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1 INTRODUCTION

We consider approximately known polynomials f(z) ∈ C [z]
or f(z) ∈ R[z] and examine the problem of functional de-
composition. That is, given f , we wish to compute polyno-
mials g and h such that

(f + ∆f) (z) = (g ◦ h)(z) = g(h(z)),

where deg g < deg f , deg h < deg f , deg ∆f ≤ deg f and
∆f is “small” with respect to the 2-norm of the vector of
coefficients. In practice if ‖f‖ denotes the 2-norm of f , then
we compute g and h such that ‖∆f‖ is a local minimum
with respect to variations in g and h.

This problem has been studied for exact polynomials and
rational functions by several authors [1, 2, 8, 10, 15, 16].
There are several reasons why approximate polynomial de-
composition interests us:

• Decomposition is a fundamental operation on polyno-
mials. Posing a natural, well-defined interpretation
of approximate polynomial decomposition and present-
ing an algorithm for its computation further advances
the program to develop a full collection of symbolic-
numeric algorithms for polynomials.

• Sometimes one knows a priori from the problem do-
main that polynomials should be compositions. This
can occur when modelling a phenomenon which com-
prises a number of sequential algebraic steps, for exam-
ple, the positions of a multiply articulated robot arm.

• The decomposed form of a polynomial can be sub-
stantially less expensive to evaluate than either an ex-
panded or factored form. For example, a dense poly-
nomial of degree n would take approximately 2n oper-
ations to evaluate in either expanded or factored form.
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A presentation as two composition factors, however,
would take between 4

√
n and n arithmetic operations.

The main results of this paper are:

(a) an iterative method to compute a decomposition of a
given approximate polynomial, given a starting point.
The iteration scheme, which is linearly convergent, is
analogous to quotient-divisor iteration for the approxi-
mate GCD problem [5]. Further, each iteration can be
executed with O(n log2 n) floating point operations.

(b) a theorem showing that a surprisingly good starting
point is obtained from the initial step of the exact al-
gorithm, except when the leading coefficient of f is too
small.

(c) an experimental comparison of the method with New-
ton iteration.

2 DEFINITIONS AND DESIGN CHOICES

Notation. We write f to indicate the polynomial opera-
tor f = z → f0 +f1z + · · ·+fnzn, and its value at a as f(a).
We write the transpose of the vector of coefficients of f as
f t = [f0, f1, . . . , fn]. By f∗ we mean the conjugate trans-
pose of f . By signum(α) for 0 6= α ∈ C we mean α/|α|.
Henceforth let deg f = n, deg g = m and deg h = d. We
write [ z` ] (p) for the coefficient of z` in p, following [7].

In this paper, the size of polynomials, and hence the
distance between two polynomials, will be measured using
the 2-norm. This norm can also be usefully expressed as a
contour integral through Parseval’s theorem (see [9]).

Lemma 2.1. For a polynomial f(z) =
∑n

k=0 fkzk ∈ C [z],

‖f‖2 = ‖f(z)‖2 = |f0|2 + |f1|2 + · · ·+ |fn|2, (1)

=
1

2π

∫ 2π

0

f(eit)f(e−it) dt (2)

=
1

2πi

∫
C

f(z)f(1/z)
dz

z
(3)

= [ z0 ] f(z)f(1/z) , (4)

where z = eit parameterizes C, the unit circle.
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This norm has the following advantages.

(a) It allows us to evaluate partial derivatives of the norm
in terms of polynomial and series manipulations. These
can be used to express a sequence of least squares prob-
lems, whose solutions usually converge to a minimum
perturbation ||∆f || = ||f − g ◦ h||. The derivatives can
also be used for Newton’s method.

(b) Minimizing ‖∆f‖ gives a near-Chebyshev minimum on
the unit disk [13].

(c) It permits fast algorithms for the solution of subprob-
lems at each iteration.

