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The Lambert W Function
Robert M. Corless and David J. Jeffrey

1 Definition and Basic Properties

For a given complex number z, the equation

wew = z
has a countably infinite number of solutions, which are
denoted byWk(z) for integers k. Each choice of k speci-
fies a branch of the LambertW function. By convention,
only the branches k = 0 (called the principal branch)
and k = −1 are real-valued for any z; the range of every
other branch excludes the real axis, although the range
ofW1(z) includes (−∞,−1/e] in its closure. OnlyW0(z)
contains positive values in its range (see figure 1). When
z = −1/e (the only nonzero branch point), there is a
double root w = −1 of the basic equation wew = z.
The conventional choice of branches assigns

W0(−1/e) = W−1(−1/e) = −1

and implies thatW1(−1/e−iε2) = −1+O(ε) is arbitrar-
ily close to −1, because the conventional branch choice
means that the point−1 is on the border between these
three branches. Each branch is a single-valued com-
plex function, analytic away from the branch point and
branch cuts.

The set of all branches is often referred to, loosely, as
the Lambert W “function”; but of course W is multival-
ued. Depending on context, the symbol W(z) can refer
to the principal branch (k = 0) or to some unspecified
branch. Numerical computation of any branch of W is
typically carried out by Newton’s method or a variant
thereof. Images of Wk(reiθ) for various k, r , and θ are
shown in figure 2.

In contrast to more commonly encountered multi-
branched functions, such as the inverse sine or cosine,
the branches ofW are not linearly related. However, by
rephrasing things slightly, in terms of the unwinding
number

K(z) := z − ln(ez)
2π i

and the related single-valued function

ω(z) := WK(z)(ez),
which is called the Wright ω function, we do have the
somewhat simple relationship between branches that
Wk(z) =ω(lnk z), where lnk z denotes lnz+ 2π ik and
lnz is the principal branch of the logarithm, having
−π < Im(lnz) � π .
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Figure 1 Real branches of the Lambert W function. The
solid line is the principal branchW0; the dashed line isW−1,
which is the only other branch that takes real values. The
small filled circle at the branch point corresponds to the
one in figure 2.

The Wright ω function helps to solve the equation
y+ lny = z. We have that if z �= t± iπ for t < −1, then
y = ω(z). If z = t − iπ for t < −1, then there is no
solution to the equation; if z = t + iπ for t < −1, then
there are two solutions: ω(z) and ω(z − 2π i).

1.1 Derivatives

Implicit differentiation yields

W ′(z) = e−W(z)/(1+W(z))
as long as W(z) �= −1. The derivative can be simplified
to the rational differential equation

dW
dz

= W
z(1+W)

if, in addition, z �= 0. Higher derivatives follow natu-
rally.

1.2 Integrals

Integrals containingW(x) can often be performed ana-
lytically by the change of variable w = W(x), used in
an inverse fashion: x = wew . Thus,∫

sinW(x)dx =
∫
(1+w)ew sinw dw,

and integration using usual methods gives

1
2 (1+w)ew sinw − 1

2wew cosw,
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Figure 2 Images of circles and rays in the z-plane under the
maps z → Wk(z). The circle with radius e−1 maps to a curve
that goes through the branch point, as does the ray along
the negative real axis. This graph was produced in Maple
by numerical evaluation ofω(x+ iy) = WK(iy)(ex+iy) first
for a selection of fixed x and varying y , and then for a
selection of fixed y and varying x. These two sets produce
orthogonal curves as images of horizontal and vertical lines
in x and y underω, or, equivalently, images of circles with
constant r = ex and rays with constant θ = y under W .

which eventually gives
∫

2 sinW(x)dx =
(
x + x

W(x)

)
sinW(x)

− x cosW(x)+ C.
More interestingly, there are many definite integrals for
W(z), including one for the principal branch that is due
to Poisson and is listed in the famous table of integrals
by D. Bierens de Haan. The following integral, which
is of relatively recent construction and which is valid
for z not in (−∞,−1/e], can be computed with spectral
accuracy by the trapezoidal rule:

W(z)
z

= 1
2π

∫ π
−π

(1− v cotv)2 + v2

z + v cscve−v cotv dv.

