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Abstrat

A new treatment is given of the elementary inverse funtions. The new approah addresses the di�erene

between the single-valued inverse funtion de�ned by omputer systems and the multi-valued funtion whih

represents the multiple solutions of the de�ning equation. The approah takes an idea from omplex analysis,

namely the branh of an inverse funtion, and de�nes an index for eah branh. The branh index then

beomes an additional argument to the (new) funtion. A bene�t of the new approah is that it helps

with the general problem of orretly simplifying expressions ontaining inverse funtions, whih has always

been diÆult both for humans and for omputer algebra systems. The new approah also an be extended

to non-elementary inverse funtions suh as the Lambert W funtion, whih otherwise annot be handled.

The di�erene between this approah and that of Riemann surfaes lies in the fat that Riemann surfaes

distinguish between branhes by dividing the domain of the funtion into sheets, whereas here the range of

the funtion is indexed.

1 Introdution

Two developments in mathematis suggest the need for a new treatment of multi-valued funtions, inluding

the elementary inverse funtions. The developments are, �rst, the implementation of inverse funtions in

omputer-based mathematial systems and, seond, the appearane in the literature of new inverse funtions.

The omputer systems have struggled for years to �nd the best way to handle possible simpli�ations suh

as

(z

n

)

1=n

? =? z ; arsin(sin z) ? = ? z ; ln(e

z

) ? =? z ; (1)

as indeed have mathematiians [5, 7℄. Numerial ounter-examples are

((�1)

2

)

1=2

6= �1 ; arsin(sin 2�) 6= 2� ; ln(e

3�i

) 6= 3�i :

In the 1980s, mistakes like these ould ommonly be found in omputer algebra systems
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. The new treatment

o�ers one way of looking at suh problems. The other motivation is the study of the Lambert W [6℄ and

other inverse funtions, whih have no trivial relation between their branhes, in ontrast to the elementary

inverse funtions.

There are, in addition, �stheti reasons. Anyone who has taught inverse trigonometri funtions, or the

omplex roots of a number, knows how diÆult students �nd the idea of multi-valued funtions. One of the

reasons is that there is not really a single uniform treatment. For example, every alulus textbook introdues

inverse funtions with a disussion of multi-valuedness and then ignores it when justifying equations suh as

Z

dx

1 + x

2

= artanx

(Abramowitz & Stegun [1℄ do this in the same hapter). Of ourse there will always be di�erent treatments

of the subjet, beause of the mathematial desire for a di�erent point of view. Mathematial topis are

to mathematiians rather like antique vases are to vase onnoisseurs. The onnoisseurs are not ontent to

look at their vases only from the front; they want to pik them up and admire them from all angles. In the

same way, the mathematial pleasure of a topi is not exhausted by any single treatment, however thorough.

Perhaps there is something of this in the present treatment, but it is argued that there are pratial reasons

to hange, and pratial bene�ts to gain.

1

Let's not point �ngers at partiular systems.
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2 A question of values

The �rst question in any treatment of multi-valued funtions onerns their representation; the question

an be dramatized as follows. Does artan(1) represent the single number �=4, or does it represent all the

solutions x of the equation tanx = 1, as the set f�=4+k� j k 2 Zg, or does artan(1) represent some quantity

in between, perhaps the single number �=4 + k� but with the value of k being deided later? One point of

view was expressed by Carath�eodory, in his highly regarded book [4℄. Considering the logarithm funtion in

the omplex plane, he addressed the equation

ln z

1

z

2

= ln z

1

+ ln z

2

; (2)

for omplex z

1

; z

2

. He ommented [4, pp. 259{260℄:

The equation merely states that the sum of one of the (in�nitely many) logarithms of z

1

and one

of the (in�nitely many) logarithms of z

2

an be found among the (in�nitely many) logarithms

of z

1

z

2

, and onversely every logarithm of z

1

z

2

an be represented as a sum of this kind (with a

suitable hoie of ln z

1

and ln z

2

).

In this statement, Carath�eodory �rst sounds as though he thinks of ln z

1

as a symbol standing for a set

of values, but then for the purposes of forming an equation he prefers to selet one value from the set.

