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This paper  ~ addresses the  definitions in OpenMath of the 
elementary functions. The original OpenMath  definitions, 
like most other sources, simply cite [2] as the definition. We 
show tha t  this is not adequate, and propose precise defi- 
nitions, and explore the relationships between these defini- 
tions. 

In particular,  we introduce the concept of a couth pair 
of definitions, e.g. of arcsin and arcsinh, and show t:hat the 
pair axccot and arccoth can be couth. 

1 I n t r o d u c t i o n  

Definitions of the elementary functions are given in many 
textbooks and mathemat ical  tables, such as [2, 7, 16]. How- 
ever, it  is a sad fact tha t  these definitions often require a 
great deal of common sense to interpret  them, or, to be 
blunt, are bla tant ly  self-inconsistent: not just  at  ~ finite 
number of special points, but  over half the complex plane 
or half the real line. This state of definition is insufficient 
for computer  programming of any kind, and part icularly so 
for a formal s tandard,  such as OpenMath  [1, 5], intended to 
allow expressions to be conveyed between systems, with all 
their semantics intact.  

The OpenMath  definitions of complex elementary func- 
tions (contained in the  Content Dictionaries 2 t ran~.cl  and 
t r a n s c 2  [ l i  D generally state that  the elementary functions 
are "as defined in Abramowitz and Stegun" [2], and there- 
fore implicit ly single-valued functions. It is the contention 
of this paper  tha t  this is insufficient, and more needs to 
be done to define the elementary functions precisely, par- 
ticulaxly (but  not exclusively) on their branch cuts. There 
are even implications for the definition of functions on IR, 
notably arccot. This requirement for unambiguity affects 
the definitions of the logarithm, non-integer powers such as 
square root, and the inverse trigonometric and hyperbolic 

*This  work  was  p e r f o r m e d  while the  second a u t h o r  held the  On- 
ta r lo  Research  Cha i r  in C o m p u t e r  A lgeb ra  a t  the  Univers i ty  of West-  
e rn  Ontar io .  All au tho r s  are  gra tefu l  for t he  c o m m e n t s  of Dave  Hare  
a t  Wate r loo  Maple  Inc.  and  of  m a n y  m e m b e r s  of the  O p e n M a t h  Es- 
pr i t  p ro jec t .  

1A prev ious  vers ion was a de l iverable  of  the  Espr i t  O p e n M a t h  
P ro j ec t ,  n u m b e r  24969. 

2In the  process  of be ing  reshuffled to ensure  a l i gnmen t  wi th  
M a t h M L  vers ion 2 [15], bu t  this  does not  affect the  t h r u s t  of  this  
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functions, as well as relations between these functions, and 
relations between them and the forward functions. 

We discuss the implications of accurate t ranslat ion on 
the design of the phrasebooks [5] t ranslat ing between Open- 
Math and actual systems. Note tha t  OpenMath  does not 
say that  one definition is ' r ight '  and  another 'wrong':  it  
merely provides a lingua francs for passing semantically ac- 
curate representations between systems. Semantically cor- 
rect phrasebooks would deduce tha t  

z =  

Maple Derive 

N o t a t i o n .  Throughout this paper,  we use arccot etc to 
mean the precise function definitions we are using, and vari- 
ants are indicated by annotat ions as in the equation above. 
Throughout,  z and its decorations indicate complex vari- 
ables, x and Y real variables. The symbol ~ denotes the  
imaginary part ,  and ~ the real par t ,  of a complex number.  
The precise OpenMath  proposals are listed at  the  end. 

2 T h e  b a s e  c a s e :  L o g a r i t h m s  

Let us begin with the simplest example, and the one in terms 
of which we will define the other functions. 

T h e  d e f i n i t i o n  o f  ln z ( a n d  h e n c e  t h a t  o f  z a = 
e x p a l n z  fo r  a ~ Z) .  [2, p. 67] gives the branch cut  ( - c~ ,0 ] ,  
and the rule [2, (4.1.2)] tha t  

- l r  < ~ In z < It. (1) 

This then completely specifies the behaviour of In: on the  
branch cut it  is closed on the positive imaginary side of the 
cut, i.e. counter-clockwise continuous in the  sense of [10]. 

Wha t  are the consequences of this  definitionS? From the 
existence of branch cuts, we get the problem of a lack of 
continuity: 

lira ln(z + iy) # In x : (2) 
y--+0- 

sWhich  we do not  contest :  it seems  t h a t  few people  t o d a y  would  
suppo r t  the  rule one of  us ( JHD)  was t a u g h t ,  viz.  t h a t  0 < ~ In z < 
21r. T h e  p l a c e m e n t  of  t he  b ranch  cu t  is ' m e r e l y '  a no t a t i ona l  conven-  
t ion,  bu t  an  i m p o r t a n t  one. I f  we w a n t e d  a func t ion  t h a t  behaves  like 
In bu t  wi th  this  cut ,  we could cons ider  ln(- -1)  -- l n ( - - 1 / z )  ins tead .  
We no te  t ha t ,  until  1925, a s t r o n o m e r s  p laced  t he  b r a n c h  cu t  b e t w e e n  
one day  and  the  nex t  a t  noon [6, vol. 15 p. 417]. 
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for x < 0 the limit is In x - 2~ri. Related to this is the fact 
that  

In ~ # In z (3) 
instead ln~ = ln z + 21ri on the cut. on the branch cut: 

Similarly, 

In 1 ~ --In z (4) 
Z 

on the branch cut: instead In ½ = - l n  z + 2z-i on the cut. 
Two families of solutions have been mooted to these 

problems. 

