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SUMMARY

The two-dimensional flow around a cylinder that is near a plane wall is calculated
assuming that the Reynolds number for the flow is small. For a cylinder translating
parallel to the wall, the torque on the cylinder is zero; similarly, for a rotating
cylinder the force is zero. These results, which are surprising when compared with
corresponding ones for a sphere, are proved and then examined further using
lubrication theory. We aiso consider motion perpendicular to the wall, allowing us to
discuss the behaviour of a cylinder falling down an inclined plane. In addition
streamline patterns are described.

1. Introduction and general method

JEFFERY (1) developed a general method for calculating two-dimensional
Stokes flows confined to the annular region between two cylinders. Later
authors independently derived similar methods (2,3) or tackled related
problems using different methods (4, 5). Jeffery used his method to calculate
the torque on a cylinder rotating next to a plane wall, but missed the
surprising fact that there is no lateral force on the cylinder. In this section
we generalize Jeffery’s method and give simple expressions for the force and
torque on any cylindrical surface, in preparation for section 2, where we
solve three problems explicitly, namely a cylinder translating parallel or
perpendicular to a plane wall, or rotating next to it.

We define bipolar coordinates («, 8) in terms of Cartesian coordinates
(x, y) by (see Fig. 1)

x+i(y+a)

x+ily—a)’ L

a+if3 =log

or equivalently
x=h"'sin@ and y=h""sinha,
where ah =cosh @ —cos 8, and a is a scale factor. A stream function v can

be defined in terms of the fluid velocities by wu, =-—h d/oB, and
Ug = h 3ffoa. The general solution of V¥ = 0 appropriate for Stokes flows that
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Fic, 1. Bipolar coordinates («, 8). ¢, = oy, 81> B2

are bounded externally or that decay sufficiently rapidly at infinity is

=R | m (e}, @)

i

where

Xo= Agcosh a + Bya cosh ¢ + C sinh a + Dy sinh «,
x1=A,cosh2a+ B, +C, sinh2a+ D, «,
Xn = A, cosh(n+1a+ B, cosh (n~1)a+C, sinh (n+1)a+D, sinh(n—1)a.

The constants are complex (except for n=0), and not all independent,
because to obtain a single-valued pressure field, we must set Re {D,} =—By;
the pressure field is then

2 .
p= T;i‘ Im [e“B{DO sinh @ +(By+ D) cosh a}+

+ ). e ™B{G, sinh na + H, cosh na}],
n=1

where
Gn = (n - 1)(An—-1+ Bn) - (n + 1)(An + Bn.+1)5
H,=(n—1)(C,_+D,)~(n+1)(C, +D,.,).

If the unit outward normal to a cylindrical surface & = &, is m and the unit
anticlockwise tangential vector is t, the torque acting on that surface is

T = a cosech aljt.o'.n ds = dmpwa(By+ Dy coth «,).
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The Cartesian components of the force on the surface a = a, are
Fi+F,j= J‘fr.n ds = 4mpDgi — 4 Im {D 4. (3)

We shall be interested in the special case of a cylinder next to a plane
wall. If the radius of the cylinder is r and the distance of the cylinder axis
from the wall is d, then the cylinder is described by o = «,, where

d=acothea;,, r=acosecha, and a’=d*-r>

2. Particular solutions
2.1 Cylinder rotating next to a plane wall
If the cylinder rotates anticlockwise with angular velocity o, all the
coefficients in (2) are zero except for the following:
"C0= 2C1 = _2A1 COth al = 2Bl COth 0{1 = BO = _D]_

= —aw cosh a, cosech’ a;,.

The torque on the cylinder is thus
T = —4mrpwrid/(d® - 12y,
and the force is zero.

The special case of a line couplet above a plane can be obtained, following
{6), by taking the limit r — 0, d = 1 and 47rpw cosech® a; — 1. Using (1) to
convert to Cartesian coordinates, we obtain

4mpd, =log R, —log R, +2y(y +1)}/R2,

where R?=x*+{y—1)* and RZ=x?+(y+1)? and the velocity components
are u, =—0y/dy, and w, = d/ox.