1.3 Series and Generating Functions

Euler was the first to notice, using a series due to Lam-
bert, that what we now call the LambertW function has
a convergent series expansion around z = 0:

W(z) =
∑
n�1

(−n)n−1

n!
zn.

Euler knew that this series converges for −1/e < z �
1/e. The nearest singularity is the branch point z =
−1/e.

W can also be expanded in series about the branch

point. The series at the branch point can be expressed

most cleanly using the tree function T(z) = −W(−z),
rather than W or ω, but keeping with W we have

W0(−e−1−z2/2) = −
∑
n�0

(−1)nanzn,

W−1(−e−1−z2/2) = −
∑
n�0

anzn,

where the an are given by a0 = a1 = 1 and

an = 1
(n+ 1)a1

(
an−1 −

n−1∑
k=2

kakan+1−k
)
.

These give an interesting variation on Stirling’s formula

for the asymptotics of n!. Euler’s integral

n! =
∫∞

0
tne−t dt

is split at the maximum of the integrand (t = n)

and each integral is transformed using the substitu-

tions t = −nWk(−e−1−z2/2), where k = 0 is used for

t � n and k = −1 otherwise. The integrands then

simplify to tne−t = nne−ne−nz2/2 and the differentials

dt are obtained as series from the above expansions.

Term-by-term integration leads to

n! ∼ nn+1

en
∑
k�0

(2k+ 1)a2k+1

(
2
n

)k+1/2
Γ (k+ 1

2 ),

where Γ is the gamma function.

Asymptotic series for z → ∞ have been known since

de Bruijn’s work in the 1960s. He also proved that

the asymptotic series are actually convergent for large

enough z. The series begin as follows:Wk(z) ∼ lnk(z)−
ln(lnk(z)) + o(ln lnk z). Somewhat surprisingly, these

series can be reversed to give a simple (though appar-

ently useless) expansion for the logarithm in terms of

compositions of W :

lnz = W(z)+W(W(z))+W(W(W(z)))+ · · ·
+W(N)(z)+ lnW(N)(z)

for a suitably restricted domain in z. The series

obtained by omitting the term lnW(N)(z) is not con-

vergent as N → ∞, but for fixed N if we let z → ∞
the approximation improves, although only tediously

slowly.
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2 Applications

Because W is a so-called implicitly elementary func-
tion, meaning it is defined as an implicit solution of
an equation containing only elementary functions, it
can be considered an “answer” rather than a question.
That it solves a simple rational differential equation
means that it occurs in a wide range of mathematical
models. Out of many applications, we mention just two
favorites.

First, a serious application. W occurs in a chemi-
cal kinetics model of how the human eye adapts to
darkness after exposure to bright light: a phenomenon
known as bleaching. The model differential equation is

d
dt
Op(t) = KmOp(t)

τ(Km +Op(t)) ,

and its solution in terms of W is

Op(t) = KmW
(
B
Km

eB/Km−t/τ
)
,

where the constant B is the initial value of Op(0):
that is, the amount of initial bleaching. The constants
Km and τ are determined by experiment. The solu-
tion in terms of W enables more convenient analysis
by allowing the use of known properties.

The second application we mention is nearly
frivolous. W can be used to explore solutions of the
so-called astrologer’s equation, ẏ(t) = ay(t + 1). In
this equation, the rate of change of y is supposed to
be proportional to the value of y one time unit into
the future. Dependence on past times instead leads to
delay differential equations, which of course are of seri-
ous interest in applications, and againW is useful there
in much the same way as for this frivolous problem.

