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Abstract. This paper defines the Wright ω function, and presents some
of its properties. As well as being of intrinsic mathematical interest, the
function has a specific interest in the context of symbolic computation
and automatic reasoning with nonstandard functions. In particular, al-
though Wright ω is a cognate of the Lambert W function, it presents a
different model for handling the branches and multiple values that make
the properties of W difficult to work with. By choosing a form for the
function that has fewer discontinuities (and numerical difficulties), we
make reasoning about expressions containing such functions easier. A
final point of interest is that some of the techniques used to establish
the mathematical properties can themselves potentially be automated,
as was discussed in a paper presented at AISC Madrid [3].

1 Notation and Definitions

The Wright ω function is a single-valued function, defined in terms of the Lam-
bert W function. Lambert W satisfies W (z) exp(W (z)) = z, and has an infinite
number of branches, denoted Wk(z), for k ∈ Z. See [4] for a discussion of why
the branches were chosen as they are. The Lambert W function is therefore mul-
tivalued. The Wright ω function1 is a single-valued function, defined as follows:

ω(z) = WK(z) (ez) (1)

where K(z) = d(Im(z)− π)/(2π)e is the unwinding number of z. Note that the
sign of this unwinding number is such that ln(exp(z)) = z + 2πiK(z), which is
opposite to the sign used in [5], because we discovered after that publication
that the present sign choice leads to fewer minus signs in formulas.

1 This nomenclature has never, to our knowledge, appeared in print before. We use the
letter ω as a cognate of W , and we name this function after Sir Edward M. Wright,
for his works [12] establishing the complex branching behaviour of this function as a
tool for investigating the roots of y exp(y) = z (later called the Lambert W function)



2 Graphs and special values

A graph of ω(z) for real z can be produced easily in Maple by the command
plot([y+ln(y),y,y=0.001..2]);. A section of the Riemann surface for ω(z)
can be plotted by the following commands:

omega := mu + I*nu;
x := evalc(Re(omega+ln(omega)));
y := evalc(Im(omega+ln(omega)));
plot3d( [x,y,mu], mu=-4..2, nu=-4..4,

colour=black, axes=BOXED,
style=PATCHNOGRID, labels=["x","y","mu"],
view=[-2..1, -5..5, -5..3],
grid=[200,200], style=POINT );

See Table 1 for special values.

Table 1. Special values of ω(z).

z ω(z)

−∞ 0
0 W0(1)
1 1

2 + ln 2 2

−1/3 + ln(1/3) + iπ −1/3 = W0

(
− 1

3
e−1/3

)

−1/3 + ln(1/3)− iπ W−1

(
− 1

3
e−1/3

)

−1 + iπ −1
−1− iπ −1

−2 + ln 2 + iπ W0

(−2e−2
)

−2 + ln 2− iπ −2 = W−1

(−2e−2
)

∞ ∞

2.1 Summary of Results of This Note.

The main result is a clarification, using this new function, of results due originally
to Wright [12] and independently rediscovered in [11] and [9]. Although y = ω(z)
satisfies the equation (in this paper ln(z) is the principal branch of the logarithm
of z)

y + ln y = z , (2)

when z 6= t ± iπ for t ≤ −1, there should be a distinction made between the
solutions of the equation, and Wright ω. In other words, (2) is not a satisfactory
definition of ω.



In addition to this basic point, we here present new branch point series (with
the correct closure), new asymptotic series (from the equivalent series for the
Lambert W function), and new proofs of the analytic properties of ω(z), using
properties of the unwinding number.
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Fig. 1. The z-plane, showing the slit (equivalently, branch cut) we call the “doubling
line” (above) and its “reflection”, across each of which the Wright ω function is discon-
tinuous. Along both slits, the closure (indicated by short lines extending down from
the slits) is taken from below—clockwise around the branch points—to agree with the
closure of the unwinding number.

We here summarize some properties of ω, proved in [9]. First, equation (2) has
a unique solution, ω(z), for all z ∈ C except on the line LD defined by z = t± iπ
for t ≤ −1. When z is on LD, the equation has precisely two solutions, these
being ω(z) and ω(z−2πi); we therefore call LD the “doubling line”. See Figure 1
and Figure 2. On the reflection of the doubling line, namely, the line defined by
z = t − iπ, with t ≤ −1, equation (2) has no solution at all2. Second, ω is an
analytic function of z except on the doubling line and its reflection z = t − iπ
for t ≤ −1, where ω(z) is discontinuous. This immediately gives the following.