Whatever the exat mental image he had, the one point that is lear is that ln z

1

does not have a unique

value, whih is in strong ontrast to every omputer system. Every omputer system will aept a spei�

value for z

1

and return a unique ln z

1

.

Notie a further impliation of equation (2). If ln z

1

means a single value, then that value is no longer

determined solely by the value of z

1

: the value to be given to ln z

1

is also determined by the ontext. For

example, in the equation

3 ln(�1) = ln[(�1)

3

℄ = ln(�1) ;

if the �rst ln(�1) obeys ln(�1) = i�, then the last one must obey ln(�1) = 3i�. It is ompletely impratial

to require a omputer system to analyze the ontext of eah funtion before evaluating it. This example

uses the omplex plane, but real-valued examples an be given also.

The referene book edited Abramowitz & Stegun [1, Chap 4℄ is another authoritative soure, and it an be

used to provide a real-valued example. It de�nes the solution of tan t = z to be t = Artan z = artan z+k�.

It then gives the equation

Artan(z

1

) + Artan(z

2

) = Artan

z

1

+ z

2

1� z

1

z

2

:

For z

1

= z

2

=

p

3, we have Artan

p

3 + Artan

p

3 = Artan(�

p

3). This is satis�ed if Artan

p

3 = �=3,

and Artan(�

p

3) = 2�=3, but that means we no longer have the relation Artan(�z) = �Artan(z). By

omparing the Abramowitz & Stegun de�nition with the statement of Carath�eodory, we an see that as

far as equations are onerned, all authors favour an interpretation based on judiiously seleting one value

from the possible ones.

A ompletely di�erent approah is taken by Adams [2℄. He makes the inverse funtions single valued by

restriting the domain of the de�ning funtion. Thus he de�nes

Sinx = sinx ; only if� �=2 � x � �=2 :

He then disusses the inverse of Sinx, and not that of sinx. Thus in this approah there is no doubt about

the inverse funtion being unique, beause Sinx = y has only one solution. Sine his book is a alulus

textbook, the solution of sin x = y is not addressed.

In mathematial software, the interpretation of an inverse funtion as having a single value is the best

one. Indeed it is the ontention here that suh an interpretation is always the best. Further, the single value

of a funtion should be determined by the arguments to the funtion and not by the ontext in whih it

is plaed. All urrent omputer systems return a single number when asked to evaluate, at some spei�ed

point, a multi-valued funtion. Therefore learly for onsisteny any unevaluated symboli quantity should

also represent a single value.

3 The Lambert W funtion

This funtion is an inverse funtion with properties that di�er from the elementary inverse funtions. It

�rst reeived a name in the early 1980s, when Maple de�ned a funtion that was named simply W . An

historial searh, onduted while writing an aount of this funtion [6℄, found work by the eighteenth
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entury sientist J. H. Lambert that foreshadowed the de�nition of the funtion; even though his work did

not atually de�ne the funtion, W was named in his honour. The same searh unovered a fortuitous reason

for alling the funtion W , in that E. M. Wright, a mathematiian known for his book with Hardy on pure

mathematis, studied the omplex values of the funtion, again without naming it.

The de�nition of W is that it is the funtion that solves the equation

We

W

= z ; (3)

where z is a omplex number. This equation always has an in�nite number of solutions, most of them

omplex. There is always speial interest in solutions that are purely real, and so we note immediately that

when z is a real number, equation (3) has no real solutions when z < �1=e; it has two real solutions when

�1=e < z < 0; and it has one real solution when z > 0. Even if z is real, there are still omplex solutions.

A numerial example is We

W

= �0:1. The two real solutions are W = �0:1118326, and �3:577152 as

well as an in�nite number of omplex solutions, the smallest of whih are W = �4:449098� 7:307061i. The

two real solutions were labelled W

p

and W

m

by [3℄; however, the labelling using an integer introdued in [6℄

is preferable, beause it inludes the omplex ase.

For present purposes, the important property W has is the lak of a trivial relation between the di�erent

values is takes for the same argument.

