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Introduction

Kin selection is a deterministic evolutionary force that

acts when individual fitness is affected by traits expressed

by relatives. The objective of evolutionary modelling is to

obtain conditions under which a kin-selected trait will

change in frequency or in character. A standard approach

is to assume that the trait in question is genetically

determined and to find conditions for the change in

frequency of the underlying alleles. The classic covari-

ance formula of Price (1970) provides a simple direct

equation for allele frequency change, but when fitness is

affected by the behaviour of others who might also carry

the alleles in question, the calculations required by this

approach can be complicated.

Inclusive fitness, a powerful heuristic method intro-

duced by Hamilton (1964), was designed to handle these

complications. Hamilton introduced his idea with the

observation ‘if we were to follow the usual approach of

the progress due to natural selection in a generation, we

should attempt to give formulas for the neighbour-

modulated fitness…’ and he suggests that the calcula-

tions for this might be ‘rather unwieldy’. This prompted

him to introduce an ‘alternative approach’, which

restricts attention to the fitness effects of a single focal

actor, and this is what we call inclusive fitness. The

decades following Hamilton’s paper saw a wonderful

development of his idea, simplifying it, extending it, and

relating it to various exact genetic formulations. But the

neighbour-modulated approach, now usually called

direct fitness (Taylor & Frank, 1996; Frank, 1998), has

also been developed and the main point of this article is

that these two approaches are computationally equival-

ent, although in different models one approach or the

other often seems more immediate or natural. In fact, in

recent years, direct fitness has emerged as the preferred

method of modelling kin selection (e.g. Gandon, 1999;

Perrin & Mazalov, 2000; Day, 2001; Leturque & Rousset,

2002, 2003; Wild & Taylor, 2005; Pen, 2006). However, it

is important to say that inclusive fitness, in tracking the

various fitness effects of a single individual’s behaviour,

mirrors the way evolutionary biologists think, and likely

for that reason, it remains the preferred mode of analysis

by most biologists.
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Abstract

Two standard mathematical formulations of kin-selection models can be

found. Inclusive fitness is an actor-centred approach, which calculates the

fitness effect on a number of recipients of the behaviour of a single actor.

Direct fitness is a recipient-centred approach, which calculates the fitness

effect on the recipient of the behaviour of a number of actors. Inclusive fitness

offers us a powerful heuristic, of choosing behaviour to maximize fitness, but

direct fitness can be mathematically easier to work with and has recently

emerged as the preferred approach of theoreticians. In this paper, we explore

the fundamental connection between these two approaches in both homo-

geneous and class-structured populations, and we show that under simple

assumptions (mainly fair meiosis and weak selection) they provide equivalent

formulations, which correspond to the predictions of Price’s equation for allele

frequency change. We use a couple of examples to highlight differences in

their conception and formulation, and we briefly discuss a two-species

example in which we have a class of ‘actor’ that is never a ‘recipient’, which

the standard direct fitness method can handle but the usual inclusive fitness

cannot.
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Here, we describe and compare these two heuristic

approaches with particular attention to their formulation

in a class-structured population (Taylor, 1990; Taylor &

Frank, 1996; Rousset, 2004). Under a wide range of

assumptions the two approaches come up with the same

conditions for the evolutionary increase or decrease in

allele frequency, but there are conceptual and technical

differences in their formulation and our purpose here is

to make these clear. Basically, we will argue that each

approach arises from the other by a simple re-indexing

process. Suggestions have been made that direct and

inclusive fitness are essentially different (Frank, 1997,

1998), but it seems to us that this arises from (interesting)

attempts to extend the methods beyond their normal

range of applicability, e.g. to fitness interactions between

species. We will present an example to try to clarify this

situation.

In our experience, the difficulties that often arise in the

formulation of inclusive and direct fitness arguments,

and in their comparison, have to do with the wide range

of notations and assumptions found in the literature, and

it seems to us that there is a real need for a simple general

scheme and a self-contained exposition of it. A key

ingredient to a clear understanding and easy implemen-

tation of any method is a good notational scheme and the

literature has not consistently provided one (not even in

our own papers). We have tried to remedy that here and

to employ a common scheme to facilitate comparison

between the two approaches. We will apply our formu-

lation to three models of altruistic behaviour, a model of

altruistic interaction between offspring, a class-structured

model in which offspring provide a benefit to parents,

and a host–parasite model with interaction between

species.