• [10] points out tha t  the concept of a "signed zero "4 
[9] (for clarity, we write the  positive zero as 0 + and 
the negative one as 0 - )  can be used to solve prob- 
lems such as the above, if we say that ,  for x < 0, 
ln (x+0+i )  = ln(x) +~ri whereas l n ( x + 0 -  4) = ln(x)-~ri .  
Equation (2) then becomes an equality for all x, inter- 
preting the x on the right as x + 0 - i .  Similarly, (3) and 
(4) become equalities throughout.  Attract ive though 
this proposal is (and OpenMath should probably not 
inhibit systems tha t  do have signed zeros), it does not 
answer the fundamental  question: what to do if the 
user types l n ( -1 ) .  
A similar idea is proposed in [12], who make the func- 
tions two-valued on the branch cuts, so tha t  In ( -1 )  = 
±~ri. This has the drawback of not fitting readily with 
numerical evaluation. 
More importantly,  neither scheme addresses problems 
off the branch cuts. 

• [4] points out tha t  most 'equalities'  do not hold for the 
complex logarithm, e.g. ln(z 2) ~ 21nz (try z = - 1 ) ,  
and its generalisation 

ln(zlz2) ~ lnz l  + lnz2. (5) 

The most fundamental  of all non-equalities is z = 
In expz,  with an obvious violation at  z = 2~ri. They 
therefore propose to introduce the unwinding number 
K, defined 5 by 

/C(z) = z -  l n e x p z  [ ~ z -  ~r] 
21ri = | ~ [  e Z (6) 

(note tha t  the apparent ly  equivalent definition |-Y-~---~-~/ L 2~r J 
differs precisely on the branch cut for In as applied to 
exp z). (5) can then be rescued as 

ln(zl z2) = In zl + In z2 - 27ri/C(ln zl + In z2). (7) 

Similarly (3) can be rescued as 

In ~ = In z -- 21ri/C(ln z). (8) 

Note that ,  as part  of the algebra of /C, /C(l~z) = 
Ic(- lnz) ¢ ~C(ln ~). 

These problems translate  into difficulties with the powering 
operation, even in cases as apparently simple as square roots. 
In fact, 

= V ~ ' X / ~  (--1) ~:(ln~l+ln,~). (9) 

4 O n e  cou ld  a sk  w h y  zero  s h o u l d  be  spec ia l  a n d  have  two values  
(or  f ou r  in t h e  C a r t e s i a n  c o m p l e x  p l ane ) .  T h e  a n s w e r  is t h a t  al l  t h e  
b r a n c h  c u t s  we need  to  c o n s i d e r  a r e  on  e i t h e r  t h e  rea l  or  i m a g i n a r y  
axes ,  so t h e  s ide  to  w h i c h  t h e  b r a n c h  c u t  a d h e r e s  d e p e n d s  on t h e  
s ign o f  t h e  i m a g i n a r y  or  rea l  p a r t ,  i n c l u d i n g  t h e  s ign of  zero.  W i t h  
suff ic ient  ca re ,  t h i s  t e c h n i q u e  c a n  b e  used  for  o t h e r  b r a n c h  cu t s .  

5 N o t e  t h a t  t h e  s ign conven t i on  he re  is t h e  o p p o s i t e  to  t h a t  of  [4], 
which def ined  /C(z) as ~ - ~ z  L £= J: t h e  a u t h o r s  of  [4] r e c a n t e d  l a t e r  to  
keep  t h e  n u m b e r  o f  - - l s  o c c u r r i n g  in f o r m u l a e  to  a m i n i m u m .  

3 General  Principles  

There is no ' r ight '  answer to the  specialisation of the  one-  
many inverse trigonometric and hyperbolic functions. Here 
we outline various principles that  could be used to just ify the 
definitions of the functions (principles 1-2) and the choices 
of one branch over another (principles 3-5). I t  should be 
noted that  we cannot apply these principles to each function 
in isolation, since the choices affect the validity of many 
identities between functions (principle 6). 

1. For a trigonometric or hyperbolic function f ,  it should 
be the case that 

f ( f - l ( z ) ) = z ,  (10) 

at least off the branch cuts, and preferably on it. While 
this might seem obvious~ it does need to be checked. 
Given arcsin, one might construct ~ . .  as follows. 

broken 

s in t  = ~ l - c o s  2t; 

t = arcsin ~ / 1 - - c o s  2t  

so, writing t = ~ . ~ u ,  
broken 

arccos u = arcsin ~ u 2. 

broken 

However cos arcsin ~/1 - u 2 is not the identi ty function, 
taking - 1  to 1. In general, formal manipulat ion is not 
guaranteed to yield an actual  inverse. 

