Wolff, 1994), we
might reasonably expect unequal sex-specific dispersal costs when dispersal of the sexes
occurs under different environmental or physiological conditions. For instance, dispersal
by a large or gravid female may naturally be more costly than dispersal by a smaller or
otherwise unencumbered male.

Sex-specific dispersal costs might also be prevalent in some plants. In plants, dispersal
of pollen corresponds to male dispersal, and dispersal of seeds corresponds to female
dispersal. Most wind-dispersed pollen falls within 100 m of the parent plant, and so wind
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dispersal is quite costly when suitable patches (i.e. available stigmas) are sparse (Raven et al.,
1992). If seeds disperse to another patch via an animal, for instance, the cost of seed
dispersal may be markedly cheaper than that of pollen.

The dispersal of pollen and seeds by plants is also a good example of a DMD life cycle.
Sex-specific timing of dispersal is also widespread among birds and mammals, though these
species do not adhere to a strict DMD life history (Greenwood, 1980). It is interesting to
note that in both plants and birds/mammals, the predictions of sex-ratio theory are often at
odds with data (Frank, 1990; Cockburn et al., 2002; de Jong and Klinkhamer, 2002). It is
also interesting to note that the effects of sex-specific timing of dispersal have not been
adequately incorporated into those predictions (see Campbell, 2000; Cockburn et al., 2002;
de Jong and Klinkhamer, 2002, and references therein). We have already established that
under DMD, sex ratios do not necessarily follow widely accepted principles. Certainly,
predictions based on these principles are likely to fail.

To see the value of applying the DMD model, consider dioecious plants. Some
researchers have argued that sex-ratio theory predicts female-biased or 1 : 1 sex ratios for
this group (de Jong and Klinkhamer, 2002). The prediction, however, is not supported by
data. Data for dioecious plants show a wide variety of sex ratios, both within and among
species; and these often include male-biased sex ratios (de Jong and Klinkhamer, 2002).

The DMD model offers a different theoretical perspective. In fact, the model predicts a
wide variety of sex ratios (including instances of male bias) when traits like dispersal vary
appropriately among populations and among species. Selection that alters dispersal
also indirectly influences the sex ratio. Dioecious plants no doubt experience diverse
environmental conditions relevant to the evolution of dispersal. The DMD model suggests
that sex-ratio variation among dioecious plants may simply be a reflection of this
diversity.

There is a breadth of opportunity for new research. In particular, we are interested in
cases where αm* influences the level of both d m* and d f* – not just the other way around. Such
a situation would occur, for example, if sex-ratio decisions are costly to parental survival
(e.g. Charnov, 1982, Ch. 6). A costly sex-ratio decision, in this case, would influence the
extent to which generations overlap, and ultimately the equilibrium level of dispersal (Irwin
and Taylor, 2000). We are, at present, trying to understand how the co-evolution of these
traits proceeds in a population with age-structure.

Inbreeding depression and inbreeding avoidance are prominent theoretical explanations
for both the evolution of dispersal (Motro, 1991; Gandon, 1999) and the evolution of
sex-specific dispersal (Johnson and Gaines, 1990; Wolff and Plissner, 1998). Understanding
the importance of such mechanisms to the joint evolution of the sex ratio and dispersal is,
therefore, critical to the development of a complete co-evolutionary picture. Under DMD
we expect inbreeding avoidance to influence only male dispersal. Since both male and
female dispersal occur before mating under DDM, the influence of inbreeding in this case
should be symmetric. The contrast presented by the two models, DDM and DMD, is worth
further consideration.
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APPENDIX 1: RELATEDNESS CALCULATIONS

In this appendix, we outline the calculation of relatedness for the inclusive fitness effects developed in
the main text.

Recall that the coefficient of consanguinity (CC) between two individuals, X and Y, is defined as the
probability that a random allele belonging to X and a random allele belonging to Y are identical by
descent (IBD). Let fXY denote the CC between X and Y. Following Michod and Hamilton (1980),
we define the relatedness of X to Y as

RXY = fXY/fXX (A1)

Individual X is the actor and has control over the behaviour under consideration.
To compute the necessary relatedness coefficients, we first determine expressions for a variety of

CCs. The standard way to do this involves building a system of recursive equations for each CC
needed. Once the recursions are constructed, a steady-state solution is found.

We will need the following definitions:

• F, the inbreeding coefficient, i.e. the probability that homologous alleles of a diploid zygote are IBD;
• G, the CC between a breeding female and her mate;
• Hff, the CC between a breeding female and a random breeding female patchmate (taken with

replacement);
• Hmm, the CC between a breeding male and a random breeding male patchmate (taken with

replacement);
• Hfm, the CC between a breeding female and a random breeding male patchmate;
• H = Hff/4 + Hfm/2 + Hmm/4, the CC between two offspring born on the same patch.