The expression of ‖f‖ in the form (2) emphasizes the
importance of the size of the values of f(z) on the unit disk.
This highlights the need for the following assumptions re-
garding the formulation of the problem:

(a) The location of the origin has been chosen (thus making
explicit an implied assumption in previous numerical
polynomial algorithms),

(b) The scale of |z| has been chosen.

In particular, we assume that the problem context precludes
a change of variable by an affine transformation z → bz + a.

Remark. There is also a purely computational reason for
avoiding such transformations, as is set out in the next the-
orem.

Theorem 2.2. Shifting from z to z − a can amplify any
uncertainties in the coefficients of f by an amount as much
as (1 + |a|)n/

√
n + 1 in norm. This is exponential in n,

for any a 6= 0. Moreover, the relative uncertainties in each
coefficient can be amplified by arbitrarily large amounts.

In other words, such shifts are ill-conditioned.

Proof. By examining the condition of the matrix that de-
termines the Taylor coefficients of the shifted polynomial

fa(z) =

n∑
k=0

f (k)(a)

k!
(z − a)k ,

one quickly finds the worst case for perturbation in the 1-
norm: choose f(z) = zn. Then ‖f‖ = ‖f‖1 = 1, but

fa(z) =

n∑
k=0

(
n

k

)
(−a)kzk

and hence ‖fa‖1 = (1 + |a|)n. Since the 1- and 2-norms are

equivalent, with ‖fa‖ ≥ ‖fa‖1/
√

n + 1, the result follows.

In addition, changing a to a + ∆a will change [ zk ] (fa)

by ∆a · f (k+1)(a)/f (k)(a), which can be an arbitrarily large
relative change.

For completeness, we observe that any inner multiplica-
tive scaling, fb = f ◦ (z → b · z), has a purely diagonal
matrix and relative uncertainties in each coefficient are not
changed; but, as stated, we presume this scale has already
been chosen.

However, a simple outer multiplicative scaling, given by
f 7→ f/(signum(fn) · ‖f‖), is in fact desirable for determin-
ing an initial estimate to a decomposition (we assume that

fn + ∆fn and fn have the same sign—a perturbation that
pushed the leading coefficient through zero would not likely
be desirable). In the context of an application, this scaling
is merely a convenience for the user: we measure changes in
f relative to the original size of f . Since

f + ∆f = g ◦ h =

m∑
`=0

g`h
`,

f + ∆f

signum(fn)‖f‖ =

m∑
`=0

(
g`

signum(fn)‖f‖

)
h`

=

m∑
`=0

(
g`

β` · signum(fn)‖f‖

)
(βh)` ,

we may choose β so that gm/(βmsignum(fn)‖f‖) = 1, mak-
ing g monic. Alternatively, we could choose β to make
‖h‖ = 1, or even to make ‖g‖ = 1 by choosing β as the
unique positive root of a certain polynomial; but we can only
choose one of the three alternatives. Since the size of changes
in f , i.e. ‖∆f‖, should be measured with respect to ‖f‖, it
makes sense to insist that ‖f‖ = 1 (by scaling f); the only
reason to insist on ‖g‖ = 1 or ‖h‖ = 1 would be to avoid
overflow. This does not outweigh the convenience of gm = 1
for Theorem 3.1 or the consequence 0 < fn = gmhm

d = hm
d ,

which makes the size of the leading coefficient of h very sim-
ply related to the size of the leading coefficient of f . As an
aside, we could insist that ‖f + ∆f‖ = 1, but this would
lead to pointless complications.

The computed decomposition g ◦ h yields a particular
f + ∆f . We observe that the set of all compositions of
degree m and d polynomials is an m + d + 2-dimensional
submanifold S of the set of degree n = md polynomials. Our
method identifies a point on S whose distance to f is locally
a minimum. One might alternatively ask for the closest
point in S to f , or for some point of S in a neighbourhood
of f having some additional properties (for example, ∆f
having the same support as f). The manifolds have lower
dimension when one accounts for the normalization ||f || = 1
and g being monic.