Since the functions f are many-one,  asking for the con- 
verse f - l ( f ( z ) )  = z is impossible. However, we could 
ask tha t  the domain of validity of 

f - l ( f ( z ) )  .= z (11) 

be as 'natural '  as possible. 

2. All these functions should be mathematically s defined 
in terms of  In, thus inheriting their branch cuts from 
the chosen branch cut for  In (equation 1). 

This does not define the function uniquely: far from 
that ,  but  it  does ensure tha t  the functions can be un- 
ambiguously reduced to logarithms, a bonus for sim- 
plification programs. This rule is essentially the same 
as the "Principal Expression" rule of [10]; the differ- 
ence is tha t  [10] allows ( as a constructor.  In prac- 
tice we use it as well, but  consider it to be defined by 
v/z = exP(½ lnz) .  

3. The choice made for the branch cuts over C should be 
consistent with the 'well-known' behaviour over R .  This 
generally implies tha t  branch cuts should avoid the real 

~This  does  no t  i m p l y  t h a t  i t  is a l w a y s  r i g h t  t o  c o m p u t e  t h e m  th i s  
way.  T h e r e  m a y  be  r ea sons  o f  eff iciency,  n u m e r i c a l  s t a b i l i t y  o r  p l a i n  
e c o n o m y  (it  is was t e fu l  to  c o m p u t e  a real  a r c s i n  in t e r m s  o f  c o m p l e x  
l o g a r i t h m s  a n d  s q u a r e  roo t s )  w h y  a n u m e r i c a l ,  o r  even  s y m b o l i c ,  im-  
p l e m e n t a t i o n  shou ld  be  d i f fe ren t ,  b u t  t h e  s e m a n t i c s  s h o u l d  b e  those  
of th i s  de f in i t ion  in t e r m s  of l o g a r i t h m s ,  p o s s i b l y  a u g m e n t e d  b y  ex- 
c e p t i o n a l  va lues  w h e n  t h e  l o g a r i t h m  f o r m u l a  is i l l -def ined.  
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axis, passing through infinity if necessary: arctan is a 
good example. 

Again, this doesn' t  disambiguate completely, and may 
only be a weak guide if the behaviour over R is poorly 
specified. 

4. As many as possible of the 'well-known' identities 
should hold, at least off the branch cuts. 

Even more than  i tem (3) above, this is subjective, but  
still worth adhering to. The decision as to which iden- 
t i ty  is 'more fundamental '  than another often depends 
on the application being considered, and can therefore 
seem very controversial. 

5. Occam 's razor. 

The plethora of tr igonometric and hyperbolic functions 
is due par t ly  to the requirements of mathematical  ta- 
bles and their  users. For example, cot is frequently 
tabula ted  because, near 7r/2, it is much easier to use 
than  a table of tan, in which interpolation is difficult, 
even though it is logically redundant  in tables (and 
calculators) tha t  contain reciprocals and tangents. In 
general, we should not define functions in OpenMath 
by formulae which axe subtly different from other for- 
mulae. The programming language Pascal [8] takes this 
principle to extremes: the only trigonometric functions 
defined are sin, cos and axctan. No hyperbolic functions 
are defined. However, OpenMath  is meant to be usable 
for encoding the full range of mathematical  texts, and 
these do use functions other thart sin, cos and axctan. 
However, the  definitions of versine and haversine should 
probably be relegated to the h i s t o r i c a l  CD. 

There is one exception to this tha t  we will see later: 
we define axccot (and axccoth) ab initio rather than 
in terms of axctan (or arctanh) in order to prevent re- 
maxkable behaviour near zero (which would otherwise 
be inherited from unremaxkable behaviour near infin- 
ity). 

6. Couthness 

Since there axe well known relations between the hy- 
perbolic and tr igonometric functions, there should be 
similar ones between their  inverse functions. If h is any 
hyperbolic function, and t the corresponding trigono- 
metric function, we have a relation 

I 1 cos, sec 
t(z) = ch(iz) where c = i cot, cosec.  (12) 

- i  sin, tan  

From this it  follows ]ormally tha t  

D e f i n i t i o n  1 A choice of branch cuts for h -1 and t -1 
is said to be a couth pair of choices i f  equation. (13) 
holds except possibly at finitely many points. 

Of course, there could exist multiple pairs of definitions 
for h -1 and t -x ,  each pair being couth in itself. 

4 I n v e r s e  T r i g o n o m e t r i c  F u n c t i o n s  

In this section, we describe the  OpenMath  definitions for 
these functions in terms of logaxithms (principle 2), and 
highlight some of the identities and non-identit ies tha t  re- 
sult. 