4 The issues are omplex

The �rst multi-valued funtions shown to mathematis students are the inverse trigonometri funtions,

beause their multi-valued behaviour an be demonstrated using real numbers. (The square root funtion is

probably the very �rst, but the terminology multi-valued is not deployed at that stage.) This is in ontrast

to the logarithm funtion, whose multi-valued behaviour appears only in the omplex plane. A treatment of

multi-valued funtions that extends easily into the omplex plane, while remaining omprehensible to those

who work only on the real line is the target we aim for.

The existene of omputer algebra systems makes the omplex plane relevant even to mathematis

teahers who never teah omplex numbers. In a textbook, the author an ontrol the environment of

the reader, and therefore exlude omplex numbers ompletely if that is onvenient, but urrent omputer

systems (partiularly algebra systems) work on a broader mathematial base. The pratial requirements of

developing a omputer algebra system, and the fores of the market plae, drive developers into the omplex

plane, regardless of the domain implied by some user's problem. Complex numbers are needed beause the

shortest route from a problem posed on the real line to its answer on the real line is sometimes through the

omplex plane. The ubi equation, the study of vibrations and Rish integration are examples that ome

to mind. The example above of the branhes of the Lambert W funtion shows the inonveniene of solving

a problem on the real line �rst and then having to revise the solution for the omplex plane.

5 A new treatment of inverse funtions

In addition to the elementary inverse funtions, for whih a variety of standard notations are available

2

,

some non-elementary inverses are onsidered below. To avoid onfusion over notation, we shall use a new

sheme for denoting inverses.

5.1 Notation for inverses

The existing notation divides into several lasses. The �rst lass uses the general notation of f

�1

as an

inverse of a funtion f , and so we obtain sin

�1

, os

�1

, and so on. The seond lass builds new names for

the inverse funtions by modifying the original funtion name. Thus the names arsin, aros are standard

names, as are the forms asin and aos used by omputer languages. There is more onfusion with the inverse

hyperboli funtions, beause the pre�x `ar' has no geometri signi�ane. Most systems use arsinh or

asinh, although Gradshteyn & Ryzhik [9℄ use Arsh and Arh, although with no signi�ane attahed to the

apital letter. A third lass simply reates a name unrelated to the original funtion. Thus logarithm has

no onnetion with the name of its inverse, exponential; the Lambert W funtion is the inverse of a funtion

that has no speial name. In addition to the names, there is the fat, already mentioned, that upper and

lower ase initial letters are used; sometimes these arry signi�ane with respet to multi-valuedness and

2

\The nie thing about standards is that you have so many to hoose from; furthermore, if you do not like any of them, you

an just wait for next year's model."[13, p. 168℄
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Re(z)

Im(z)

Figure 1: The z-plane labelled with branh ut and points for mapping to the p-plane.

sometimes not, and when authors intend to indiate multi-valuedness it goes without saying that there is

no agreement on the notation.

Even if we did not need to extend the de�nitions of these funtions, the existing notations have drawbaks.

First, the f

�1

notation lashes with the other uses of supersript, and the onfusion this produes in students

is well known to all teahers. If sin

2

z means (sin z)

2

, and y

�1

= 1=y, but sin

�1

z means inverse sine, does

sin

�2

z mean 1=(sin z)

2

or (inverse sin z)

2

? Regarding the notation of pre�xing `ar', it has a geometrial

justi�ation that does not generalize outside trigonometry. No one writes arf for the inverse of f . Using

a di�erent name, like logarithm, gives no hint of the inverse nature of the funtion. It would be useful and

onvenient if there existed a notational onvention that did not lash with other uses and whih reminded

readers of the onnetion between an inverse and its de�ning funtion.

There are two possible solutions to notational problems like this. One solution is to examine the existing

sets of notations and selet one subset from them. One then hopes that by shouting louder than anyone

else, preferably in an international ommittee, this notation is adopted as standard. The trouble with this

is that when I write `arsin', it is not lear whether I am using the new internationally approved de�nition

or my old one. This is partiularly diÆult here, where the old style has a partiular meaning. The other

solution is to reate a new unambiguous notation that does the job, and hope that people see the advantages

of swithing. The disadvantage is the inertia represented by existing textbooks, but this latter ourse is,

nonetheless, followed here.