2 Unfortunately, in the paper [6], we got this wrong—we missed the fact that there
was no solution on this line. Indeed, at that time, we hadn’t realized this function is
discontinuous there. Additionally, we were using the opposite sign for the unwinding
number, which made the formulas messier.



Theorem: For all z ∈ C and integers k,

Wk(z) = ω(lnk(z)), (3)

where lnk(z) = ln z + 2πik. [This logarithmic notation is discussed further in a
later section.]
Proof. This holds at least provided z is not in the interval − exp(−1) ≤ z < 0
and k = −1, which is the image in the domain of W of the critical doubling line
(and also the image of its reflection). If z is in the interval− exp(−1) ≤ z < 0, and
k = −1, then we have instead that W0(z) = ω(ln |z|+iπ) since K(ln |z|+iπ) = 0,
and that W−1(z) = ω(ln |z| − iπ) since K(ln |z| − iπ) = −1. Phrasing this the
other way, we have

W0(z) = ω(ln z)
and

W−1(z) = ω(ln z − 2πi) .
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Fig. 2. The ω-plane, showing the images of doubling slit and its reflection. The negative
real ω-axis is not, per se, a branch cut (this is the range of the function) but it is a
branch cut of ω +ln ω, which is why that expression is not exactly the inverse function
for ω.



2.2 Properties of ω

We group the properties into analytic properties and algebraic properties.

Analytic properties Theorems and lemmas:

(i) ω(z) is single-valued
(ii) ω : C→ C is onto C \ {0}.

(ii)(a) Except at z = −1± iπ, where ω(z) = −1, ω : C→ C is injective; hence ω−1

exists uniquely except at 0 and −1.
(iii) See Figure 2.

ω−1(y) =





y + ln(y)− 2πi −∞ < y < −1
−1± iπ y = −1
y + ln(y) otherwise.

(iv) (a) ω is continuous (in fact analytic) except at z = t± iπ for t ≤ −1.
(b) For z = t± iπ and t ≤ −1, we have

(1) ω(t + iπ−) = ω(t + iπ) = ω(t− iπ−)
(2) ω(t + iπ+) = ω(t− iπ) = ω(t− iπ+)

(v) (a) ω + ln ω = z ⇐⇒ K(ω + ln ω) = K(z).
(b) K(ω + ln ω) = K(z) unless z = t− iπ, t ≤ −1.

(vi) If z 6= t− iπ for t ≤ −1, then ω(z) + ln ω(z) = z.

If moreover z 6= t+ iπ, t ≤ −1, then this solution is unique; if z = t+ iπ, t ≤ −1,
then y = ω(t−iπ) is also satisfies y+ln y = z. There is no y such that y+ln y = z
if z = t− iπ.

2.3 Proofs.

(i) The functions exp z, K(z) and Wk(z) (for each fixed k) are single-valued.
Hence the composition WK(z)(exp z) is single-valued.

(ii) K(z) covers all of Z as z covers all of C, and the branches of W partition
the plane, except that −1 is hit twice: W−1(−1/e) = W0(−1/e) = −1.
Only W0(0) = 0, and 0 is the only point not in the range of ez; hence there
is no finite z such that ω(z) = 0, but no other points in the range are missed.

(iii) (v) =⇒ (iii) because ωeω = ez, and hence ln(ωeω) = lnω + ω − 2πiK(ω +
ln ω) = z − 2πiK(z) and since K(ω + ln ω) = K(z) except on z = t − iπ for
t ≤ −1, we have z = ω + ln ω for the “otherwise” case; the case y = −1
is by computation; and the case where z = t − iω, ω(z) ∈ (−∞,−1) ⇐⇒
K(z) = −1 and direct computation from ωeω = ez ∈ (−1/e, 0) gives z =
ω + ln(−ω)− iπ as claimed. Equivalently, z = ω + ln(ω).