Frivolity can be educational, however. Notice first
that if eλt satisfies the equation, then λ = aeλ, and
therefore λ = −Wk(−a). For the astrologer’s equation,
any function y(t) that can be expressed as a finite lin-
ear combination y(t) = ∑k∈M cke−Wk(−a)t for 0 � t �
1 and some finite set M of integers then solves the
astrologer’s equation for all time. Thus, perfect know-
ledge of y(t) on the time interval 0 � t � 1 is sufficient
to predict y(t) for all time. However, if the knowledge
of y(t) is imperfect, even by an infinitesimal amount
(omitting a single term εe−WK(−a)t , say, whereK is some
large integer), then since the real parts of −WK(−a) go
to infinity as K → ∞ by the first two terms of the log-
arithmic series for Wk given above, the “true” value of
y(t) can depart arbitrarily rapidly from the prediction.
This seems completely in accord with our intuitions
about horoscopes.

Returning to serious applications, we note that the
tree function T(z) has huge combinatorial significance
for all kinds of enumeration. Many instances can be
found in Knuth’s selected papers, for example. Addi-
tionally, a key reference to the tree function is a note
by Borel in Comptes Rendus de l’Académie des Sciences
(volume 214, 1942; reprinted in his Œuvres). The gen-
erating function for probabilities of the time between
periods when a queue is empty, given Poisson arrivals
and service time σ , is T(σe−σz)/σ .

3 Solution of Equations

Several equations containing algebraic quantities
together with logarithms or exponentials can be manip-
ulated into either the form y + lny = z or wew = z,
and hence solved in terms of the Lambert W function.
However, it appears that not every exponential polyno-
mial equation—or even most of them—can be solved in
this way. We point out one equation, here, that starts
with a nested exponential and can be solved in terms
of branch differences of W : a solution of

z + v cscve−v cotv = 0

is v = (Wk(z) −W
(z))/(2i) for some pair of integers
k and 
; moreover, every such pair generates a solu-
tion. This bi-infinite family of solutions has accumu-
lation points of zeros near odd multiples of π , which
in turn implies that the denominator in the above def-
inite integral for W(z)/z has essential singularities at
v = ±π . This example underlines the importance of
the fact that the branches ofW are not trivially related.

Another equation of popular interest occurs in the
analysis of the limit of the recurrence relation

an+1 = zan
starting with, say, a0 = 1. This sequence has a1 =
z, a2 = zz , a3 = zzz , and so on. If this limit
converges, it does so to a solution of the equation
a = za. By inspection, the limit that is of interest
is a = −W(− lnz)/ lnz. Somewhat surprisingly, this
recurrence relation—which defines the so-called tower
of exponentials—diverges for small enough z, even
if z is real. Specifically, the recurrence converges for
e−e � z � e1/e if z is real and diverges if z <
e−e = 0.0659880 . . . . This fact was known to Euler. The
detailed convergence properties for complex z were
settled only relatively recently. Describing the regions
in the complex plane where the recurrence relation con-
verges to an n-cycle is made possible by a transforma-
tion that is itself related to W : if ζ = −W(− lnz), then
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the iteration converges if |ζ| < 1, and also if ζ = eiθ

for θ equal to some rational multiple of π , say mπ/k.
Regions where the iteration converges to a k-cycle may
touch the unit circle at those points.

4 Retrospective

The LambertW function crept into the mathematics lit-
erature unobtrusively, and it now seems natural there.
There is even a matrix version of it, although the solu-
tion of the matrix equation SeS = A is not always
W(A).

Hindsight can, as it so often does, identify the pres-
ence of W in writings by Euler, Poisson, and Wright
and in many applications. Its implementation in Maple
in the early 1980s was a key step in its eventual
popularity.

Indeed, its recognition and naming supports Alfred
North Whitehead’s opinion that:

By relieving the brain of all unnecessary work, a good
notation sets it free to concentrate on more advanced
problems.
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