3 INITIAL APPROXIMATION TO h

In the exact arithmetic case, the algorithm of Kozen & Lan-
dau [10] (see also [8]) is based on the observation that the
leading d coefficients of f depend only on h and the de-
gree of g, not on g itself (f = hm + gm−1h

m−1 + · · · + g0).
This was reformulated as a power series computation by

von zur Gathen [15] by expansion at infinity: if f̃(z) =

zdeg ff(1/z) is the reciprocal polynomial of f , then h̃(z) =

f̃1/m(z) mod zd+1 is the reciprocal polynomial of a compo-
sition factor of f of degree d (if such exists). That is, we
compute the mth root of the power series expansion of f at
1/z and truncate the terms of positive degree, to obtain the
expansion of h at 1/z. Once h is found, identification of g
requires only the solution of a linear system. If this system
is inconsistent, there is no decomposition.

We use this same idea to give us an initial approximation
h(0) for h in the case of an approximate f . One would expect
this to work well provided that the trailing coefficients of g
are “not too large”.

The only substantive difference from the exact arithmetic
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setting is that f is not monic, so

f̃(z) =fn + fn−1z + fn−2z
2 + · · · f0z

m

=⇒ h̃(0)(z) = f1/m
n + hd−1z + · · ·+ h0z

d

and for definiteness we choose the positive (real) root for
hd (recall that we scaled f so that ‖f‖ = 1 with leading
coefficient greater than 0).

On the quality of the initial approximation

Let hmin and gmin be the functions that minimize ‖∆f‖.
Further, let f + ∆fmin = gmin ◦ hmin . A bound showing the
quality of h(0) is given by the next theorem.

Theorem 3.1. There exists a constant K, depending on m
and on the leading coefficient of f , such that if ‖∆fmin‖ is

small enough, then ‖hmin − h(0)‖ ≤ K · ‖∆fmin‖.

Proof. The Kozen-Landau and von zur Gathen algorithms
define h(0) as the solution of the following system of nonlin-
ear equations:

hm
d − fn = 0 hd > 0

hd−1 − Fd−1(hd, fn−1) = 0

hd−2 − Fd−2(hd−1, hd, fn−2) = 0

...

h0 − F0(h1, h2, . . . , hd, fn−d) = 0

for some functions Fk, derived from [ zk ] (f(z)−hm(z)) = 0
for n − d ≤ k ≤ n. Indeed these functions are known; for
example, Fd−1(hd, fn−1) = fn−1/(mhm−1

d ). Since fn > 0,
the roots of this nonlinear system are simple. That is, the
Jacobian matrix, which is lower triangular, is non-singular
at the root (in fact, the determinant is just md+1fd

n).
Therefore the Jacobian and its inverse are bounded in

every compact set bounded away from the hyperplane hd =
0 (equivalently, fn = 0). Since each component of ∆fmin is
smaller than ‖∆fmin‖, we have

|hm
d,min − fn| ≤ ‖∆fmin‖

|hd−1,min − Fd−1(hd,min , fn−1)| ≤ ‖∆fmin‖
...

|h0,min − F0(h1,min , . . . , hd,min , fn−d)| ≤ ‖∆fmin‖.

This relies on g being monic. By the implicit function the-
orem (or simple Taylor series expansion of this nonlinear
function),

0 = F (h(0)) = F (hmin) + J(hmin)(h− hmin) + · · ·

Therefore h − hmin = J−1(−F (hmin)) and ‖h(0) − hmin‖ ≤
K · ‖∆fmin‖ since J−1 is bounded. We also know that

‖∆fmin‖ ≤ ‖∆f (0)‖, the residual of the initial approxima-
tion, and we thus have some confidence that a small residual
after the first iteration ensures that h(0) and hmin will be
close, provided that fn is not too small and thus that the
constant bounding J−1 is not too large.

This theorem will ensure convergence of our procedures
if f is near enough to a decomposable polynomial and fn is
not too small. In practice, we rely more on computation by
the procedure itself than any a priori guarantees.