(iv) (iii) =⇒ (iv) because ω is the inverse of y → y + ln(y) except when −∞ <
y ≤ −1 when ω has a different inverse. Moreover, y+ln y is continuous except
when y ≤ 0. Its derivative is 1+1/y, which is zero only if y = −1. Therefore
ω is continuous (analytic) except possibly when ω < 0. This is precisely
z = t±iπ, t ≤ 1. Inspection shows that ω really is discontinuous on z = t±iπ
for t < 1; but ω(t + iπ) = ω(t + iπ−) and ω(t − iπ) = ω(t − iπ+) are both
continuous from below, because K(z) is. The fact that ω(t+iπ−) = ω(t−iπ−)
follows from the analyticity of W0(z) in |z| < 1/e.



(v) (a) WK(z)(ez)eWK(z)(e
z) = ez = ω(z)eω(z) by definition. Taking logs,

ln(ωeω) = ln ez, or ω + ln ω − 2πiK(ω + ln ω) = z − 2πiK(z). Therefore,
ω + ln ω = z ⇐⇒ K(ω + ln ω) = K(z).

(v) (b) K(WK(z)(ez) + ln WK(z)(ez)) = K(z). K(a) can change only when a =
t+(2k +1)π for k ∈ Z, or when a is itself discontinuous. We distinguish two
cases, therefore:
(1) WK(z)(ez)+ln WK(z)(ez) can be discontinuous at discontinuities of K(z),

namely z = t + (2k + 1)π for k ∈ Z, or when WK(z)(ez) < 0. We ignore
discontinuities of K(z) for the moment. WK(z)(ez) < 0 only when (i)
K(z) = 0 and ez < 0 ⇐⇒ z = t + iπ, t ≤ −1, or (ii) K(z) = −1 and
ez < 0 ⇐⇒ z = t − iπ, t ≤ −1. Both (i) and (ii) are discontinuities of
K(z) anyway.

(2) K(ω(z)+ln ω(z)) can be discontinuous when ω+lnω = t+(2k+1)πi =⇒
ωeω = −et ⇐⇒ ω(z) ⊆ an image of R− under W . Therefore z ⊆ a pre-
image of R− under ez.

But this is just z = t + (2k + 1)πi, which is a place of discontinuity of K(z).
Note that K is integral-valued. Therefore, if ω(z) is such that K(ω(z) +
ln(ω(z))) = K(z) for any z in a strip (2k − 1)π < Imz ≤ (2k + 1)π, where
ω + ln(ω) is continuous, then we have K(ω(z) + lnω(z)) = K(z) everywhere
in that strip. Let us choose k ∈ Z, and look at the pre-image of ω = 2kπi.
Then ω + ln ω = 2kπi + ln(2kπ) + iπ/2 and hence K(ω + ln ω) = k. Since
ω = WK(z)(ez) we have ωeω = ez and 2kπi · e2kπi = ez ⇐⇒ ez = 2kπi;
moreover 2kπi ∈ range WK(z), and therefore K(z) = k. Therefore

z = ln(2kπi) + 2kπi

= ω + ln ω.

This establishes that if ω(z) = WK(z)(ez), then ω + ln ω = z except possibly
on the edges of the strips z = t+(2k+1)πi. Now we haveK(ω(z)+ln(ω(z))) =
K(z) if (2k − 1)π < Im(z) < (2k + 1)π, and hence ω + ln ω = z. Note
that ω(z) = WK(z)(ez) is continuous from below as Im(z) → (2k + 1)π−.
Therefore, provided that ω(z) 6∈ R−, ω(z) + ln(ω(z)) will be continuous
as Im(z) → (2k + 1)π−. Therefore, since Im(ω(z) + ln ω(z)) = Im(z) for
(2k− 1)π < Im(z) < (2k + 1)π, we have K(ω + ln ω) = K(z) even if Im(z) =
(2k + 1)π by continuity:

lim
Im(z)→(2k+1)π−

K(ω(z) + ln ω(z))

= lim
Im(z)→(2k+1)π−

K(z) .

Therefore K(ω(z) + lnω(z)) = K(z) unless ω(z) < 0, and Im(z) = −iπ.
(vi) This now follows immediately.