We consider a population of individuals. This might be

homogeneous consisting of individuals all of the same

type or heterogeneous with individuals of different

classes (male, female, or adult, juvenile or large, small,

etc.) or even different species. Our objective will be to

track the changing frequency of an allele found in a

number of members of the population. This allele will

affect the behaviour of a number of individuals who

carry it and this in turn will affect the fitness of this

individual and of other interactants and this will cause a

change in the frequency of the allele. This is a complex

situation – many individuals in different situations

affecting the fitness of different configurations of other

individuals. We will handle this by classifying the

interactions and then adding the effects of the different

types of interactions that affect a random individual. This

is essentially a differential approximation, justified by an

assumption of small effects (Grafen, 1985a).

We use the term ‘interaction’ to refer to a basic ‘cause

and effect’ unit. Each interaction will involve a single

actor and a single recipient and it is crucial to be aware of

the distinction between these. An actor is characterized

by its phenotype; a recipient is characterized by its

genotype. Some individuals in the population will be

both actors and recipients; as an actor their phenotype is

what counts; as a recipient their genotype is what counts.

Other individuals might be only recipients and will have

only genotypes; still others might be only actors and have

only phenotypes. Each type of interaction will have an

effect on allele frequency and the overall population-

wide change will be obtained by adding up these effects.

Table 1 A summary of the main notation used in the text.

Symbol Explanation

cj ujvj, the reproductive value of class j

dwk Effect of deviant behaviour on the fitness of kth recipient

dwjk Effect of deviant behaviour on the fitness of the kth recipient

belonging to class j

G Genotypic value of the focal individual

Gj Genotypic value of a focal individual belonging to class j

Gk Genotypic value of the kth recipient belonging to the social

group of the focal individual
�G Population-wide genotypic value, also the frequency of the

target allele
�Gj Average genotypic value among individuals belonging to class j

nj The number of class j recipients in the social group of the

focal actor (inclusive fitness) or equivalently the number of

class j actors in the social group of the focal recipient

(direct fitness)

P Phenotypic value of the focal individual

Pk Phenotypic value of the kth actor belonging to the social

group of the focal individual

P̂ Normal phenotypic value

Rk cov(G,Pk)/cov(G,P), the relatedness of the kth actor to the

focal recipient in his social group (direct fitness arguments),

or cov(Gk,P)/cov(G,P), the relatedness of the focal actor to

the kth recipient in his social group (inclusive fitness

arguments). Note that both formulations of relatedness

are equivalent

Rjk cov(Gjk,P)/cov(G,P), the relatedness of the focal actor to the

kth recipient of class j (inclusive fitness arguments).

This is equivalent to the coefficient, Rkj used in direct

fitness arguments

Rkj cov(Gj,Pk)/cov(G,P), the relatedness of the kth actor to the

class j focal recipient (direct fitness arguments).

This is equivalent to the coefficient, Rjk used in inclusive

fitness arguments.

uj The steady-state frequency of class j

vj The reproductive value of an individual belonging to class j

W Fitness of the focal individual

Wj Fitness of a focal individual belonging to class j
�W Population-wide average fitness

Ŵ Normal fitness

Ŵj Fitness of a normal class j individual

Wdir Direct fitness effect

Winc Inclusive fitness effect

wi The i-fitness of a random individual defined as her

contribution to class i in the next generation

wij ¼ E[wi| individual belongs to class j], the average i-fitness

of a random individual in class j

w ¼ [wij], a square matrix that maps the frequency distribution of

classes from one time step to the next
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An example of an individual which is a recipient but

not an actor is found in a class-structured population in

which adult females care for juveniles. The adults are

both actor (in providing care) and recipient (in paying the

cost of care), but the juveniles are only recipients (in

receiving the care). An example of an individual which is

an actor but not a recipient is found in a two species

interaction in which a parasite inhabits a host. If we are

interested only in a parasite trait, the parasite is both actor

and recipient, but the host who responds to the parasite is

only an actor. For this last example, there will usually be

alternative or more general modelling approaches which

would work better. Our notation is found in Table 1.

Homogeneous population

In a homogeneous population, interactions are symmet-

ric and each individual is both actor and recipient. The

fundamental result describing allele frequency change is

Price’s (1970) covariance formula. If we let the genotypic

value G of an individual be the frequency of the target

allele in its genotype and let its fitness be W, then Price’s

formula tells us that the population-wide allele fre-

quency �G will increase exactly when G and W are

positively correlated. Precisely:

D�G ¼ 1
�W

covðG;WÞ; ð1Þ

where �W is population-wide average fitness. Some

simplifying assumptions are needed for this, notably that

meiosis is ‘fair’, that on average there is no change in

allele frequency in transmission from parent to offspring.