Two notations are used below: for any funtion, but partiularly those with multi-harater names, the

pre�x `inv' is added to the name. Thus the inverse of sin(z) beomes invsin(z) (the name arsin is not quite

a synonym beause of the branh information that will be added below). The logarithm has the alternative

names exp

�1

and invexp (whih will not atually be used

3

). For funtions denoted by a single harater, let

us say f , we an onstrut the name invf for its inverse, but a pituresque alternatively borrows the ha�ek

aent from the Czeh language and uses

_

f . The ha�ek reminds us of the `v' in inverse.

5.2 Adding branh information

It was noted above that Abramowitz & Stegun [1, Chap 4℄ de�ned Artan z = artan z + k�. The new

treatment simply follows what must be done for Lambert W and makes the unknown k an argument of the

funtion. As with W , the k an be written as a subsript. Thus in the new treatment we de�ne the inverse

tangent as being expliitly the kth branh of inverse tangent, and denote it aordingly as invtan

k

z. The

details for this funtion are given in the next setion.

In the omplex plane, the multiple branhes of a funtion are geometrial regions. For eah of the

elementary funtions, the number of regions is ountably �nite and therefore an be labelled by an integer.

For example, the branhes of the logarithm an be understood with the aid of �gure 1 and �gure 2. We

think of the funtion p = ln z as mapping a point in the z-plane (�gure 1) to a point or points in the p-plane

(�gure 2). Under multi-valued interpretations of ln z, one point maps to many images in the p-plane; under

the `prinipal branh' interpretation, one point maps to one point, and that point is loated within the

prinipal branh. Under the new interpretation, one point z is mapped by p = ln

k

z to one unique point

loated in branh k. All of the points along the branh ut map to points on the division between the

3

Not to mention arexp, whih we do not use either.
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Branh 1: p = ln

1

z

Branh 0: p = ln z

Branh �1: p = ln

�1

z

−3π

−2π

−π

π

2π

3π

A

A

A

B

B

B

C

C

C

D

D

D

Principal

Branch
Re(p)

Im(p)

Figure 2: The branhes of the funtion p = ln

k

z.

branhes. Notie that along the branh ut, any one branh of logarithm is not ontinuous, thus

lim

y#0+

ln

k

(�1 + iy) 6= lim

y"0�

ln

k

(�1 + iy) :

However, ontinuity is obtained by branh swithing:

lim

y#0+

ln

k

(�1 + iy) = lim

y"0�

ln

k+1

(�1 + iy) :

The generi situation under the new sheme is that for any single-valued funtion f , suh as sine, osine,

exponential, the equation f(z) = y has solution z =

_

f

k

(y), for k an integer. If one wishes to talk vaguely

about all values at one, then one an leave the subsript out, but the mehanism is always present to say

preisely what an equation means, rather than the onfusing statements in referene books at present.

6 Partiular funtions

In this setion, the elementary funtions and their inverses are reviewed in the new notation.

6.1 Exponential and logarithm

The funtion z = e

p

has the inverse p = ln z. It has already been pointed out in [7℄ that the branhes of

ln an be onveniently represented as ln

k

z = ln

0

z + 2�ik, where ln

0

z denotes the prinipal branh of the

logarithm. The prinipal branh is de�ned by its range and as �gure 2 shows, the range is �� < =(ln z) � �.

In general use, ln

0

z an be shortened to ln z.

Notie that one has to use the name ln rather than log, sine log

a

already has the ommonly aepted

meaning of a logarithm with base a.

6.2 Sine

The funtion z = sin p has the inverse denoted, variously, by z = arsin p = sin

�1

p = asin p = invsin

k

p.

The last form uses the new sheme and shows the multiple solutions expliitly. Sine sin z = sin(� � z) =

sin(2� + z), we an write invsin

k

z = (�1)

k

invsin

0

z + k�, where again invsin

0

z denotes prinipal branh,

whih an be abbreviated to invsin z. The prinipal branh has real part between ��=2 and �=2. Notie

that the branhes are spaed a distane � apart in aordane with the antiperiod

4

of sine, but the repeating

unit is of length 2� in aord with the period of sine.