An example

Suppose that m = 3, g = z3 + g1z + g0 and h = ε1/3z2 + z,
with ε > 0. Then put

f = δz6 + g ◦ h

= (ε + δ)z6 + 3ε2/3z5 + · · ·+ g1z + g0.

For this f , the algorithm of this paper produces the following
initial guess for h:

h(0)(z) = (ε + δ)1/3z2 + ε2/3(ε + δ)−2/3z + δε1/3(ε + δ)−5/3 .
(5)

The next step in the algorithm produces the following g(0):

g(0)(z) = z3 + c2z
2 + c1z + c0, (6)

with

c0 = g0 − g1ε
−4/3δ + O(δ2)

c1 = g1 − L1(ε)ε
−1δ + O(δ2)

c2 = − L2(ε)ε
−4/3δ + O(δ2)

as δ → 0. The residual is, to O(δ2), f(z)− g(0)
(
h(0)(z)

)
=

δ

[
k1(ε)

ε1/3
z +

k1(ε)

ε2/3
z2 +

k3(ε)

ε
z3 +

k4(ε)

ε2/3
z4

]
, (7)

where the details of the rational functions L1(ε), L2(ε), ki(ε)
are suppressed for brevity. By computation, we can bound
each of these functions for all relevant ε and g1 (the residual
does not contain g0) to find

‖f(z)− g(0)
(
h(0)(z)

)
‖ ≤ 5.3

ε
δ + O(δ2) (8)

as δ → 0. This bound becomes larger as the leading coeffi-
cient ε of the unperturbed decomposition goes to zero in the
pathological case. Theorem 3.1 shows that this behaviour is
general, apart from the constant 5.3 of course.

This simultaneously exemplifies the good quality of the
initial guess if ε � 0 and δ is small, and the pathology of the
theorem as ε → 0. Note that the effects on the coefficients of
g may be larger than on the residual (specifically, O(ε−4/3)
rather than O(ε−1)). This reflects the general ill-condition
of the problem of finding accurate g; recall that this ill-
conditioning is a characteristic of the problem and not the
algorithm.

4 LEAST-SQUARES ITERATION

The proposed algorithm breaks the problem into a sequence
of alternating least-squares problems as follows:

(1) find an initial h(0) (as by the method of Section 3).

(2) Given h(k), solve a linear least-squares problem for the

best possible g(k). Stop if the resulting ‖∆f‖ is small
enough or has stabilized.

(3) Given g(k), approximate a solution to the nonlinear

least-squares problem for the best possible h(k+1).
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Repeat steps 2 and 3 until sufficient accuracy is attained or
your patience is exhausted. When this method converges, it
converges linearly since it is just functional iteration (similar
to that discussed in [5]).

Essentially, we ignore the interactions between the
changes in h and the changes in g. By doing so, we for-
mulate a pair of problems, together substantially smaller
than the full Newton iteration studied in the next section.
At each iteration we need to solve two symmetric, positive
definite linear systems: a well-structured m×m system and
a Toeplitz (d + 1)× (d + 1) system. The full Newton itera-
tion gives rise to (m+ d+1)× (m+ d+1) linear systems to
be solved at each iteration. This Newton iteration possibly
requires fewer iterations, but each has a substantially higher
cost.

4.1 Computing an optimal g given f and h.

What follows is a straightforward derivation of the nor-
mal equations defining the coefficients of g which give the
minimum possible ‖∆f‖2 = ‖f − g ◦ h‖2. We include this
derivation here because, while it is a standard computation,
it helps to clarify precisely what our proposed algorithm
does.

We observe that g is simply a least-squares solution to
the linear system in g0, . . . , gm−1:

g0 + g1h + g2h
2 + · · ·+ gm−1h

m−1 = f − hm.