In building a model, we use behaviour to mediate the

relationship between genotype and fitness. The geno-

typic value G of a focal individual will be correlated with

the phenotypic values Pi of a number of actors and the Pi

will in turn affect the fitness W of the focal individual. For

example, P might denote the probability of performing an

altruistic act. Often we handle the effect on fitness by

treating fitness as a function of these phenotypic values:

W ¼ W(P0,P1,P2,…). To further simplify matters we

assume that this function can be treated as linear. Of

course, this will seldom be the case but it will be a good

approximation in a ‘small-effects’ argument, in which

phenotypic values deviate slightly from normal beha-

viour P̂, and we use a first-order differential approxima-

tion W ¼ Ŵ þ dW (Grafen, 1985a). Here the

differential fitness (due to the deviant behaviour) is

dW ¼
X

k

@W

@Pk
P̂j ðPk � P̂Þ; ð2Þ

where the derivatives are evaluated in the uniform P̂

population. Then eqn (1) becomes:

D�G ¼ 1
�W

X
k

@W

@Pk
P̂j covðG; PkÞ: ð3Þ

At this point it is worth mentioning Queller’s (1992) paper

which shows that if fitness W is regressed directly on

genotypic value (of an individual and neighbours), we get

a simple general form of inclusive or direct fitness without

the many assumptions needed to make phenotypic

arguments work. This elegant result is mainly of theor-

etical interest, as we typically get hold of the partial

regressions by using phenotype as an intermediate vari-

able. (Queller’s, 1992 discussion of the role of phenotype

was to some extent foreshadowed by Cheverud, 1984.)

Direct fitness

Equation (3) arises directly from Price’s formula and for

that reason is called a direct fitness analysis of the fitness

interaction (Taylor & Frank, 1996), also referred to as

‘neighbour-modulated’ fitness (Hamilton, 1964). More

precisely, we define the direct fitness increment to be:

Wdir ¼
X

k

@W

@Pk

Rk; where Rk ¼
covðG; PkÞ
covðG; PÞ ð4Þ

with everything evaluated at P ¼ Pk ¼ P̂. Here P is the

phenotypic value of the focal individual and Rk is the

relatedness of the kth actor (or the type k actor depending

on the setup) to the focal recipient. Provided

cov(G,P) > 0 (which can always be arranged), Wdir will

have the same sign as the change D�G in average allele

frequency.

Inclusive fitness

The direct fitness approach fastens attention on a random

individual recipient and adds up the effects on its fitness

of the behaviour of all actors. An alternative formulation,

inclusive fitness, introduced by Hamilton (1964), again

takes a random individual but adds up the effects of its

behaviour on the fitness of all recipients. This is essen-

tially a re-allocation of the direct fitness effects, each

effect being credited to the actor rather than to the

recipient. But with this different formulation comes a

different conceptualization. Instead of a fitness function

W(P1,P2,P3,…) which expresses the fitness of an individ-

ual in terms of the behaviour of others, the inclusive

fitness version starts with a random actor, with pheno-

typic value P, and tabulates the effects of its behaviour on

the fitness of a number of recipients, with genotypic

values Gk. This actually already requires the ‘allocation of

effects’ found in eqn (2) and for this reason, inclusive

fitness can be more difficult to formulate; that is,

inclusive fitness ‘begins’ with the differential effects of

behaviour on fitness. Let dwk be the effect of a deviant act

on the fitness of the kth recipient. Then the inclusive

fitness effect is:

Winc ¼
X

k
dwkRk; where Rk ¼

covðGk; PÞ
covðG; PÞ ; ð5Þ

where Rk is the relatedness of the focal actor to the kth

recipient (or to the type k recipient depending on the

setup).
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Notice that although Rk appears to be differently

defined in eqns (4) and (5) the difference between

formulae is purely technical and derives from the re-

indexing. If we take these effects to be the fitness

derivatives from eqn (2): dwk ¼ ¶W/¶Pk, then eqns (4)

and (5) are equivalent. However, the formulae are

thought of in different ways. The terms of the direct

fitness effect (eqn 4) are effects of the behaviour of

others on the fitness of the focal individual; the terms of

the inclusive fitness effect (5) are the effects of the

behaviour of the focal individual on the fitness of

others.