4 . 1  D e f i n i t i o n  o f  axcsin z 

[2, page 79] gives the branch cuts 7 ( - o o ,  - 1 )  and (1, c~), but  
does not specify the values on the branch cut. Two obvious 
identities tha t  we want axcsin to satisfy axe 

axcsin(--z) = -- arcsin(z) (14) 

and 
~(z) = ~_~(~). (15) 

w i s h f u l  w i s h f u l  

In fact the second cannot be satisfied on these branch cuts: 
arcsin(2) = ~ - 1 .3169. . . i ,  so ~ ( 2 )  would have to 

w i s h f u l  

be ~ + 1 .3169. . . i ,  but  2 = 2. As in the  case of the 
logarithm, these problems can be resolved by signed ze- 
ros [10] or by unwinding numbers [4]. For signed zeros, 
2 = 2 + 0+i, and 2 + 0+i = 2 + 0 - i ,  and we are at  l iberty to 
define axcsin(2 + 0+i) = ~ - 1.3169i but  axcsin(2 + 0 - i )  = 
iv + 1.3169i. However, as pointed out  above, we axe now 
equivocal on the  value of axcsin 2. 

We require that ,  as functions R --~ R,  on [ -1 ,1]  
sin(axcsin(x)) is the identity, and axcsin(sin(~)) is the  iden- 
t i ty  on [-~-/2, ~-/2] (and cannot be on a greater range, since 
sin ceases to be injective). 

We adopt the suggestion in [10], tha t  arcsin be defined 
by the expression 

This has the correct behaviour on R, and satisfies (14), even 
on the branch cut; but not (15). The unwinding number 
solution to (15) is given by the following result. 

L e m m a  1 axcsin z can be 'simplified': 

arcsinz = ( - 1 )  Ic(-In(1-z2)) arcs in~ 
+ ~pc( -  in(1 + z)) - ~ c ( -  ln(1 - z)) (17) 

The proof is in Appendix A. 

4 . 2  D e f i n i t i o n  o f  arccos z 

This has the same branch cuts as axcsin in [2], and there- 
fore the same problems. As functions R ~ R, on [-I, I] 
cos(axccos(x)) is the identity, and arccos(cos(x)) is the iden- 
tity on [0, Ir] (and cannot be on a greater range, since cos 
ceases to be injective). 

We adopt the suggestion in [10], defining 

(V ~ . 1 - z 7 r _  axcs in (z )=  2 In - - +  , ~ / ~ )  axccos (z )  = ~ y • 

(is) 
This satisfies axccos(-z) = ~" - axccos(z) everywhere, as we 
might expect from R. 

rln fact, [2] does not specify the closure of the branch cuts except 
in the case of In: we have completed the definitions. 
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L e m m a  2 A n  alternative formulation is 

arccos(z) = - i l n  ( z  + i l~-- z z )  . (19) 

This is tr ivially equal to: 

--iln (z -I-iV/(1- zi(1 + z)) 

which may be numerically more stable near z = ::1=1. This 
issue, and the choice between (18) and (19), which may de- 
pend on the availability of hardware square-root capability, 
are beyond the scope of this paper. The proof is in Appendix 
B. 

4.3 D e f i n i t i o n  o f  arctan z 

[2] gives the following branch cuts: ( - i c e , - i ]  and [i, ic~). 
[10] suggests, and we will adopt,  the following definition: 

~/(in(1 + i z )  - In(1 -- i z ) ) .  (20) 

This satisfies 

arctan(-z) = - arctan(z), (21) 

and is now the definition adopted by Common Lisp [13, p. 
309], replacing 

- i l n  ((1 + i = ) J l / ( 1  + z2)), 
which does not satisfy (21). 

Wi th  this definition, we have the following relationship 
(proved in Appendix D) between arcsin and arctan: 

Z 
arcsin z = arctan ~ + r / C ( -  l n ( l+z ) ) -T r /C( -  l n ( 1 - z ) )  

(22) 

4 .4  D e f i n i t i o n  o f  arccot z 

[2] (page 79) gives the branch cut [ - i ,  i] from the ninth print- 
ing on, with the definition 

arccot z = arctan(1/z) .  (23) 

However, according to [10] s, earlier printings gave the defi- 
nition 

7r 
arccot z = ~ - arctan z. (24) 

It  should be noted that  definition (23), regarded as the defi- 
nition of a purely real function, has a range of ( - r / 2 ,  r / 2 )  \ 
{0}, with a singularity at z = 0 (probably intended to be 
given the value 1r/2, but  this has to be inferred from [2l), 
whereas (24) has a range of (0, 7r) and no singularity. The 
branch cuts for (24) are clearly those for arctan. 

There is no clear s tandard for the definition of arccot as 
a function l:t ---+ R:  the s tandard shibboleth is to ask for the 

SAtyp ica l ly ,  K a h a n  is g u i l t y  o f  ove r - s impl i f i ca t ion  here.  T h e  defi-  
n i t i on  ( e q u a t i o n  4.4.8)  was  a l w a y s  (23),  w i t h  the  b r a n c h  cu t s  as  l is ted.  
Howeve r  t he  c l a i m e d  r a n g e  was  0 < a r c c o t  z _< rr (no te  t h e  < r a t h e r  
t h a n  < ) ,  w i th  t h e  f o r m u l a  a r c c o t ( - - z )  -~ lr -- a r c c o t ( z ) ,  which- is  a lge-  
b r a i c a l l y  i n c o n s i s t e n t  w i t h  (23) a n d  w i th  (21),  w h i c h  was  q u o t e d  in 
all  p r i n t i ngs .  T h i s  i n c o n s i s t e n c y  has  b e e n  r e p r o d u c e d  in as  r ecen t  a 
source  as  [16] on  p a g e s  465 -466 .  

definition of a rcco t ( -1 ) ,  though any other negative number 
would do. This gives the following results. 