This is easily expressed as a matrix problem. Define the
(n−d+1)×m matrix B by Bk` = [zk]h` for 0 ≤ k ≤ n−d and
0 ≤ ` ≤ m− 1, and column vector v by vk = [zk](f − hm).
The best possible g is obtained as a least-squares solution to
Bg = v, where g = (g0, . . . , gm−1)

t. The normal equations
for this problem form the linear system B∗Bg = B∗v for
g. Since the high-order coefficient of h is assumed not to
be zero, B has full rank and T = B∗B is non-singular and
positive definite.

We note that these same normal equations can also be
derived via contour integrals as

Tk` =
1

2π

∫ 2π

0

h`(z)hk(z) dt =
1

2πi

∫
C

h`(z)h̄k(1/z)
dz

z

= [ z0 ] h`(z)h̄k(1/z) ,

and

bk =
1

2π

∫ 2π

0

(f(z)− hm(z))h
k
(1/z) dt

= [ z0 ] (f(z)− hm(z))h
k
(1/z) .

The above least squares system can be constructed and
solved using standard linear algebra with O(m2n+m3) float-
ing point operations without relying heavily on the structure
of the matrix. We can do considerably better than this as
follows. Let ω ∈ C be an (n − d + 1)th primitive root of

unity and E ∈ C(n−d+1)×(n−d+1) the Vandermonde matrix
with Ek` = ωk`. Since E∗E is (n−d+1)I, the g which min-
imizes ‖Bg − v‖ also minimizes ‖EBg −Ev‖. Moreover,
V = EB is itself Vandermonde, with Vk` = h`(ωk).

Solving the least squares problem is equivalent to solving
the system Hg = V tv where H = V tV ∈ C, an m ×
m Hankel matrix with Hkl =

∑
0≤i≤n−d h(ωi)k+` for 0 ≤

k, ` < m. This system is non-singular and positive definite

by construction. Moreover, we can compute all the power
sums Hij by the Newton identities and indeed solve this
linear least-squares problem with O(n log2 n) floating point
operations using a super-fast Hankel solver; see Pan [11].
Finally, we note that since g is initially defined to minimize
‖Bg − v‖ (and is hence the unique solution to a system
of real linear equations), the obtained g lies in Rm×1 (this
despite the transformation E into C).

In summary, each iteration of this linear least-squares
step to find an optimal g given f and h can be accomplished
with O(n log2 n) floating point operations.

4.2 Computing an optimal h given f and g.

Next, we wish to compute h so that

‖∆f‖2 =
1

2π

∫ 2π

0

(g(h)− f)(g(h)− f) dt (9)

is minimized. This is a nonlinear least-squares problem, and
we propose an iterative solution scheme to an approximate
(local) minimum.

We work under the assumption that f is nearly decom-
posable (this is the only case that we can say anything inter-
esting for, anyway). We also assume that the initial g and
h are close to being correct, and that by linearizing about h
we will not be too far from the truth. Thus

f(z)− g (h(z) + ∆h(z)) =̇ f(z)− g(h(z))− g′(h(z))∆h(z) ,

ignoring quadratic terms in ∆h.
So instead of trying to minimize the nonlinear equa-

tion (9), we minimize

‖f(z)− g(h(z))− g′(h(z))∆h(z)‖2 . (10)

To solve this linear least-squares problem, let A = f(z)−
g(h(z)) − g′(h(z))∆h(z) and consider perturbations to the
optimal ∆h, say ∆h + δh. We wish to choose ∆h so as to
minimize

‖A− g′(h(z))δh(z)‖2 .

If we can choose the coefficients of ∆h so that the cross
terms are zero, then as usual we have found the minimum.
The cross terms are

1

2π

∫ 2π

0

(Ag′(h(z))δh(z) + g′(h(z))δh(z)A) dt . (11)

If this is zero for all choices of δh =
∑d

`=0 δh`z
`, then

‖A− g′(h(z))δh(z)‖2 = ‖A‖2 + ‖g′(h(z))δh(z)‖2

≥ ‖A‖2 ,

and since g′ 6≡ 0 we will have found the unique global min-
imum (though of course the global minimum of this linear
approximation to (9) is merely ‘near’ to a local minimum
of (9)). Necessary and sufficient conditions for this are the
normal equations

1

2π

∫ 2π

0

(
f(z)− g(h(z))− g′(h(z))∆h(z)

)
g′(h(z̄))z̄k dt = 0 .