An example of cooperation between patchmates

As an example we take a patch with n asexual haploid

breeders and consider a cooperative interaction between

random offspring. An actor will have three categories of

fitness effects: on itself (the cost c), on its partner (the

benefit b) and on others who experience increased

competitive effects due to the extra products of the

cooperation. Note that the list of ‘recipients’ of an item

of behaviour must include all those whose fitness is

affected by the behaviour, not only the ‘direct’ effects,

in this case the cost and benefit, but also ‘indirect’

effects of altered competition for limited resources, first

identified by Hamilton (1971) and attributed to what he

called ‘population viscosity’ and incorporated into

inclusive fitness arguments by Wilson et al. (1992) and

Taylor (1992a,b). Continuing with the argument, we

take dw0 ¼ )c (the cost to the actor), dw1 ¼ b (the

benefit to the partner) and dw2 ¼ )(b ) c) (the loss of

fitness by competitors). The inclusive fitness effect is

then:

Winc ¼ �cR0 þ bR1 � ðb� cÞR2; ð6Þ

where R0 ¼ 1 is the relatedness of the actor to itself, R1 is

the relatedness between offspring native to the same

patch and R2 is the relatedness of the actor to the

competitively displaced individuals.

To identify these displaced individuals in the last term

of eqn (6), we need further details of the population

structure. As an example, suppose that the population

has Wright’s (1943) island structure and the islands are

breeding patches. Suppose that after the fitness interac-

tion there is random dispersal of offspring at rate d to an

infinitely distant patch, followed of course by the arrival

of an equal number of immigrants. Finally, we have

competition for the n breeding spots. In that case, of the

b ) c additional individuals created, a proportion d will

disperse and will compete with those who are unrelated

to the actor. The remaining 1 ) d will stay on the patch

and will compete with the post-dispersal inhabitants.

Now a proportion d of these will be immigrants and will

also be unrelated to the actor, and the remaining 1 ) d

will be native to the patch. That is two factors of 1 ) d

and the relatedness of the actor to the competitively

displaced offspring will be R2 ¼ (1 ) d)2R1, where R1 as

above, is relatedness between offspring native to the

same patch. These verbal arguments can in fact be tricky

and the direct fitness calculation will give us a chance to

check our reasoning. This analysis allows us to write the

inclusive fitness effect as:

Winc ¼ �cR0 þ bR1 � ðb� cÞ½ð1� dÞ2R1�: ð7Þ

Notice that our original description of the model used an

inclusive fitness format – specifying the effects of the

behaviour. This is typically the most natural way to

present a model, and it also guides our intuition and our

reasoning. This accounts in large part for the popularity

of the inclusive fitness paradigm.

The direct fitness approach requires us to write the

fitness of an actor as a function of the behaviour of all

potential interactants. Suppose that phenotypic value P is

the probability of cooperating, and let P0 and P1 be the

phenotypic values of the actor and of a random offspring

native to the same patch. Then if there are N individuals

on a patch, the number after dispersal will be

½N þ NP1ðb� cÞ�ð1� dÞ þ Nd ¼ N½1þ P1ðb� cÞð1� dÞ�:

If neutral fitness is normalized at Ŵ ¼ 1, then normal-

ized fitness of an actor can be written as:

WðP0;P1Þ ¼ dð1� cP0 þ BP1Þ þ ð1� dÞ 1� cP0 þ bP1

1þ P1ðb� cÞð1� dÞ
¼ 1� cP0 þ bP1 � ðb� cÞð1� dÞ2P1

:

ð8Þ

The first expression partitions the fitness according to

whether the actor disperses (probability d) or does not

disperse (probability 1 ) d), and the second expression

provides a first-order approximation which assumes that

c and b are small. This approximation gives us a linear

expression for W, and the direct fitness effect is clearly

Wdir ¼ �cR0 þ bR1 � ðb� cÞð1� dÞ2R1 ð9Þ

and we see that this is the same as the inclusive fitness

effect.