2.4 Corollary

Define z(k, θ) = x + i · (2k + θ)π. Then z(k + 1,−1) = z(k, 1) since x + i · (2k +
2− 1)π = x + i · (2k + 1)π, since K(x + i · (2k + θ)π) = k for −1 < θ ≤ 1. Since

Wk(ex+i(2k+θ)π) = Wk(ex+iπθ) = Wk(ex(cos πθ + i sin πθ)) ,

we have Wk(ex+iπθ) → Wk(−ex + i · 0+) as θ → 1−, and

lim
θ→−1+

WK(z(k+1,θ))(ez(k+1,θ)) = lim
θ→−1+

Wk+1(ex+i(2k+2+θ)π)

sinceK(x+i·(2k+2+θ)π) = k+1 for−1 < θ ≤ 1. Since Wk+1(ex+i·(2(k+1)+θπ)) =
Wk+1(ex+iπθ) = Wk+1(ex(cos πθ + i sin πθ)) we have

Wk+1(ex+iπθ) → Wk+1(−ex + i · 0−)

as θ → −1+. By continuity of ω, then, unless k = 0 or k = −1 and 0 > −ex > 1

Wk(−ex + i · 0+) = Wk+1(−ex + i · 0−) .

Alternative (direct) proof of (iv) (a).
Lemma : Wk(−ex + i · 0+) = Wk+1(−ex + i · 0−) unless −e−1 ≤ −ex < 0 and

k = 0.
Proof .
Images of the lines y = t, x = constant < 0, are smooth curves under

ω(x + iy), by inspection, except if ω(x + iy) < 0. This is what we have to
prove. Can we define ez as a value on the Riemann Surface for W? Yes, except
when −e−1 ≤ ez < 0, by placing it on the sheet with winding number K(z).
This is a bijection between the Riemann Surface for log and for W , except on
−e−1 ≤ ez < 0. Once this is done, the cut’s images on the Riemann Surface can
obviously be moved at will. Since Wk(−ex + i · 0−) lies on the other side of the
cut, we have equality.

Algebraic properties

– Derivatives and integrals:

dω

dz
=

ω

1 + ω
∫

ωn dz =





ωn+1−1
n+1 + ωn/n if n 6= −1

ln ω − 1/ω if n = −1

The derivative formula is valid except on the doubling line and its reflection,
when it is valid as a derivative in the real direction only. The integrals can be
verified directly by differentiation of both sides. The addition of the constant
term −1/(n + 1) to the integral of ωn is a trick due, in the case

∫
xn dx, to

W. Kahan. Using this trick, the formula for limiting case n = −1 is a simple
limit of the formula for n 6= −1.



– Series about z = a, where a = ωa+ln ωa: the following (computed by Maple)
is the beginning of the series for ω which contains second order Eulerian
numbers.

ωa +
ωa

1 + ωa
(z − a) +

1
2!

ωa

(1 + ωa)3
(z − a)2

− 1
3!

ωa (2ωa − 1)
(1 + ωa)5

(z − a)3 +
1
4!

ωa (6 ωa
2 − 8ωa + 1)

(1 + ωa)7
(z − a)4

− 1
5!

ωa (24ωa
3 − 58 ωa

2 + 22 ωa − 1)
(1 + ωa)9

(z − a)5

+
1
6!

ωa (120ωa
4 − 444 ωa

3 + 328 ωa
2 − 52 ωa + 1)

(1 + ωa)11
(z − a)6

+O((z − a)7)
The general term is [6]:

ω(z) =
∑

n≥0

qn(ωa)
(1 + ωa)2n−1

(z − a)n

n!
(4)

where

qn(w) =
n−1∑

k=0

〈〈
n− 1

k

〉〉
(−1)kwk+1 . (5)

is defined in terms of second order Eulerian numbers.
– Series about ∞: This series was originally due to de Bruijn, and Comtet

identified the coefficients as Stirling numbers.