(12)
This follows on choosing δh` = δk` and δh` = iδk` to show
that the real and imaginary parts are zero separately.
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The normal equations (12) can be arranged to get

d∑
`=0

Tk`∆h` = bk , 0 ≤ k ≤ d ,

where

Tk` = [ zk−` ] g′(h(z)) g′(h(1/z))

bk = [ zk ] (f(z)− g(h(z)) g′(h(1/z)) .

This derivation allows for a very fast computation of the
entries in T through series manipulation. To solve stably
and efficiently such a system it is also necessary to know that
it is non-singular and positive definite as well as Hermitian
and Toeplitz. To see this, we observe that T factors as
T = B∗B, where B is an (n + d) × (d + 1) matrix with
Bk` = [zk]z`g′(h(z)). This is a lower triangular Toeplitz
matrix of full column rank when g′(h(z)) is non-zero, whence
B∗B is non-singular and positive definite.

Once we have computed a ∆h using this linear least-
squares formulation we may then update h := h + ∆h.
The entire process can then be iterated by re-linearizing
around this new h and again approximating a ∆h mini-
mizing ‖f − g(h + ∆h)‖. Since this nonlinear least-squares
problem is only a component in the entire solver it is not
clear that it is necessary to repeat this local process (for
fixed f and g) until convergence occurs. However, we have
seen examples in which substantial convergence is required
in this sub-problem for a globally minimal decomposition to
be obtained.

Computationally, each iteration of this nonlinear least-
squares solver has very low cost. Each system T can be
easily constructed using only series manipulations. T can
be constructed with O(n log2 n) operations using the series
manipulation algorithms of Brent & Kung [4] and an FFT
for polynomial multiplication. The solution to the system
can be obtained via the stable Toeplitz solvers of Trench [14]
using (d2) operations, or the fast and stable methods (for
positive definite matrices) [3, 12] which require O(d log2 d)
operations. In summary, each iteration requires O(n log2 n)
floating point operations.

5 NEWTON ITERATION

In this section we explore the direct use of Newton’s method
to solve the nonlinear minimization problem: find g, h ∈ R[z]

minimizing ‖g ◦ h− f‖2. We give an effective method of
computing the requisite derivatives analytically, and imple-
ment, test, and compare the method with the sequence of
linear least-squares problems of the earlier section.

We consider

Nf (g + ∆g, h + ∆h) = ‖f − (g + ∆g) ◦ (h + ∆h)‖2

with

∆h(z) =

d∑
`=0

∆h`z
`, ∆g(z) =

m−1∑
`=0

∆g`z
`.

Assume for the purpose of exposition that f , g, h, ∆f , ∆g,
and ∆h are all in R[z]; however z ∈ C. Lemma 2.1 is used
to compute Nf . Denoting the integrand of the integral for

Nf by If , we expand to second order in ∆g, ∆h.

If (g + ∆g,h + ∆h) = (g(h(z))− f(z))(g(h(z̄))− f(z̄))

+ g′(h(z̄))(g(h(z))− f(z))∆h(z̄)

+ (g(h(z))− f(z))∆g(h(z̄))

+ g′(h(z))g′(h(z̄))∆h(z)∆h(z̄)

+ (∆g(h(z))∆g(h(z̄)))

+ g′(h(z̄))∆g(h(z))∆h(z̄)

+ (g(h(z))− f(z))∆g′(h(z̄))∆h(z)

+
1

2
g′′(h(z̄))(g(h(z))− f(z))∆h2(z̄)

+ c. c. ,

where c. c. indicates the complex conjugate of all non-real
summands.

We write xt = [∆gt,∆ht], where ∆ht and ∆gt indicate
the vectors of coefficients

∆ht =[∆h0, ∆h1, . . . , ∆hd],

∆gt =[∆g0, ∆g1, . . . , ∆gm−1] .