[2] 1st printing 37r/4 inconsistent 
[2] 9th printing -~r /4  
[7] 5th edition ? inconsistent 
[16] 30th edition 37r/4 inconsistent 
Maple V release 5 31r/4 
Axiom 2.1 3~r/4 
Mathematica  [14] - I r / 4  
Reduce 3.4.1 -7r /4  in floating point 
Matlab 5.3.0 -7 r /4  in floating point 
Matlab 5.3.0 37r/4 symbolic toolbox 

In the absence of any consensus, we appeal  to Occam's razor, 
and, since cot(z) = 1 / t an (z ) ,  we wish to define arccot(z) by 
(23). In fact, we need to be slightly more careful, since this 
does not define arccot(0). To solve this problem and have 
arccot(0) = 7r/2 (i.e. interpreting 1/0 as +c¢~ rather  than  
-oo ) ,  we follow [10] and define 

1 ( = ÷ q  
a r c c o t z = ~ l n  - -  . 

~z  -- i /  (25) 

The apparently similar equation 9 

arccot z = ~ In 
[a] 

in fact defines - a r c c o t ( - z ) ,  which takes the value -7r /2  
rather than ~r/2 at  z = 0, but  is equal everywhere else real. 
In fact, the two differ only on the branch cuts. 

4.5 D e f i n i t i o n  o f  arcsec z 

[2] gives the branch cut ( - 1 ,  1). The parsimony principle 
mentioned above would define this in terms of arccos, viz. 

arcsec(:)----arccos(i/z)-----iln ( l / z  + i ~ ) .  
(26) 

This satisfies the rule that  a r c sec ( - z )  = ~r - arcsec(z). The 
singularity at z = 0 is genuine. 

4.6 D e f i n i t i o n  o f  arccsc z 

The branch cuts are as for arcsec. Again, we should define 
this in terms of arcsin, viz. 

This satisfies the rule tha t  a rccsc ( -z )  = - arccsc(z). Again, 
the singularity at  z = 0 is genuine. 

5 Inverse Hyperbol ic  Functions 

This section lays out our proposals for the definition of the 
corresponding inverse hyperbolic functions. Questions of 
couthness, i.e. how this material  relates to tha t  of the pre- 
vious section, are deferred until the next section. 

9This ,  in i t s  equ iva l en t  f o r m  - ~  In iz-liz't'l, is q u o t e d  in [3, p.  579] 
as t he  de f in i t ion  o f  a r cco t .  T h e  a u t h o r s  a r e  g r a t e f u l  to  P ro f .  P o h s t  
for  th i s  i n f o r m a t i o n .  
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5 . 1  Def in i t ion  o f  arcsinh z 

[2] gives the branch cuts: ( - ioo ,  - i )  and (i, ioo). We follow 
[10], which gives the principal expression 

arcsinh(z) ---- in (z  -t- V / 1 - ~ ) ,  (28) 

and this satisfies the symmetry rule: 

arcsinh(z) --- - arcs inh(-z)  

5.2 Def in i t ion  o f  arccosh z 

[2] gives the branch cut ( -oo ,  1): in addition there is a 
branch point at z = -1 .  We follow [10], which giw~s the 
primary expression 

5.3 Def in i t ion  o f  arctanh z 

[2] gives the branch cuts: ( - o o , - 1 ]  and [1, oo). We follow 
[10], which gives the principal expression 

1 (In(1 ÷ z) -- In(1 -- z)). (30) arctanh(z) = 

This satisfies arctanh(z) ---- - a r c t a n h ( - z ) .  

5.4 Def in i t ion  o f  arccoth z 

[2] gives the branch cut [ -1 ,  1]. We define arccoth by 

1 { z ÷ 1 ~ (31) arccoth z = ~ In ~ z - ~ / "  

The expression derived from that of arctanh would be 

arccoth ( z ) = 1  ( 1 ln(1 _ 1  ) ~ I n ( l + ~ ) - -  ~) . (32) 
t anh - -ba sed  

However, this has a jump discontinuity in the imaginary part 
along the real axis, corresponding to an inconsistency in the 
imaginary part  of arctanh near Zoo, with ~ arccoth z ---- 

tanh- -  based  

lr/2 for real z < 0, and -~r/2 for z ~ 0. An apparently 
similar formulation would be 

1 ( I n ( - 1  - z )  - In(1 - z ) )  (33)  arccoth(z) = ~ 

Superficially, this has a branch cut on ( -oo ,  1], but  in fact 
the branch cuts of the two logarithms cancel on ( -c~ ,  -1 ) ,  
so that  the branch cut is in fact [ -1 ,  1]. This satisfies 
a rcco th( -z )  = - arceoth(z) except at z ---- 0. 

L e m m a  3 Equations (31) and (33) define the same func- 
tion. 
The proof is in Appendix C. 