The system of equations we investigate depends on the details of the life cycle. Consequently, we
require two sets of calculations: one for the DDM model and another for the DMD model. We use a
‘prime’ to denote the next-generation value of a particular probability. Under DDM,

F� = G (A2)

G� = kf kmH (A3)
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H�ff = [1/N](1 + F )/2 + [(N − 1)/N]k2
fH (A4)

H�mm = [1/N](1 + F )/2 + [(N − 1)/N]k2
mH (A5)

H�fm = G� (A6)

Under DMD,

F� = G (A7)

G� = kmH (A8)

H�ff = [1/N](1 + F )/2 + [(N − 1)/N]k2
fH (A9)

H�mm = [1/N](1 + F )/2 + [(N − 1)/N]k2
mk2

fH (A10)

H�fm = [1/N]G� + [(N − 1)/N]kmk2
fH (A11)

We will not detail the solutions to equations (A2–A6) and equations (A7–A11). We only note that
each system has a unique, steady-state solution that can be found easily using a computer algebra
package.

With solutions to the recursions in hand, relatedness coefficients are easy to determine. Recall
that we have assumed maternal control of all behaviours. It follows that relatedness ought to be
computed from the perspective of a breeding female on a given patch (see equation A1). Under
either model,

• Rm = Rf = [(1 + 3F )/4]/[(1 + F )/2]

• Rm = Rf = H/[(1 + F )/2]

For later calculations we need more detailed expressions of relatedness. Under DDM,

Rm = Rf =
1

2 �
2kf km + 4N − 2Nkf km − (k2

f + k2
m)(N − 1)

4N − 2Nkf km − (k2
f + k2

m)(N − 1) � (A12)

Rm = Rf =
2

4N − 2Nkf km − (k2
f + k2

m)(N − 1)
(A13)

Under DMD,

Rm = Rf =
1

2
 � 4N − k2

f (1 + km)2(N − 1)

4N − 2km − k2
f (1 + km)2(N − 1)� (A14)

Rm = Rf =
2

4N − 2km − k2
f(1 + km)2(N − 1)

(A15)

Since Rm = Rf and Rm = Rf always hold, we get

r =
Rm

Rm

=
Rf

Rf

=
Rm

Rf

=
Rf

Rm

(A16)

The ratio r has its own interpretation as a relatedness coefficient (see Taylor, 1988a).
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APPENDIX 2: PROOFS AND MATHEMATICAL DETAILS

The proof of Proposition 1 will use the following lemma.

Lemma 1. Suppose (αm*, d m*, d f*) is an equilibrium strategy under DDM and cm, cf < 1. Then d f* does
not decrease with increasing cm, and d m* does not decrease with increasing cf.

Proof of Lemma 1. By symmetry, it is enough to prove the lemma for one sex. We shall prove that
d f* does not decrease with increasing cm.

The equilibrium conditions (16, 17) implicitly define the relatedness ratio and sex-specific
dispersal rates as functions of a single variable, cm. We call these functions r*, d m* and d f*, respectively.
Implicit differentiation of (16, 17) with respect to cm gives a system of two equations in dd f*/dcm and
dd m*/dcm. When this system is solved we see that

dd*f
dcm

= 2 
kf (1 − cf d*f )2 (N − 1)(km + kf)

(1 − cf)r*(4N + (N − 1)(km + kf)
2)

 ≥ 0 (A17)

Since cf < 1, the derivative dd f*/dcm exists and d f* is a differentiable function of cf, and since
dd f*/dcm ≥ 0, we have the first conclusion.

Proof of Proposition 1. From equations (16, 17), cm < cf is equivalent to km < kf, at equilibrium.
Elementary algebra gives us 1 − k2

m > 1 − k2
f; and from equation (15) this is equivalent to αm* > af*. We

conclude that cm < cf if, and only if, αm* > af*.
We now show that cm < cf if, and only if, d m* > d f*. First, note that if cm = cf = c, the equilibrium

rate of dispersal under DDM, d*, is not sex-specific. Equation (14) shows that d* is a decreasing
function of c.

As in the proof of Lemma 1, we also note that sex-specific dispersal is a function of cm and cf.
For the purposes of this proof, we write d m*(cm; cf ) and d f*(cf ; cm), where the semi-colon is intended
to remind us that we change only one variable at a time – not simultaneously. Observe that
d*(c) = d m*(cm; cf ) = d f*(cf ; cm).