ω ∼ z − ln(z) +
ln(z)

z
+

1
2

ln(z) (ln(z)− 2)
z2

+
1
6

ln(z) (−9 ln(z) + 6 + 2 ln(z)2)
z3

+
1
12

ln(z) (3 ln(z)3 − 22 ln(z)2 + 36 ln(z)− 12)
z4

+

1
60

ln(z)(−125 ln(z)3 + 350 ln(z)2 + 12 ln(z)4

− 300 ln(z) + 60)/z5 + O(
1
z6

)

The general term is (translating from the Lambert W results of [2, 7]) ω(z) =

z − ln z +
∑

`≥0

∑

m≥0

c`m
lnm z

z`+m
(6)

where c`m = (−1)`
[

`+m
`+1

]
/m! is defined in terms of Stirling cycle num-

bers [8]. This series converges for large enough z, outside the region bounded
by the doubling line and its reflection. The proof is unpublished. The series



can be rearranged in several ways, following [9] and [6]: ω(z) =

z − ln z +
∑

n≥1

(−1)n

zn

n∑
m=1

(−1)m

m!

[
n

n−m + 1

]
lnm z . (7)

Using a new variable ζ = z/(1 + z), we get ω(z) =

z − ln z +
∑

m≥1

lnm z

m!zm

m−1∑
p=0

(−1)p+m−1ζp+m

{
p + m− 1

p

}

≥2

(8)

where the numbers in curly braces are 2-associated Stirling numbers. Using
Lτ = ln(1 − τ) = ln(1 − ln z/z) and η = σ/(1 − τ) = 1/(z(1 − ln z/z)) =
1/(z − ln z), series (83) and (84) from [6] become

ω(z) = z − ln z − Lτ

+
∑

n≥1

(−η)n
n∑

m=1

(−1)m

[
n

n−m + 1

]
Lm

τ

m!
(9)

and

ω(z) = z − ln z − Lτ

+
∑

m≥1

1
m!

Lm
τ ηm

m−1∑
p=0

{
p + m− 1

p

}

≥2

(−1)p+m−1

(1 + η)p+m
.

(10)

The series converge for large enough real z, though the detailed regions of
convergence are not yet settled. Curiously enough (10) is exact at z = 1 and
at z = ∞, and moreover if we truncate it to N terms it agrees with the N
term Taylor series expansion at z = e as well, making one think of ‘Hermite’
interpolation at 1 and at ∞. Convergence is rapid.

– Series about −∞: from the series W (z) =
∑

n≥1(−n)n−1zn/n!, for
| exp(z)| < exp(−1) we have

ω(z) =
∑

n≥1

(−n)n−1

n!
enz (11)

2.5 Branch point series for ω(z)

The Wright ω function has branch points at z = −1 ± iπ. The following series
obtain. Near z = −1 + iπ,

ω(z) = −
∑

n≥0

an

(
i

√
2(z + 1− iπ)

)n

(1)



where the double conjugation gives us the correct closure from below on t + iπ
for t ≤ −1. Near z = −1− iπ,

ω(z) = −
∑

n≥0

an

(
−i

√
2(z + 1 + iπ)

)n

. (2)

In both cases an is given by the recurrence relation [10]

a0 = a1 = 1

ak =
1

(k + 1)a1

(
ak−1 −

k−1∑

i=2

iaiak+1−i

)
. (3)

The derivation of these series from the results of [10] is straightforward, except
for the use of

√
z. We here verify that this construction, which is one of a family

of transformations modelled on some used by G.K. Batchelor, gives us the correct
closure. We know that ω(t + iπ−) = W0(−et) whilst ω(t + iπ+) = W1(−et), and
ω(t − iπ+) = W0(−et) whilst ω(t − iπ−) = W−1(−et). Putting z = t + iπ+ in√

2(z + 1− iπ) gives
√

2(t + 1 + i · 0+), for t ≈ −1. If t + 1 ≥ 0 then we have
no branch cut to cross—this series will be continuous, therefore, along the line
t+1+iπ, t ≥ −1. If t+1 < 0, we are on the branch cut. t + 1 + i · 0+ is t+1+i·0−,
and arg

√
2(t + 1 + i · 0−) = −π/2. Therefore arg

√
2(t + 1 + i · 0−) = +π/2,

and this means that the series (2) can be written

ω(z) = −
∑

n≥0

an(ρ)n

and by inspection of the signs of the series for W−1(−et) and hence W+1(−et)
just above the branch cut, this is correct. [Here ρ =

√
−2(t + 1) > 0.] Next,

consider z = −1 + iπ−. A similar argument leads to the conclusion

ω(z) = −
∑

n≥0

an(−ρ)n

which is the series for W0(−et) for t ≈ −1, because its signs alternate. Consid-
eration of z = t− iπ+ and t− iπ− gives, for t + 1 < 0,

ω(z) = −∑
n≥0 an(−ρ)n z = t− iπ+

= −∑
n≥0 anρn z = t− iπ−

and continuity if t + 1 ≥ 0.