(Note that g + ∆g is monic and hence ∆gm = 0). We have
the following best quadratic approximation to Nf .

Nf (g + ∆g, h + ∆h) = Nf (g, h) + btx + xtAx + · · · (13)

for the following 1× (d+1+m) vector bt and (d+1+m)×
(d + 1 + m) symmetric matrix A:

bt =∇xNf (g, h)

A =
1

2
∇x∇xNf (g, h)

(14)

The key technique for identification of these matrices and
vectors from the series computation (13) is the writing of
polynomial products as vector-matrix products:

(∆h)2 =∆h ·∆h

=
[
∆h0, ∆h1, . . . ∆hd

]


1
z
...

zd

 [1, z, . . . , zd
]


∆h0

∆h1

...
∆hd


By association, we group the rank-1 product in the middle
to identify the desired matrix block.

We then apply the 1
2π

∫ 2π

0
dt operator, from Lemma 2.1,

which simply computes the constant coefficient in the series
expansion.

Solving for x in a Newton step

The right-hand side of (13) is minimized using an eigenvalue
factoring. We compute an eigenvalue factoring rather than
the cheaper LDLt factoring, because the condition number
of A was observed experimentally to be exponential in m+d.
However, the larger eigenvalues of A are well-conditioned
because A is symmetric [6]: indeed, if A is perturbed to
A + εE, its eigenvalues change from λ to λ + ε(qtEq) +
O(ε2), where q is a normalized eigenvector associated with
λ. That is, in an absolute sense, the uncertainties in the
eigenvalues are no larger than the uncertainties in A. The
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small eigenvalues, of course, may be greatly perturbed in
a relative sense, but, as we will see below, to stabilize the
Newton step we will ignore eigenvalues that are too small.

We write A = QΛQt, where Λ is the usual diagonal
matrix of eigenvalues and Q is orthonormal. Now substitute
x = Qy in (13) to get

Nf + btx + xtAx =Nf + btQy + ytQtAQy

=btQy + ytΛy.

The constant Nf can be dropped. Denoting btQ = −2pt,
we have

btQy + ytΛy =− 2p1y1 − 2p2y2 − · · · − 2pmym

+ λ1y
2
1 + λ2y

2
2 + · · ·+ λmy2

m.

If any λk < 0, then there is no local minimum nearby. Since
λky2

k − 2pkyk = λk(yk − pk/λk)2 − p2
k/λk, for λk 6= 0, the

minimum of the quadratic form is yk = pk/λk. Since A
is symmetric, the factoring A = QtΛQ is effectively the
same as the SVD. By ignoring eigenvalues with magnitude
smaller than some useful cutoff ε‖Λ‖∞ and preventing large
yk solutions (which would produce large x terms and there-
fore invalidate the assumption under which we linearized the
problem) we therefore stabilize the Newton step.

6 EXPERIMENTAL IMPLEMENTATION

Below we give examples from experimental implementations
of both methods. The same function f is used for each
method. As will be seen, Newton’s method, given first,
converges rapidly. In contrast, the iterated least-squares
method takes more iterations (as expected), showing lin-
ear convergence. Each iteration is substantially simpler and
cheaper, though, and the two methods seem comparable in
overall efficiency. The iterated least-squares method appears
to be faster on larger problems, for low accuracy require-
ments.

Both methods can fail in pathological cases with the lead-
ing coefficients of f being ‘too small’. In the pathological
cases that we have tried, both methods converge to the same
incorrect local minimum.