By Lemma 1, cm < cf is equivalent to

d*f (cf ; cm) < d*f (cf ; cf ) = d*(cf ) (A18)

Since d* is decreasing in its argument we have (A18) if, and only if,

d*f (cf ; cm) < d*(cm) = dm*(cm; cm) (A19)

Applying Lemma 1 again yields d f* < d m*. We conclude that cm < cf if, and only if, d m* > d f*.
The proof that cm > cf if, and only if, d m* < d f* if, and only if, αm* < a f* is similar.

Proof of Proposition 2. Obvious from equation (15).

Proof of Proposition 3. (i) The assumption αm* > af* is equivalent to

k2
m < k2

f − km + kmk2
f (A20)

by equation (18). In turn, (A20) is equivalent to (1 + km)(km − k2
f ) < 0, which holds if, and only if,

km < k2
f. Proof that αm* < a f* if, and only if, km < k2

f is similar.
To prove Proposition 4 we need the following lemma.

Lemma 2. If (αm*, d m*, d f*) is an equilibrium strategy under DMD and cm, cf < 1, then d f* does not
increase with increasing patch size, N. Furthermore, if cf > 0, then d f* is strictly increasing in N.
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Proof of Lemma 2. We use an approach similar to that used to prove Lemma 1. Implicit differentiation
of (19, 20) with respect to N gives two equations in two unknowns, dd f*/dN and dd m*/dN. Solving
these equations gives us

dd*f
dN

=
kf (1 − cf d*f )

2(kmkf + kf + 2)(kmkf + kf − 2)

(1 + km)(1 − cf)(4N + k2
f (1 + km)2(N − 1))

≤ 0 (A21)

where equality implies either km = kf = 1, or d f* = 1. For N < ∞, we have d f* > 0, hence km = kf = 1 if, and
only if, cm = cf = 1. By assumption, cf < 1, hence d f* = 1 is the sole necessary condition. However,
d f* = 1 if, and only if, cf = 0; so when cf > 0, the derivative dd f*/dN must be strictly negative.

Proof of Proposition 4. We shall prove (ii) first.
Suppose 0 < cm = cf = c < 1. By equation (21) and Lemma 2, d f* ≤ 1/(1 + c), where the weak inequality

is an equality if, and only if, N = 1. It follows that

(d f* − 1)(d f* − 1/(1 + c)) ≥ 0 (A22)

with equality if, and only if, N = 1. In equality (A22) is equivalent to

d*m ≥ 
(2 + c)d*f − 1

(1 + c)d*f
(A23)

with equality if, and only if, N = 1.
Now, it follows from the assumption that cm = cf and equations (19, 20) that

km = kf � 1 − cd*f
c − c2d*f + d*f − cd*f� (A24)

or equivalently

d*m =
(2 + c)d*f − 1

(1 + c)d*f
(A25)

The conclusion (ii) then follows immediately from inequality (A23).
We shall use Proposition 3 to prove part (i). Define κ(c, d) = (1 − d)/(1 − cd) and observe that

κ(cf, d f*) = kf and κ(cm, d m*) = km. We restrict κ to values of c and d on the unit square, and observe
that κ is decreasing in d. It follows from part (ii) that km ≥ kf ≥ k2

f with equality if, and only if, N = 1.
This yields (i).

Proof of Proposition 5. We first show that d f* − d m* and cm − cf have the same sign. Define

f (cm,cf,dm,df ) : [0,1] × [0,1] × [0,1] × [0,1] → R2 (A26)

as f = ( f1, f2), where

f1(cm,cf,dm,df ) = cm − rkm (A27)

f2(cm,cf,dm,df ) = cf − r(kf + kf km − cf km) (A28)

The function f is infinitely differentiable (i.e. of class C∞) on the set

E : = [0,1]2 × [0,1]2 (A29)
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At (0,0,1,1) ∈ E, we get f(0,0,1,1) = 0 and

∂f1

∂dm

∂f2

∂dm

∂f1

∂df

∂f2

∂df

=
1

N 2 (A30)

when evaluated at (0,0,1,1). It follows from the Implicit Function Theorem that there is a neigh-
bourhood U ⊂ [0,1]2 of (0,0), a neighbourhood V ⊂ [0,1]2 of (1,1), and a unique function

(d*m,d*f ) :U →V (A31)

such that

f (cm,cf,d*m(cm,cf ),d*f (cm,cf )) = 0 (A32)

for all (cm, cf ) ∈ U. Furthermore (d m*, d f*) ∈ C ∞(U).
The partial derivatives ∂d i*/∂cj are given by the matrix

−








∂f1

∂dm

∂f2

∂dm

∂f1

∂df

∂f2

∂df








−1 






∂f1

∂cm

∂f2

∂cm

∂f1

∂cf

∂f2

∂cf








(A33)

and when this is evaluated at (0,0,1,1)