However, note that the terms of eqns (7) and (9), are

interpreted in a different way. The terms of the inclusive

fitness (eqn 7) are the fitness effects on all individuals

(weighted by relatedness) of a single interaction. The

terms of the direct fitness (eqn 9) are the fitness effects on

a single individual of all interactions (again weighted by

relatedness). This leads to a different analysis of the two

last terms, the competitive effects. In eqn (7) the dispersal

effect (1 ) d)2, is counted as a component of the

relatedness term (although there are other ways to do

the analysis) whereas in eqn (9) this is counted as a

component of the fitness effect (see also Gardner & West,

2006).
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A class-structured population

Reproductive value

Now we suppose that there is a class structure in the

population. Two important examples are found in

gender classes and age classes. For an example which

combines these, take the four classes to be adult males,

adult females, juvenile males and juvenile females. In

a neutral population we let uj be the frequency of

class j and vj be the reproductive value of a random class

j individual (Taylor, 1990). We let cj be the class j

reproductive value, and we normalize reproductive

values so that

cj ¼ ujvj and
X

j

cj ¼ 1: ð10Þ

With this normalization, cj can be interpreted as the

probability that the ancestor (today) of an allele selected

at random in a distant future generation resides in class j.

To interpret vj ¼ cj/uj we begin by choosing a random

class j individual today and ask for the probability that

the ancestor (today) of an allele selected at random in a

distant future generation belongs to that particular

individual. Then the vj are proportional to these proba-

bilities.

There is the question of how to measure and normalize

fitness in such a population. In one time unit an

individual might contribute to several classes, for exam-

ple, through fecundity and survival, or through male and

female offspring. We will let wi be the ‘i-fitness’ of a

random individual defined as her contribution to class i

in the next generation. Now let wij be the average i-

fitness of a class j individual in the neutral population.

Then the matrix w ¼ [wij] is the (neutral) fitness matrix

of the population. In an age-structured population, this is

just the Leslie matrix. Then the dominant right eigen-

vector of w is the class frequency vector [uj] and the

dominant left eigenvector is the individual reproductive

value vector [vi] (Taylor, 1990, 1996). The dominant

eigenvalue k of w is the growth rate of the population

when it has attained stable proportions [uj], and we

assume that the neutral population stays constant in size

and take k ¼ 1. Then the eigenvector equations are:

ui ¼
X

j

wijuj

vj ¼
X

i

viwij

: ð11Þ

From eqn (11) it makes sense to define the ‘fitness’ W of a

random individual (in any class) to be the sum of i-fitness

components, each weighed by the individual class

reproductive value (Taylor, 1990, eqn 13):

W ¼
X

viwi: ð12Þ

With this definition, eqn (11) shows that in the neutral

population average class j fitness is vj. We point out that

different treatments of direct fitness normalize fitness in

different ways, for example average class j neutral

fitness is set equal to vj (as here) in Taylor (1990) but

set equal to 1 in Taylor & Frank (1996). These different

normalizations will lead to different multiplicative

constants in the equations and this can cause confusion.

We are convinced that the most natural definition of

fitness in this general context is eqn (12) and hence

average class j fitness is normalized at vj. However, for

completeness we will provide the version of our final

direct fitness formula for fitness normalized to 1 (see

eqn 18, below).

We suppose that the actors belong to a single class.

That seems a reasonable assumption, as actors belonging

to different classes are apt to be doing different things or

at least to find themselves in different circumstances, and

can often be treated separately (Pen & Taylor, 2005; Wild

& Taylor, 2005). However, the recipients will generally

live in several classes and our formulation will group

them by class.

Price’s formula

In a class-structured population, at first it is not clear

what allele frequency ought to mean. We can measure

the average frequencies �Gj within each class, but how are

they to be averaged to get an overall measure? We ask in

what way do we want a change in the various �Gj to count

as an increase in ‘overall’ frequency, and the answer to

this is that what we want to measure is the increase in

descendent genes in the long-term future of the popu-

lation and we achieve this with a class reproductive value

weighting (Fisher 1930, Price and Smith 1972). More

precisely, multiplying the �Gj by class frequencies uj

converts frequency to numbers of genes, and then

multiplying by individual reproductive values vj converts

this to asymptotic numbers. The product of these gives

class reproductive values cj (eqn 10) and these are the

weights we choose. We define

�G ¼
X

j

cj
�Gj: ð13Þ

An interesting observation is that in a neutral population,
�G will not change no matter how the mutant allele is

distributed among the classes (Taylor, 1990, eqn 9 cites

an observation of Uyenoyama for this).