Remark. The use of
√

(z − a) to represent a square root function with a closure
different from the CCC closure, as explained by Kahan, is a useful tool in a
computer algebra setting. However, it relies on the designers to be sophisticated
enough to provide symbolic means of representing (and not over-simplifying)
these series, and the users to be sophisticated enough to know that

√
z 6= √

z on
the branch cut.



3 Interpolating Wk(z)

Finally, we interpret equation (3) as an interpolation scheme for Wk(z). We note
that k need not be an integer in that equation; the geometric interpretation is
precisely that of a circular cylinder cutting the Riemann surface for W . Note
also that k = 0 and k = −1 are special, and not interpolated by this scheme.

We deduce that Wk(z) is, in some sense, analytic in k, except if − exp(−1) ≤
z < 0 and k = 0 or k = −1.

dWk(z)
dk

=
d

dk
ω(ln z + 2πik)

= 2πi
ω(ln z + 2πik)

1 + ω(ln z + 2πik)
.

By the analytic properties of ω, this derivative is not continuous on
− exp(−1) ≤ z < 0 at k = 0 or k = −1. Otherwise, indeed, Wk(z) is analytic in
k.

4 Why

Computer algebra is about expressiveness, and simplicity is power. There are an
essentially infinite number of applications of the Lambert W function and its
cognates.

1. The Lambert W function provides the first example of a function just outside
the standard body of Risch-like theory: its derivative is rational in x and W ,
not polynomial. One cannot use the same theorems, but one can hope to use
similar methods, to establish its non-elementarity [1].

2. The Lambert W function is the simplest example of a root of an exponen-
tial polynomial; and exponential polynomials are the next simplest class of
functions after polynomials. Computer algebra systems have a real edge over
numerical systems (though not everyone knows it) in dealing with polyno-
mials; the next big area will be non-polynomials, starting with exponential
polynomials. This is the field of Cylindrical Non-Algebraic Decomposition.

3. The Lambert W function is the first nontrivial example of a multivalued
function. The trivial ones (ln and the arc trig functions) have branching be-
haviour so simple that it doesn’t even need a notation: we can say ln(z)+2πik
and not have to invent a new notation lnk(z) to do so (though in fact we
have introduced and used this notation—one can’t use logk because the “log
to the base k” interpretation would get in the way—for conciseness and
as the thin entering point of the wedge for more complicated functions).
The multivalued nature of W “stress tests” naming conventions, numerics
on branches, computer-aided analysis, and the results of series computa-
tion. Right now, Maple knows the series for W0(z) about the branch point
z = − exp(−1), but it doesn’t know the series for W−1(z) or W1(z) about



the same point, even though these series were all introduced in the same
paper [4]. We think that this is because the series are defined piecewise:
for W−1 and W1, the series about the branch point have to deal with the
fact that the range is split by the branch cut, and so the series are (rad-
ically) different if Im(z) > 0 or Im(z) < 0; each branch of W has both
a Puiseux series and a Taylor series—about the same point! But different
series apply above and below the branch cut. This remarkable behaviour
puts a significant stress on the ability of series to express its answer to the
question series(LambertW(-1,x),x=-exp(-1)) (which it currently refuses
to answer).

4.1 Why Invent the Wright ω Function?

It is certain that for some applications, just the ordinary Lambert W function
will be superior—this new function cannot supplant the old. Bill Gosper did not
succeed in introducing his cognate of W (which he jokingly called “the Dilbert
Lambda Function”); Don Knuth has so far been unable to get action on our
promise to him to introduce the TreeT function into Maple (T (x) = −W (−x),
and this is more convenient for combinatorial applications). So why should we
bother with a new one?