∂d*m
∂cm

∂d*f
∂cm

∂d*m
∂cf

∂d*f
∂cf








(0,0,1,1)

= − �N 0
0 N � (A34)

Now define ∆(cm, cf ) = d f*(cm, cf ) − d m*(cm, cf ). The new function, ∆ is C∞(U) and

∆(0,0) = 0 (A35)

�∂∆

∂cm

,
∂∆

∂cf
�

(0,0)

= (N, −N) (A36)

By Taylor’s Theorem, for c = (cm, cf ) ∈U

∆(cm, cf ) = N(cm − cf ) + o(||c||) (A37)

It follows that by choosing cm sufficiently small and cf < cm, we get ∆ > 0 (i.e. d f* > d m*). Similarly,
if cf is small and cm < cf, we get d m* > d f*.

Now suppose cf < cm. By the comments above, this implies d f* > d m*. Now define κ(c, d) = (1 − d)/
(1 − cd) and observe that κ(cf, d f*) = kf and κ(cm, d m*) = km. Restricting κ to the unit square, we see that
κ is increasing in c, but decreasing in d. Since cf < cm and d f* > d m*, we get kf < km. The conclusion that
α f* > αm* follows from Proposition 3.
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Proof of Proposition 6. Suppose (αm*, d m*, d f*) is an equilibrium strategy under DDM. For (αm*, d m*,
d f*) to also be a DSS, it is enough to show that the eigenvalues of the Jacobian matrix

J =





σ
2
αm

0

0

0

σ
2
dm

0

0

0

σ
2
df















∂∆Wαm

∂αm

∂∆Wdm

∂αm

∂∆Wdf

∂αm

∂∆Wαm

∂dm

∂∆Wdm

∂dm

∂∆Wdf

∂dm

∂∆Wαm

∂df

∂∆Wdm

∂df

∂∆Wdf

∂df











(A38)

all have negative real part when J is evaluated at equilibrium.
Observe that J |* is an upper block-triangular matrix with

σ
2
αm

∂∆Wαm

∂αm

|
|
|* (A39)

and

Jd |* =








σ
2
dm

σ
2
df

∂∆Wdm

∂dm

∂∆Wdf

∂dm

σ
2
dm

σ
2
df

∂∆Wdm

∂df

∂∆Wdf

∂df






∗

(A40)

on its diagonal.
It can be shown that

∂∆Wαm

∂αm

|
|
|*

= − ∆Wm� 1

α*m
+

1

α*f� < 0 (A41)

Therefore, we now only need to show that the real parts of the eigenvalues of Jd |* are negative.
By the Routh-Hurwitz Theorem, the eigenvalues of Jd |* have negative real parts if TrJd |* < 0 and

det Jd |* > 0. Now,

TrJd |* = − �σ
2
dm

(1 − cm)R 2
m

2(1 − cmdm)2 Tf �1 −
kf cm

2 � + σ
2
d f

(1 − cf)R
2
f

2(1 − cfdf)
2 Tm �1 −

kmcf

2 ��
*

(A42)

where

Ti = 4N − (ki − kj)(km + kf )(N − 1) i ≠ j (A43)

TrJd |* is always negative since cm, cf < 1.
The product of off-diagonal terms, ∂∆Wdm

/∂df and ∂∆Wdf
/∂dm, can be written as

σ
2
dmσ

2
df � (1 − cm)R 2

m

2(1 − cmdm)2� � (1 − cf)R
2
f

2(1 − cfdf)
2�km kf�Sm −

cmTm

2 ��Sf −
cfTf

2 � (A44)

where

Si = 2 (Nki + kj (N − 1)) i ≠ j (A45)
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We can now see that det Jd |* has the same sign as

TmTf�1 −
kfcm

2 ��1 −
kmcf

2 � − kmkf�Sm −
cmTm

2 ��Sf −
cfTf

2 � (A46)

which is equivalent to

�Tm −
kfcmTm

2 ��Tf −
kmcfTf

2 � − �kfSm −
kfcmTm

2 ��kmSf −
kmcfTf

2 � (A47)

Observe that

Ti − kjSi = (4 − (km + kf )2) N > 0 i ≠ j (A48)

hence Ti > kjSi for i ≠ j. It follows from (A47) that det Jd |* > 0. We conclude that (αm*, d m*, d f*) is a
DSS.

Remark. Under DMD, the dynamic stability of an equilibrium strategy also rests upon the sign of
det Jd |*. If det Jd |* > 0, then (αm*, d m*, d f*) is a DSS. When N = 1, the entry ∂∆Wdm/∂df |* = 0. The
dynamic stability of a DMD equilibrium then follows from the fact that the product of diagonal
elements of Jd |* is positive.
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