With this definition of allele frequency, Taylor (1990,

eqn 16 with r ¼ 1) shows that Price’s formula for the

change in �G over one time unit has the form:

D�G ¼
X

j

ujcovðGj;WjÞ; ð14Þ

where Gj and Wj are the genotype and fitness of a random

class j individual (fitness normalized so that neutral

fitness is vj) and uj is the class frequency. If you are

wondering what happened to the denominator of aver-

age fitness (found in eqn 1) it is essentially found in the uj
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multiplier. Use the fact that average class j fitness is vj

together with eqn (10) that
P

jujvj ¼ 1.

Now we treat Wj as a function of the phenotypic values

Pk of a number of actors, and use the first-order Taylor

expansion to get Wj ¼ Ŵj þ dWj, where:

dWj ¼
X

k

@Wj

@Pk
P̂j ðPk � P̂Þ: ð15Þ

Substitute this into eqn (14):

D�G ¼
X

j

uj

X
k

@Wj

@Pk
P̂j covðGj; PkÞ ðWj normalized to vjÞ:

ð16Þ

Direct fitness

As before, we begin by selecting a random focal recipient.

Now in this case recipients can belong to different classes,

and it is not so clear what it means to choose one ‘at

random’. It turns out that the way to do this is to select a

random class j recipient with probability the class

frequency uj (Taylor & Frank, 1996). Note that this

depends on our decision to normalize class j fitness to vj,

but see below for an alternative normalization. The direct

fitness increment is then:

Wdir ¼
X

j

uj

X
k

@Wj

@Pk
P̂j Rkj; where Rkj ¼

covðGj; PkÞ
covðG; PÞ ;

ð17Þ
where Rkj is the relatedness of the kth actor to the focal

class j recipient and where we use G to denote the actor’s

genotype. If j is the actor class and we choose k so that

the kth actor is the class j recipient, then G ¼ Gj and P ¼
Pk and Rkj ¼ 1. A comparison of eqns (16) and (17)

shows that direct fitness has the same sign as the change

in average allele frequency �G.

It is worth pointing out that in some models (e.g. a sex-ratio

model in Wild & Taylor, 2005) it is more natural to

normalize average class fitness to be 1. In this case, we need

toincludethevjalongwiththeujweights,andthatgivesus cj

weights (eqn 10). For example, those are theweights found

inTaylor &Frank (1996)but not inTaylor (1990).With this

weighting, the direct fitness increment eqn (17) becomes

Wdir ¼
X

j

cj

X
k

@Wj

@Pk
P̂j Rkj ðWj normalized to 1Þ: ð18Þ

Inclusive fitness

We choose a random focal actor with phenotypic value P

and let dwjk be the ‘effect’ of a deviant act on the fitness

of the kth recipient in class j which has genotypic value

Gjk. Then the inclusive fitness effect is:

Winc ¼
X

j

X
k

dwjkRjk; ð19Þ

where

Rjk ¼
covðGjk; PÞ
covðG; PÞ ð20Þ

is the relatedness of the actor to the kth recipient in class j

and where we use G to denote the actor’s genotype (if j is

the actor class it will be one of the Gjk – if the actor is

recipient k in class j, then G ¼ Gjk and Rjk ¼ 1). Again, a

re-indexing gives an equivalence between eqns (18) and

(19) and thus the direct and inclusive fitness formula-

tions lead to the same result. This is not quite obvious as

eqn (18) has the factor uj and eqn (19) does not. It has to

be noted that if an actor affects the fitness of nj recipients

in class j, then a random class j recipient will be affected

by (u0/uj)nj actors, where u0 is the frequency of the actor

class.

A class-structured example

We illustrate these equations with a model that displays

the difficulties that might arise in a class-structured

population. Suppose we have an asexual haploid popu-

lation with two classes, juveniles (class 1) and breeding

adults (class 2) with Leslie matrix

w ¼ 0 10

1=20 1=2

� �
: ð21Þ

The columns give the expected output after 1 year.

A juvenile (column 1) has probability 1/20 of becoming a

breeding adult next year; otherwise it dies. A breeding

adult (column 2) recruits 10 offspring into the juvenile

class next year and in addition has probability 1/2 of

retaining its breeding status another year. The matrix w

has dominant eigenvalue 1 with right eigenvector

u ¼ 10
1

� �
and left eigenvector v ¼ [1, 20]/30. Thus, at

the annual census, there are 10 juveniles to every adult

and an adult has 20 times the reproductive value of a

juvenile. The class reproductive values are:

c1 ¼ u1v1 ¼ 1=3

c2 ¼ u2v2 ¼ 2=3
ð22Þ

and these are already normalized to have sum 1. In the

neutral population the average class j fitnesses are

�W 1 ¼
X

i

viwi1 ¼
20

30

� �
1

20

� �
¼ 1

30
¼ v1;

�W 2 ¼
X

i

viwi2 ¼
1

30

� �
ð10Þ þ 20

30

� �
1

2

� �
¼ 2

3
¼ v2

ð23Þ

and as expected, these are the individual reproductive

values.