5.5 Def in i t ion  o f  arcsech z 

[2] gives the branch cuts: ( -oo ,  0] and (1, oo). Definition in 
terms of the formula for arccosh would give 

arcsech(z) 2 In ~V ~ + V - 2 z - )  • (34) 

The singularity at z -- 0 is genuine. 

5.6 Def in i t ion  o f  arccsch z 

[2] gives the branch cut ( -1 ,  1). Definition in terms of the 
formula for arcsinh would give 

This also has a singularity at z = 0. 

6 H o w  C o u t h  a r e  W e ?  

In this section, we examine how the various choices we have 
outlined in the previous two sections fit in with the definition 
of couthness given above. 

6.1 C o u t h n e s s  o f  arcsin / arcsinh 

In this case, equation(13) translates into 

arcsinh(iz) ~ i arcsin(z). (36) 

Substituting in equations (16) and (28) gives 

which is patently true. So these two definitions are couth. 

6.2 C o u t h n e s s  o f  arccos / arccosh 

In this case, equation(13) translates into 

arccosh(z) ~ i arccos(z). (37) 

Substituting in equations (18) and (29) gives 

The difference between the two is that  the left-hand side 
has V / ~ ,  whereas the right-hand side has i v / ~ .  Now, a 
consequence of the branch cut (1) for In is tha t  every square 
root has its argument in the range - ~  ~ arg ~ _ ~ ,  = so these 
two cannot be equal everywhere. In fact, they are equal 

when arg ( V / ~ )  ~ 0, which simplifies to a r g ( 1 -  z)  ~ 0, 

i.e. when ~z  > 0 or ~z  -- 0 and ~(1 - z) ~_ 0, i.e. Rz ~_ 1. 
This region is the upper half-plane, including the real axis 
for ~z  < 1. 

6.3 C o u t h n e s s  o f  arctan / arctanh 

In this case, equation(13) translates into 

arctanh(iz) -~ i arctan(z). (38) 

Substituting in equations (20) and (30) gives 

I (in(1 + i z ) -  l n ( 1 -  iz))~i (2~ (In(1 + i z ) -  l n ( 1 -  iz))) 

These are clearly equal everywhere. 
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6.4 C o u t h n e s s  o f  arccot / arccoth 

In this case, equation(13) translates into 

arccoth(- iz )  ~ i arccot(z). (39) 

Substituting in equations (25) and (31) gives 

5In = i  In xz -- i / /  
Since the inputs x° to the logarithms are equal, this is trivial. 

6.5 C o u t h n e s s  o f  arcsec / arcsech 

In this case, equation(13) translates into 

arcsech(z) ~ i arcsec(z). (40) 

Substituting in equations (26) and (34) gives 

21n \ V  - ~ - -  ( z ~  + ~ z  z )  a in (1/z  + i v ~ - ~ - l T ~  ) 

(41) 
At z = ½, this becomes 

a palpable falsehood. In fact, one side is the negation of the 
other. Now, lemma 2 shows that  

Replacing z by 1/z gives 

In ¼+i =21n v V--W/" 
Substituting this into equation (41) gives 

Since lna  = lnb if and only if a = b, this reduces to 
~ i v / S T .  These are equal when arg ~ < 0, 

equivalent to arg(1 - 1/z) < 0 This is true precisely 
when ~z  < 0 or ~z  = 0 and ~z  _> 1. Hence the pair 
arcsec/arcsech is not couth. 

6.6 C o u t h n e s s  o f  arccsc / arccsch 

In this case, equation(13) translates into 

arccsch(- iz)  ~ i arccsc(z). (42) 

Substituting in equations (27) and (35) gives 

In _---~z + 1 +  ~ = In + 

These are patently equal. 
1°It  is t e m p t i n g  to  a c o m p u t e r  sc i en t i s t  to  wr i t e  " a r g u m e n t s  o f " ,  

b u t  t h a t  w a y  lles l i ngu i s t i c  confus ion .  

7 Imp l i ca t i ons  for  P h r a s e - b o o k  W r i t e r s  

An OpenMath phrase-book is actually a piece of software 
that translates between the semantics of OpenMath (as de- 
fined in the Content Dictionaries) and the semantics of a 
particular application, as well as simply translating names. 
Of course, life for the phrase-book writer is simplest if the 
semantics of the application are the same as those of Open- 
Math, but this will not always be the case. 

A classic example of this would be the translation of 
arccot between OpenMath, whose semantics we propose to 
define by (25), and a system, such as Maple or Axiom, where 
the semantics of arccot are defined by (24). 

Application--~OpenMath arccot z ~ ~ - arctan z 
OpenMath-+Application arccot z ~ arctan ( l /z )  

Derive has a different definition of arctan to eliminate 
the unwinding numbers from (22), so that, for Derive, 
arcsin(z) = arctan ~ This definition can be related 

Derive 
to that  of OpenMath either via unwinding numbers or via 
, ~ . . ~ ( z )  = arctan~. It is often possible to deal with such 

Derive 
differences on branch cuts by such a 'double conjugate' rep- 
resentation. This representation has the advantage that  the 
(always legal) rule ~ ~ z means that  the transformation is 
self-inverse. 

8 P r o p o s a l s  

This section lists the concrete suggestions that  the authors 
have for OpenMath. 