4

An antiperiodi funtion is one for whih 9� suh that f(z + �) = �f(z), and � is then the antiperiod. This is a speial ase

of a quasi-periodi funtion [12℄, namely one for whih 9�; � suh that f(z + �) = �f(z).
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6.3 Cosine

Sine sin(p��=2) = � os(p) it is obvious that the inverse funtion will have a similar branh rule to invsin.

In order to ensure the prinipal branh is branh 0 and has real part between 0 and �, we set invos

k

z =

� invsin

k

z + �=2. In terms of its prinipal branh, it is the less attrative 2dk=2e� + (�1)

k

invos

0

z.

6.4 Tangent

Sine tangent has a period of �, the inverse tangent repeats every �. Thus invtan

k

z = invtan z + k�. The

prinipal branh has real part from ��=2 to �=2. The two-argument inverse tangent funtion, implemented

in many omputer languages, an be desribed using the branhes as

artan(y; x) =

�

invtan

0

(y=x) ; x > 0 ;

invtan

1

(y=x) ; x < 0 :

6.5 Hyperbolis

The sinh funtion has anti-period �i and hene has the inverse invsh

k

(z) = invsin

k

(iz)=i, where the notation

of sh for sinh has been used to onstrut the name of the inverse funtion. The inverse tanh funtion seems

never to have had a 2-argument version of it de�ned, although it would be possible, but is now unneessary.

6.6 Powers

The inverse of p

n

= z is p = z

1=n

. If z

1=n

= exp(

1

n

ln z), then replaing ln z by ln

k

z gives the branhed

funtion. The standard notation for roots and frational powers does not leave an obvious plae for the

branh label. Some possibilities are [z℄

1=n

k

or

n[k℄

p

z. Another notation might be to separate the overline from

the surd symbol, as was done in the 17th entury, and write

n

p

k

(z). Another possibility is simply to use a

multi-letter name, as Maple does for its surd funtion

5

. Any notation is probably satisfatory, beause, as

with the other elementary funtions, the kth branh is expressible in terms of the prinipal branh:

[z℄

1=n

k

= z

1=n

exp(2i�k=n) ;

and this an be used to ompute the `n roots of a omplex number', as is done in �rst ourses on omplex

numbers.

The funtion z

m=n

an be de�ned several ways. All lead to an m-branhed funtion, but the numbering

of the branhes di�ers between de�nitions. Thus, de�ning z

m=n

= exp(

m

n

ln z) = (z

1=n

)

m

gives one branh

labelling, while z

m=n

= (z

m

)

1=n

or as the solutions of p

n

= z

m

leads to another. Consider, for example,

z

3=4

, and ompute values for (�1)

3=4

. Using the �rst de�nition, we get

[�1℄

3=4

0

= e

3i�=4

; [�1℄

3=4

1

= e

i�=4

; [�1℄

3=4

2

= e

�i�=4

; [�1℄

3=4

3

= e

�3i�=4

:

Using the seond de�nition, we solve p

4

= (�1)

3

= �1 and obtain the solutions (in order)

e

i�=4

; e

3i�=4

; e

�3i�=4

; e

�i�=4

:

Sine the prinipal branh of z

m=n

is de�ned by the �rst de�nition, this de�nition should be used for all

branhes.

6.7 Jaobi Ellipti funtions

The Jaobi funtions sn and n are examples of doubly periodi funtions [12℄, and hene their inverses will

have to be doubly labelled. We shall not pursue this large topi here, but merely point out that there is a

natural extension of the present approah to these funtions.

7 Properties revisited

Let us reonsider some of the simpli�ation and manipulation problems pointed out above.

5

The surd name annot be used, however, beause it de�nes one partiular (non-prinipal) branh of the nth root funtion.
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7.1 Composition

Let f be a single-valued funtion, for example one of those listed in the last setion, and let

_

f

k

be its (set of)

inverse funtions. It is well known that f(

_

f

k

(z)) = z for all z and k, but

_

f

k

(f(z)) 6= z exept when z lies in

a ertain domain. Let the range of

_

f

k

in the omplex plane be C

k

� C . Then

_

f

k

(f(z)) = z provided z 2 C

k

.