Now suppose the mutant allele causes a juvenile to

behave cooperatively by giving benefit b to a neighbour-

ing adult at cost c (e.g. a helping behaviour). The problem

is to find conditions on b and c for this behaviour to be

adaptive and to increase in frequency. Again we take

phenotypic value P to represent the probability of

cooperating, with P̂ as the resident value.
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The first thing to ask is whether we are to interpret

these fitness increments additively or multiplicatively.

We are of course free to do either, but given the way we

have normalized fitness (as reproductive value) the most

natural interpretation is multiplicative. Thus, an adult

with resident fitness v2 who received a benefit of b ¼
0.15 would get a 15% increase in fitness, giving her a

new fitness of

1:15v2 ¼ v2ð1þ bÞ ¼ v2 þ v2b: ð24Þ
Her additive increment is not b but v2b.

Inclusive fitness

Take a random juvenile actor. There are two recipients,

one in each class, the actor herself with fitness effect

dw1 ¼ )v1c and her adult neighbour with fitness effect

dw2 ¼ v2b. Then eqn (19) gives

Winc ¼ �v1cR1 þ v2bR2 ¼ �v1c þ v2bR; ð25Þ
where R is the relatedness of a juvenile to her adult

neighbour. This is Hamilton’s rule in this setting.

Direct fitness

In this case, we choose a random recipient in each class, a

juvenile and an adult with fitnesses W1 and W2. The

juvenile will be affected only by herself (as actor)

W1ðP1Þ ¼ v1ð1� cP1Þ ð26Þ
and the adult will be affected, on average, by 10 juvenile

actors:

W2ðP1;P2; . . . ;P10Þ ¼ v2ð1þ bðP1 þ P2 þ � � � þ P10ÞÞ: ð27Þ
Then eqn (17) gives

Wdir ¼ u1

dW1

dP1

R1 þ u2

X
k

@W

@Pk

Rk2

¼ 10ð�v1cÞR1 þ 1ð10v2bÞR2

¼ 10ð�v1c þ v2bRÞ; ð28Þ

where we have replaced the Rk2 by their average value R2

and then called this R, the relatedness between a juvenile

actor and her adult neighbour. This is equivalent to the

inclusive fitness eqn (25).

Interactions between species

In a homogeneous population all individuals can play the

role of both actor and recipient. In a class-structured

population there will typically be individuals who are

recipients but not actors. In this case, inclusive fitness,

which is actor centred, and direct fitness, which is

recipient centred, provide equivalent modelling approa-

ches. Are there examples of individuals who are actors

but not recipients? If so, a direct fitness approach should

work well, but inclusive fitness is problematic. The

reason is simple – inclusive fitness works with one focal

actor and it requires this actor to behave in a deviant

manner. But this deviation needs to come from an

altered genotype (as the whole point is to track allele

frequency change) and if the actor is not a recipient it

would not have a genotype. Direct fitness solves this

problem by having at least two types of actor, one of

which has a genotype and can also play the role of

recipient. This observation seems to have been first made

in Queller (1992).

Here, we discuss a simple example of an interaction

between species, similar to an example of Frank (1997),

which illustrates the issue. Suppose a parasite inhabits a

host and the host carries a locus, which determines the

level of ‘cooperative’ behaviour towards the parasite.

Cooperation exacts a fitness cost for the host but elicits a

response from the parasite (e.g. reduced virulence),

which enhances the fitness of the host. There are

different ways through which this response might work,

perhaps a plastic reaction, perhaps, if the parasite has a

relatively short generation time, a genetic change. We

are interested in tracking the cooperative behaviour of

the host.

Let W be the host fitness, let G and P be the host

genotype and phenotype, and let P1 be the parasite

phenotype. Our assumptions above are that P1 depends

on P (i.e. the response of the parasite to the host) and W

depends on both P and P1.