1. OpenMath should define a b (in the case of non-integer 
b) via 

a b = exp(b in a), (43) 

rather than the current weasel words: "When the sec- 
ond argument is not an integer care should be taken as 
to the meaning of this function; however it is here to 
represent general powering" ( ax i th l .  ocd [11]). 

2. OpenMath should base all its single-valued definitions 
of the naturally multi-valued elementary functions on 
the logarithm function. This means that  it would be 
reasonable to define all the forward functions in terms 
of the exponential function. 

3. OpenMath should be parsimonious in terms of the 
number of (subtly) different concepts it introduces: in 
particular cot, sec and cosec, and their inverses and hy- 
perbolic analogues should be defined 11 in terms of the 
other functions and reciprocals. 

The actual proposals for the definitions of functions are 
summarised below. 

l l O n e  c o u l d  a r g u e  t h a t  t h e s e  f u n c t i o n s  need  no t  b e  de f ined  a t  all .  
I ndeed  t a n  cou ld  be  r e p l a c e d  b y  s i n / c o s  e tc .  T h i s  w o u l d  c r e a t e  
p r o b l e m s  for  r ende re r s ,  b u t  t h e s e  a re  n o t  i n s u p e r a b l e ,  a n d  g e t t i n g  
g 0 o d - l o o k i n g  m a t h e m a t i c s  o u t  o f  O p e n M a t h  a l r e a d y  r e q u i r e s  a cer-  
t a i n  a m o u n t  of  in te l l igence  o n  t h e  p a r t  o f  t h e  r ende re r s .  However ,  
no t  h a v i n g  these  f u n c t i o n s  wou ld ,  we a r g u e ,  a c t u a l l y  increase  t h e  
r isk  of  t h e  so r t  of  s u b t l e  m i s - u n d e r s t a n d i n g  t h a t  t h i s  p a p e r  is m e a n t  
to  p o i n t  o u t  (e.g. de f in ing  a r c c o t  in  t e r m s  o f  a r c t a n  leaves a r c c o t ( 0 )  
unde f ined ,  a n d  t h e  de f in i t ion  is n o n - t r i v i a h  see t h e  d i s cus s ion  a f t e r  
e q u a t i o n  (25)) ,  a n d  m a k e s  i t  h a r d e r  to  w r i t e  n u m e r i c a l l y - a c c u r a t e  
express ions .  
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arcsin (16) arcsinh (28) couth 
arccos (18) arccosh (29) uncouth 
arctan (20) arctanh (30) couth 
arccot (25) arccoth (31) couth 
arcsec (26) arcsech (34) uncouth 
arccsc (27) arccsch (35) couth 

4. OpenMath should use the 'unwinding number'  tbrmal- 
ism for stating any mathematical properties of these 
functions (and therefore an OpenMath CD should de- 
fine the unwinding number). 

5. OpenMath should not forbid the use of signed zeros, 
and therefore range restrictions such as (1) have to be 
relaxed to non-strict inequalities in this case. 

6. OpenMath should consider whether it wants (using dif- 
ferent symbols, e.g. Log) to represent the multi-valued 
inverse functions as well as the single-valued ones. 
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A P r o o f  o f  L e m m a  1 

The result to be proved is 

L e m m a  1 arcsinz can be 'simplified': 

arcsinz = ( -1 )  Ic(-ln(1-z2)) arcsin~ 
+ ~rJC(- ln(1 + z)) - 7tiC(- In(1 - z)) (17) 

Notice that  the expression/C(- In ( I - z2 ) )  is the most concise 
characteristic function for the branch cuts of arcsin available 
in this notation; the other unwinding numbers specify the 
positive and negative halves of the cut. 

P r o o f :  From the definition (16) 

arcsin z = i l n ( i z  + ~ / 1  --  z 2) . 

Since In z = ln~ + 21ri/C ( -  In z), this becomes 

The unwinding number is zero because it could only be 
nonzero when the input to log is real and negative, i.e. 
iz + ~/1 - z 2 = - e  t with t E R. Re-arranging and squaring, 

1- -e  2t - z  2 + 2ize ~ + e 2~ = 1 -  z 2, so z = "-5i5~-" So z i s  purely 
imaginary, but  then the log input is always positive. Thus 

arcsinz = i l n ( - - i ~ + - - ~ )  • 

Now zl/2 = ~1/2 (_l)JC(- 1..), and therefore 

a r c s i n z = i l n ( - - i ~ +  %/1--~2(--1)K:(-1"0-~')))  • (44) 

Although (44) is a complete answer to the simplification, 
it does not explicitly contain arcsin, which is required. Using 
In z = - In z -1 - 27ri/C(- In z), we continue. 

arcsinz = - i l n [ ( - i ~ + v / ~ - z 2 ( - 1 ) ~ c ( - l n ( ' - z 2 ) ) )  -1] 

(- In(-i: + 4:-:-;:)) 
As above, the last term is zero, and rationalising the first 
term gives 

- i l n  (iN + V/1 - ~2 (_1)~3(-In(I-z2)))(45) arcsin z 

If z is not on the branch cut, then/C is zero and we have 
immediately arcsin z = arcsin ~. If z is on the branch cut, 
and again we wish to see arcsin, then returning to (44) gives 

arcsin z = i l n  (--i~ -- V / ~ )  



Invoking l n ( - z l )  = In z l  + iTr -- 27rilE(lit + In Zl) gives sepa- 
rately 

{ - - a r c s i n S + ~ r  z > 1 
a rcs inz  = - - a r c s i n ~ - - z r  z < - - I  

Since /C ( - In (1  - z)) = - 1  for z > 1, and  similarly for 
z < - 1 ,  the  l emma follows. 