In this notation, the vague statement Arsin(sin z) = z an be made preise in two ways. The simple way is

to write 9k; invsin

k

sin z = z; the other way is to say what k is.

For the elementary funtions, it is possible to write down a rule for

_

f

k

(f(z)) for any z, using the unwinding

number K(z) =

�

z��

2�

�

, de�ned in [5℄ (rather than in [7℄ where the sign is di�erent). For example, the

equations in (1) beome

[z

n

℄

1=n

k

= ze

2�i(K(n ln z)+k)=n

= zC

n

(z)e

2�ik=n

;

invsin

k

(sin z) = z(�1)

k+K(2iz)

� �

�

(�1)

k+K(2iz)

K(2iz)� k

�

;

ln

k

e

z

= z + 2�i(K(z) + k) ;

invtan

k

(tan z) = z + �(k �K(2iz))

For any value of z, there is a value of k whih redues the omposition to the identity. The fator C

n

(z) above

is a generalization of the funtion sgn(z) that regularly mysti�es users of Maple

6

. In fat C

2

(z) =sgn(z).

For more ompliated funtions suh as ze

z

and its inverse Lambert W , there are no suh relations.

If x > 0, then W

0

(xe

x

) = x but in general W

k

(ze

z

) annot be simpli�ed unless z is in the range of W

k

.

Although an algorithm an be written down to deide this for a given z, a simple formula is not available.

Therefore, in general

_

f

k

(f(z)) should be regarded as not subjet to simpli�ation.

7.2 Identities: Whose job is it, anyway?

The identity (2) an now be interpreted as being a shorthand for

(9k;m; n 2 Z); ln

k

z

1

z

2

= ln

m

z

1

+ ln

n

z

2

: (4)

Another way to look at the problem is to say that when a formula suh as ln

k

z

1

z

2

= ln

m

z

1

+ ln

n

z

2

is used

for omputation, the values of k; l; m must be deided on at some stage. Whose job is it to deide on these

values and when is the deision taken? One ould argue that the time to deide is when the values of the

z

i

are known, and the person to deide is the person who hose the z

i

. However this sidesteps the issue

two ways. On the one hand it ignores the fat that we an with some work say what the values are. For

example, in this ase, k = m+ n + K(ln

0

z

1

+ ln

0

z

2

). On the other hand it may result in fators missing

from a alulation, espeially if it is performed inside an algebra system.

Ultimately, however, identities are used in whatever way the author wants and the present notation allows

all possibilities with less possibility of misunderstanding between mathematiians using di�erent onventions.

The equation is less attrative than (2) but it is unambiguous and omputational

7

.

7.3 Calulus

Calulating the derivative of an inverse funtion is a standard topi in alulus. All branhes of an inverse

funtion have the same derivative, in one sense, but not in another. If f is a single valued funtion as before,

then the derivative of

_

f

k

(z) an be expressed impliitly as a funtion of

_

f

k

(x).

f(

_

f

k

(x)) = x ) f

0

(

_

f

k

(x))

_

f

k

0

(x) = 1 )

_

f

k

0

(x) = 1=f

0

(

_

f

k

(x)) :

Sine f

0

is independent of k, one an say the derivative is independent of k; however, sine the

_

f

k

(x) are

di�erent funtions of x, then the derivative regarded as a funtion of x will depend upon k. As an example,

onsider invsin

k

x.

d

dx

invsin

k

x =

1

os(invsin

k

x)

=

(�1)

k

p

1� x

2

:

Integration by substitution is a well-known appliation of inverse funtions. A spei� diÆulty has been

the appliation of the substitution u = tan

1

2

x in integrals suh as

Z

3 dx

5� 4 os x

=

Z

6 du

1 + 9u

2

= 2artan(3 tan

1

2

x)

6

The C

n

funtion has been onsidered for implementation in Maple, but only sgn is implemented in Maple 7 (J. Carette,

private ommuniation).

7

Equation (2) is like Mona Lisa's smile: both owe their attrativeness to the hiding of details.
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The right-hand side is disontinuous, as has been pointed out in [11, 10℄. The orretion to the usual

integration formula [11℄ an be rewritten in the new notation as

Z

3 dx

5� 4 osx

= 2 invtan

k

(3 tan

1

2

x) ;

where k = K(2ix).