To formulate a direct fitness model in our notation,

Frank (1997) would likely write W ¼ W(P,P1) and use a

version of eqn (3) or eqn (4):

Wdir ¼
@W

@P
covðG; PÞ þ @W

@P1

covðG; P1Þ: ð29Þ

With a normalization the first of these becomes a

relatedness coefficient, but the second does not, and this

moves us, quite reasonably, to a slightly extended

concept of direct fitness. Perhaps one could try to extend

inclusive fitness to handle the situation in which actors

belong to different classes, but our guess is that in most

cases alternative modelling approaches would be more

reasonable. In the example above, our preference would

be to treat the effect of the parasite on host fitness as one

of two pathways by which the host affects her own

fitness through her behaviour. Formally, we might use

another notation for the above two-variable host fitness,

say ~WðP; P1Þ, treat P1 as a function of P, and write host

fitness W as a function only of P:

WðPÞ ¼ ~WðP; P1ðPÞÞ: ð30Þ

Then inclusive fitness is found in eqn (1) with only a

single summand:

Winc ¼
dW

dP
R ¼ @ ~W

@P
þ @

~W

@P1

dP1

dP

� �
R; ð31Þ

where R is the relatedness of the actor to herself, which is

of course 1. This seems the simplest, most direct and most

natural way to handle the argument.
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Conclusions

We have examined two classic formulations of kin-

selection, direct and inclusive fitness. Direct fitness is a

reformulation of Price’s covariance formula, and there-

fore, under suitable assumptions, principally fair meiosis

and small genetic effects, it provides a true measure of

allele frequency change. Inclusive fitness is essentially a

reorganization of the direct fitness calculation and

therefore also measures allele frequency change. In

particular, direct and inclusive fitness always give the

same answer.

The two formulations use slightly different forms of

the relatedness coefficient, cov(G,Pk)/cov(G,P) in direct

fitness (eqn 4) and cov(Gk,P)/cov(G,P) in inclusive

fitness (eqn 6), and in their generalizations in (eqn

17) and (eqn 20). The first was introduced by Orlove &

Wood (1978), the second by Michod & Hamilton (1980)

and both forms have been compared and their merits

discussed by many others, notably Seger (1981), Grafen

(1985b) and Queller (1985, 1992). There are two things

to mention here. First, these two forms emerge natur-

ally from the two methodologies, direct fitness which is

centred on a focal recipient (i.e. eqn 4) and inclusive

fitness which is centred on a focal actor (i.e. eqn 6). The

many discussions in the literature of the relationship

between these two forms often fail to draw attention to

this critical connection. Secondly, the two forms are in

fact equivalent (Queller, 1992). This is clear if the two

approaches are regarded as sums over fitness interac-

tions, in each case the same sum, but organized

differently, with exactly the same relatedness weight

applied to each fitness effect. To emphasize this we

write both expressions as cov(GR,PA)/cov(G,P). The

numerator is the covariance between recipient genotype

and actor phenotype, and the denominator is the

covariance between genotype and phenotype in the

actor class.

We have assumed small selective effects (weak selec-

tion) and it is important to note where this is used. In

fact, the only place we need this is to obtain the

(approximate) linearity of individual fitness as a function

of the phenotypes of others (eqn 2), but if fitness happens

to be linear in phenotype, we do not require weak

selection at this point. If W is linear in the Pk, then all our

equations are valid, even if fitness effects are large. The

other place where inclusive and direct fitness arguments

typically use weak selection is in the calculation of

relatedness. The covariances in eqns (4) and (6) are

typically calculated by assuming phenotype is linearly

related to genotype and then using the notion of identity

by descent, and this last argument is valid only when the

alleles are neutral. When selection is weak, these

‘neutral’ covariances provide a good approximation.

Work is ongoing on a more complete examination of

the effects of strong selection on inclusive and direct

fitness.

The popularity of direct fitness in the theoretical

literature in recent years reflects the fact that it is often

mathematically more natural to formulate. But the

inclusive fitness paradigm continues to have a powerful

presence, no doubt because it positions the modeller as

an agent choosing behaviour to maximize fitness. This

‘individual as maximizing agent’ analogy (Grafen, 1999)

allows us to put ourselves in the position of an individual

organism and ask: how can I maximize my inclusive

fitness? Not only does this constitute a powerful theor-

etical construct, but it is also a natural question for us

humans to ask, as in our day-to-day lives our beha-

vioural decisions are typically optimal, albeit with regard

to complex payoff functions.
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