B P r o o f  o f L e m m a  2 

L e m m a  2 A n  al ternat ive  f o r m u l a t i o n  is 

arccos ( z )  = - - i l n  ( z  + i lxf------ z 2 )  . (19) 

P r o o f .  Now 

V T + 'v  = z+i¢l-  +z= 

since the imaginary  parts  of I - z and  1 + z have opposite 
signs. Also 21na  = ln(a  2) i f /C(21na)  = 0, so we need only 
show this last s t ipula t ion i.e. tha t  

~r ( ~ 2 + z  . 1 - z  ~r 
- ~  < arg x - -  - - + ~ )  _<g. 

This  is tr ivially t rue  at  z = 0 If it is false, then  we have 

arg ( V / T - - ~ + i v / ~ ) I  = ~ , i e  V I L e +  to pass through 

i V / ~  = i t  for t E I t .  Squaring both  sides, z + i~/T'= z 2 = 
- t  2, i.e. ( z + t 2 )  2 = - ( 1 - z 2 ) .  Hence 2z t  2 + t  4 = - 1 ,  
so z = - ( 1  + t 4 ) / 2 t  2 _< - 1 ,  and  in part icular  is real. On 
this half-line, the  a rgument  in quest ion is +7r/2, which is 
acceptable. Hence the  a rgument  never leaves the  desired 
range, and  the  l emma is proved. 

C P r o o f  o f L e m m a  3 

L e m m a  3 Equations (31) and (33) define the same func- 
tion. 

P r o o f .  This  reduces to 

(z+l  
In \ z - ~ ' T /  = In(--1 -- z) - ln(1 -- z). 

The lef t-hand side is clearly equal to In ( ~ - ~ - ) ,  which 
seems equal to the  r ight -hand side, and  in  fact differs by 
27rilC(ln(- 1 - - z )  - I n ( 1  - z ) ) ,  by the  quotient  var iant  of (7). 
We look at the  curves where/C can change value, i.e. the 
boundar ies  of the  'clear-cut region ' /C = 0: 

In(--1 - z) - In(1 -- z) = t =t: iTr t ~ R 

and  the  branch  cuts  of the individual  logarithms, which are 
- - 1 - -  z = --e t and 1 -  z = - e  t (using - e  t for t E R as 
an encoding of the  negative real axis). The last two are 
z = e t - 1 and  z = e t + 1, while the  first is ~-~ = e t, 

e t --I 
i.e. z = ~Tf"  Hence all problemat ic  values are for real 
z > - 1 .  The  complement  of this is a connected region, 
so a trial  at,  say, z = - 2  proves tha t  /C = 0 everywhere 
except on this  critical line. On the  critical line z > - 1 ,  
arg I n ( - 1  - z )  = It, and  we subt rac t  from this the  a rgument  
of another  real logari thm, which is either 0 or It. In  either 
case ]C = O. 

D arcsin and arctan 

The aim of this section is to prove t ha t  

Z 
arcsin z = a rc tan  - - - ~ - ~ + T r / C ( -  I n ( l + z ) ) - T r / C ( -  I n ( l - z ) )  

(22) 
We s tar t  from equat ions (16) and  (20). Then  

Z 
2i a rc tan  

x/1 - z 2 

+2~-i~c ln(1 + , - - ~ )  - ln(1 -~ , - - - ~ 1  

= l n [ i z +  ~ 1  - z2] 2 
Z Z +2~-aC(ln(1 + i - ~ )  - In(1 - i--p_--T)) 

= 2i arcsin(z) 

-21rilC ( 2 1 n ( i z  + l ~ -  z 2 ) )  

The tendency for /C factors to proliferate is clear. To 
simplify we proceed as follows. Consider first the  t e rm  

~(21n(iz + V i i -  ~2)). 

For ]z] < 1, the real part of the logarithm's input is positive 
and hence/C = 0. For Izl > 1, we solve for the critical case 
in which the input to K is -It and find only z = rexp(i~-), 
with r > 1. Therefore 

~(2 In(iz + x/1 - z2)) = ~(_ In(1 + z)). 

Repeating the procedure with 

/C(In(1 + iz/v/i - z 2) - In(1 - iz/~/1 - z2)) 

shows that/C ~ 0 only for z > 1. Therefore 

] C ( I n ( l + i z / x / 1  - z 2 ) - I n ( 1 - i z / v / T Z  z2)) = I C ( - I n ( l - z ) )  

and  so finally we get 

Z 
arctan ~ = arcsin(z)-Tr/C(- In(l+z))+Tr/C(- In(l-z)) 

(46) 
and this cannot be simplified further. 
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