8 Roots of polynomials

Sine inverse funtions typially arise in the solution of equations, any nonlinear equation an generate

an inverse funtion. The purpose of this setion is not to analyze this possibility in detail, but rather to

show by one example how multi-valued inverses an arise in omputer algebra systems in many plaes. An

interesting study is to reognize the Maple funtion RootOf as a branhed funtion. Given a polynomial

w = g(z), Maple will \solve" this equation as follows.

z = RootOf(g(z)� w; z; index = k) ;

Here the integer variable k denotes the `index' of the root, but it an also be regarded as a branh indiator.

This means that regarding RootOf as the inverse funtion z =

_

g(w) implies that the w-plane must ontain

uts. To see what these uts look like, we investigate a partiular example.

Consider

w =

1

5

z

5

+ z :

The singular points are given by a singular derivative. Sine

dz

dw

=

1

dw=dz

=

1

z

4

+1

, the singular points are

z = e

��i=4

; e

�3�i=4

and these points map to w =

4

5

e

��i=4

, and w =

4

5

e

�3�i=4

. Figure 3 shows plots in the z

plane of z = RootOf(z

5

=5+ z�w; z) =

_

g(w). The urves are images of the real axis in the w-plane, i.e. they

are the omplex solutions of the equation when it has purely real oeÆients. Clearly the branh diagram is

more involved than the one in �gure 2, showing again that there is no trivial relation between the branhes

of the funtion. In the w-plane (not shown) there are branh uts, whih beause of Maple's hoie of index

are straight lines from the origin to the branh points w = (4=5)e

�i=4

; (4=5)e

��i=4

. Sine the origin is not

a singular point, this branh ut is unusual, although legal. Mostly branh uts are hosen so that singular

points are joined by simple geometrial shapes, usually a straight line. (The straight line may inlude 1.)

This example will not be analyzed further, but it has shown the potential in a branh analysis for handling

ompliated inverse funtions.

9 Riemann surfaes

A long standing treatment of multi-valued funtions is based on Riemann surfaes. Clearly it is important

to see whether this treatment an be used instead of the one presented here. The question is one of �tness

for omputation, as opposed to oneptualization. Thus it is true that Riemann surfaes give a very pitorial

way of seeing multi-valuedness [14, 8℄, but the question is whether they an be used omputationally. This

setion makes a �rst attempt at suh a omputational interpretation.

Consider f(z) = z

n

and

_

f(z) = z

1=n

as an example. In the Riemann-surfae treatment, the funtion

_

f(z) ontinues to be regarded as a single valued funtion, but its argument is now onsidered to lie on a

multi-sheeted surfae. This is e�etively how students in a �rst ourse on omplex numbers ompute the n

values of z

1=n

. They are taught to start with the equivalene z = re

i�

= re

i�+2�ik

and then mysteriously

ordered to apply the rule (e

i�

)

1=n

= e

i�=n

to the seond form rather than the �rst. Thus they are replaing

z with z

k

, an equivalent point on the kth Riemann sheet, and then omputing (z

k

)

1=n

.

The di�erene between the approah of this paper, and the Riemann approah an be summarized

symbolially as

_

f

k

(z) versus

_

f(z

k

). We either distinguish the funtion or its argument. Taking the point of

view of a omputer algebra system, we an notie that a omplex number z does not reveal its full signi�ane

until we know also the funtion for whih it is an argument. Advoates of Riemann surfaes have never, it

seems, addressed issues of algebra on Riemann surfaes. Thus, when we write ln(uv), are u and v on the

same sheet? That is, do we hange u to u

k

and v to v

k

, where the k is the same for eah variable, or are we

allowed to write v

l

? Further, what sheet is the produt uv on? Does the sheet of the produt depend upon

the sheets of u and v? Moreover, if we write the expression (z � 1)

1=2

+ ln z, the Riemann surfae for the

ombined funtion is di�erent from either of the omponent Riemann surfaes. How do we label z?
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–2

–1

1

2

–2 –1 1 2

Figure 3: The branhes of the RootOf(z

5

=5 + z � w; index = k) funtion. The irular ars mark the extent of

eah branh. Crossing the positive real axis is branh k = 1, and thereafter proeeding antilokwise we have

branhes 2,3,4,5.