In equation (1) we give the definition of the Wright ω function, in terms of
W and one new function, the unwinding number K(z), which we will be needing
anyway. So why not just use the right hand side of the definition and not bother
with a notation?

1. W is multivalued, but ω is single-valued.
2. Numerically evaluating ω(z) for large z by way of the definition (1) is like

driving from the south of London to the north of London via Waterloo3:
it’s possible (unless there’s freezing rain) but unless you have a reason to
be in Waterloo, it’s probably better to go directly. Less metaphorically, tak-
ing exp(z) for large z gives a significant risk of overflow, and a significant
restriction on the numerical range of z that we can do the computation for;
but W is like ln, and in some sense just undoes the exponentiation, making
it wasted effort in any case. The asymptotics are that ω(z) ∼ z − ln z + · · ·;
so we see just how wasted. This is not a theoretical consideration: Jon Bor-
wein has had to implement his version of ω precisely to avoid this overflow
difficulty in his convex optimization problems.

3. Numerically evaluating omega( -0.9 + I*Pi ) by way of the formula un-
covers a subtle difficulty: because ceil( (Im(z)-Pi)/(2*Pi) ) will do some
symbolic processing, it will compute K(z) exactly right, and cancel the sym-
bolic Pi. But exp(-0.9+I*Pi) is left alone, until the user calls evalf. Then
something awful happens: at 10 Digits, Pi rounds to something larger than

3 London, Ontario via Waterloo, Ontario, of course. That sentence reads quite differ-
ently if you think of train travel in London, England, for example (thanks to Arthur
Norman for pointing that out)



π; this then gives us a negative imaginary part on the order of roundoff in
the result of the call to exp. This is all explainable in terms of the Maple
model of floating-point arithmetic, but it’s a disaster nonetheless—one made
visible by the next step, the computation of W0(x − i · ε), which is on the
wrong side of the branch cut. The numerical value of W0(x − i · ε) is not
at all close to the value of W0(x + i · ε), and this discontinuity is spurious.
The ω function is continuous at this point. So: we should have a separate
routine for the numerical evaluation of ω that guarantees that we get conti-
nuity (where ω is continuous), because the definition combines discontinuous
functions in such a way that their discontinuities (mostly) cancel.

There are other advantages to using the Wright ω function directly.

1. In addition to being single-valued, ω is continuous (indeed analytic) for all z
not on the two half-lines z = t ± iπ for t ≤ −1. It is discontinuous across
these lines.

2. The Wright ω function has a simpler Taylor series than the Lambert W
function does. Indeed, it is the series for the Wright ω function that leads to
nearly all the series given in [6].

3. The fabulously simple equation Wk(z) = ω(ln z + 2πik) = ω(lnk z) explains
the branching behaviour of W perfectly, once we understand the branching
behaviour of ω.

4. The solution of the equation y + ln y = z is given by

y =





ω(z) z 6= t± iπ, t ≤ −1
ω(z), ω(z − 2πi) z = t + iπ, t ≤ −1

nonesuch z = t− iπ, t ≤ −1
(12)

The paper [11] seems to be the first to use this fact.

What are the disadvantages? Well, the principal one is that the counting
applications depend on the use of W (or, rather, TreeT) as a generating function.
There, the series at the origin is what is important. With this transformation,
we have moved this point to −∞. The series are still there—just less convenient.
And, that is what introducing this function is all about: convenience. We will
need to have all of these functions around—well, certainly TreeT, but probably
not Dilbert Lambda. Even Bill Gosper has mostly given up on that one.

5 Concluding Remarks

This paper presents a number of mathematical results describing the properties
of the function ω(z). These results have some intrinsic mathematical interest,
and they are written here for the first time, and so in a technical sense the paper
contains novel results. However, the results are really interesting only because:

1. Without symbolic computation making the function’s definition, simplifica-
tion rules, and numerical evaluation widely available, the function is merely
arcane



2. Discontinuity (along the branch cuts) is especially visible, and nontrivial, in
this function. Therefore it will make a good test case for reasoning about
complex-valued expressions.

3. The methods used to prove properties of ω are essentially old-fashioned
mathematics, not commonly seen in standard curricula, and may poten-
tially be automated. This is in the spirit of [3] and represents a potentially
interesting direction for future research.
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