Input polynomial. This input polynomial and precision
is chosen to show the typical features of the two methods:
that the Newton iteration converges in fewer iterations than
the linearly convergent iterated least-squares method, and,
moreover, the initial guess is usually so good that relatively
few iterations are needed by either method.

f := 0.01928725741 z20 + 0.01542980592 z19

+ 0.004628941775 z18 + 0.0006171922369 z17

+ 0.07717988923 z16 + 0.1620129623 z15

+ 0.07869201021 z14 + 0.01450401757 z13

+ 0.1171492929 z12 + 0.3934600510 z11

+ 0.3749442839 z10 + 0.1064656608 z9

+ 0.08640691316 z8 + 0.3626004392 z7

+ 0.5323283043 z6 + 0.3047386670 z5

+ 0.06171922370 z4 + 0.1157235444 z3

+ 0.2314470889 z2 + 0.2122598235 z

+ 0.09643628703

Initial approximations

g = 0.006244011759 + 0.1017654369 z

− 0.2037319773 z2 − 0.005002615065 z3

+ 1.002041909 z4

h = 0.3726641527 z5 + 0.07453283050 z4

+ 0.7453283054 10−11 z3

− 0.3726641527 10−11 z2 + 0.3726641527 z

+ 0.5589962294

||f − g ◦ h || = 0.0003707618881

Newton Iteration 1

g = 0.006307674448 + 0.1012707551 z

− 0.2025224484 z2 − 0.005113811181 z3

+ 1.002041909 z4

h = 0.3726154584 z5 + 0.07467910016 z4

− 0.0001353050967 z3

+ 0.00005400150629 z2 + 0.3727592640 z

+ 0.5587404203

||f − g ◦ h || = 0.0003372925949

Newton Iteration 2

g = 0.006307955886 + 0.1012688703 z

− 0.2025174571 z2 − 0.005114263058 z3

+ 1.002041909 z4

h = 0.3726153448 z5 + 0.07467965426 z4

− 0.0001357186198 z3

+ 0.00005416053562 z2 + 0.3727596011 z

+ 0.5587393242

||f − g ◦ h || = 0.0003372922955

Least Squares Iteration 1

g = 0.00625752328 + 0.1015815394 z

− 0.2032108868 z2 − 0.005551305342 z3

+ 1.002248347 z4

h = 0.3725977213 z5 + 0.07463618893 z4

− 0.0001369138656 z3

+ 0.00009730067631 z2 + 0.3726503289 z

+ 0.5589999916

|| f − g ◦ h || = 0.0003406441482
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Least Squares Iteration 2

g = 0.006265045950 + 0.1015143147 z

− 0.2029731112 z2 − 0.005824248119 z3

+ 1.002355603 z4

h = 0.3725872261 z5 + 0.07464906634 z4

− 0.0001381228199 z3

+ 0.00008297688615 z2 + 0.3726721048 z

+ 0.5589876281

|| f − g ◦ h || = 0.0003386563417

Least Squares Iteration 3

g = 0.006269758096 + 0.1014732862 z

− 0.2028247851 z2 − 0.0059956957 z3

+ 1.002423191 z4

h = 0.3725805736 z5 + 0.07465676477 z4

− 0.0001372994316 z3

+ 0.00007259903511 z2 + 0.3726868766 z

+ 0.5589792377

|| f − g ◦ h || = 0.0003378490878

Least Squares Iteration 4

g = 0.006272764905 + 0.1014471517 z

− 0.2027302025 z2 − 0.006105053024 z3

+ 1.002466306 z4

h = 0.3725763263 z5 + 0.07466166595 z4

− 0.0001367225764 z3

+ 0.00006593375947 z2 + 0.3726963367 z

+ 0.5589738631

|| f − g ◦ h|| = 0.0003375194860

7 CONCLUDING REMARKS

This paper has established a framework for the decomposi-
tion of approximate polynomials. We have explored two al-
gorithms for computing such decompositions. The following
interesting questions suggest themselves for future study.

1. Are the iterative algorithms that we have presented
numerically stable? All indications suggest that they
are, except near the described pathological cases.

2. Can one find a priori bounds for the basins of attraction
of each of the proposed methods?

3. Can the structure of the Jacobian in the full Newton
iteration of Section 5 be exploited to yield faster itera-
tions?

4. What can be said about the distance to the nearest
decomposable polynomial from any given one?
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