We have to distinguish between a oneptual sheme and a omputational sheme. Computer systems

are about omputation. Often omputation assists in oneption, but omputers must be able to ompute.

Riemann surfaes are a beautiful oneptual sheme, but at the moment they are not omputational shemes.

10 Conlusions

Any attempt to hange long ingrained mathematial habits must be regarded as largely a Quixoti endeavour.

The response of most readers to this paper will be \Why should I hange?" or more likely \Damned if I'll

hange". Most readers will defend the notation they use at present as being a perfetly satisfatory notation

for inverse funtions. Of ourse, most mathematiians would ardently defend XYZZY as being ideal notation

for inverse tangent, if that was what they were �rst taught. But I won't be bitter; after all, I am human

too. Although students ontinue to be onfused by the di�erene between x

�1

and f

�1

, some alulator

ompanies have atually swithed from labelling their keys asin and aos bak to labelling them sin

�1

and

os

�1

under pressure from their sales departments.

Until one has wrestled with a omputer algebra system or with a non-elementary inverse funtion,

the urgeny, or indeed the need, for new ways of looking at multi-valued funtions is not apparent. The

urrent omputer algebra systems are only just starting to adopt the de�nitions given here. Maple returns

simpli�ations ontaining the funtion sgn, and has to some extent trusted that users an be eduated in

this funtion. The unwinding number has been used in alulations, but is not yet returned expliitly to the

user by any system. It has been reommended for adoption in the Openmath standard [5℄.

For the average teaher of mathematis, the notation o�ered here holds out one immediate advantage.

By teahing students the simple rule that y = f(x) implies x =

_

f

k

(y), where k is arbitrary, we an hope to

dispel some of the mystery of multi-valued funtions. We already teah students y = x

2

implies x = �

p

y,

and we teah alulus students dy=dx = 1 implies y = x+ A CONSTANT. So solutions ontaining arbitrary

elements are already part of a student's eduation. By using branh indexing, we an bring all the elementary

inverse funtions into this pattern.

Referenes

[1℄ Milton Abramowitz and Irene J. Stegun. Handbook of Mathematial Funtions. Dover, 1965.

9



[2℄ Robert A. Adams. Single-variable alulus, 4th edition. Addison-Wesley, 1999.

[3℄ D.A. Barry, P.J. Culligan-Hensley, and S.J. Barry. Real values of the W-funtion. ACM Trans. Math.

Software, 21:161{171, 1995.

[4℄ C. Carath�eodory. Theory of funtions of a omplex variable, 2nd. ed. Chelsea, New York, 1958.

[5℄ Robert M. Corless, James H. Davenport, David J. Je�rey, and Stephen M. Watt. Aording to

abramowitz and stegun. SIGSAM Bulletin, 34:58{65, 2000.

[6℄ Robert M. Corless, Gaston H. Gonnet, David E. G. Hare, David J. Je�rey, and Donald E. Knuth. On

the Lambert W funtion. Advanes in Computational Mathematis, 5:329{359, 1996.

[7℄ Robert M. Corless and David J. Je�rey. The unwinding number. Sigsam Bulletin, 30(2):28{35, June

1996.

[8℄ Robert M. Corless and David J. Je�rey. Elementary riemann surfaes. Sigsam Bulletin, 32(1):11{17,

Marh 1998.

[9℄ I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Produts. Aademi, 1980.

[10℄ David J. Je�rey. The importane of being ontinuous. Mathematis magazine, 67:294{300, 1994.

[11℄ David J. Je�rey and Albert D. Rih. The evaluation of trigonometri integrals avoiding spurious

disontinuities. ACM Trans. Math. Software, 20:124{135, 1994.

[12℄ Derek F. Lawden. Ellipti funtions and appliations. Springer, 1989.

[13℄ Andrew S. Tanenbaum. Computer Networks, 1st edition. Prentie-Hall, 1981.

[14℄ Mihael Trott. Visualization of riemann surfaes of algebrai funtions. Mathematia in Eduation and

Researh, 6:15{36, 1997.

10