2.2 Translation parallel to wall

If the cylinder translates with speed U parallel to the x-axis, the non-zero
coefficients in (2) are

BD = ""CO = 2C1 = _D‘l = U COth 0411/051, 2B]_ = _DO = —'2A1 = U/Ofl.
The force on the cylinder is thus
F, =—4nuUla;, =—4muUNlog [r {d + (d* - r*)}]

and the torque is zero, in agreement with (4). The fact that the torque is
zero could have been predicted from the observation above of zero force on
a rotating cylinder by using the reciprocal theorem.
The special case of a line force directed parallel to the plane is obtained as
the limit r — 0, d=1, and 47mpuUf/a; — 1, in which limit
4aruaf, =(1—y)log (Ro/R,)—2y(y + 1)/R3,

in agreement with (7), whose stream function is minus ours.
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2.3 Transiation perpendicular to wall

Finally, if the cylinder moves with speed V away from the wall, the
non-zero coefficients are

2A coth oy =—2B, coth oy = -2, = D, =iV/(a, —tanh a,).
The force is thus
F,=—47uV/(e,—tanh « ) = —4muVillog {{d + a)fr} - ald ],

where a’=d*—r* as before.
The special case of a line force directed normal to a plane is

4y, = x log (Ry/R,) — 2xy/R3.

3. Streamlines

The advent of computers and automatic graph-plotting routines has
greatly simplified the task of plotting streamlines, although some flow
patterns are still difficuit to resolve without using large amounts of computer
time; for these cases there are alternative methods which save computing
time and which have the additional advantage of conveying greater under-
standing of the mechanisms at work (8). The recent renewal of interest in
streamline patterns arises partly from the new possibilities for plotting them
and partly from a basic desire to know how a flow ‘looks’, and until the
recent series of studies of streamline patterns, the intuition of many workers
in low-Reynolds-number flow would, on the subject of streamlines, have
been wide of the mark. Particular attention has been paid to the occurrence
of eddies and separation. It is tempting to draw an analogy between
separation at low Reynolds number and that at high Reynolds number.
There is, however, an important difference between the two cases. At low
Reynolds number, the Stokes equations can be solved without knowing
about the separation, and indeed separation is usually found from the
solution. On the other hand, at high Reynolds number, it is the separation
itself that determines the solution. There are thus limits to the interest that
streamline patterns per se can hold, espectally now that there exists a body
of examples and heuristic principles by which our intuition has been
strengthened. Future emphasis will probably be on streamline patterns that
are important for other reasons (the heat-transfer calculation in (9) is an
example).

3.1 Rotating cylinder

A set of streamlines for this flow was suggested by Ranger (6, Fig. 1), but
his pattern is not possible as can be shown using results from (8). Consider,
in Ranger’s figure, the right-hand point where the streamline meets the
plane. Ranger shows fluid moving towards this point along a streamline
coming from infinity; but the fluid emerging from under the cylinder is also
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FiGg. 2. The streamline pattern for low-Reynolds-number flow around a
cylinder rotating next to a plane wall, plotted using a computer graphics
package.

flowing towards this point, forcing the fluid coming from infinity to turn
around and flow over the cylinder. The possible ways in which fluid can turn
back have been studied, and the picture suggested by Ranger would only be
possible if two streamlines, rather than one, met the boundary at the point
in question (cf. (8), Fig. 2b). A check of the derivatives of ¢ at this point
shows that such is not the case.

The streamlines for a typical case are shown in Fig. 2. The flux of fluid
over the cylinder is finite and equals —2wr® to the right. Streamlines meet
the plane at x = +a = +(d?—r*): If the cylinder touches the wall, we know
there is no region of closed streamlines (), so to investigate this we set
d=r(l+e€), where e« 1. We find that a streamline meets the wall at
x = (2€)*r + O{e), while the volume flux under the cylinder is 2ewr?+ O(e?).
The flow in the region between the cylinder and the plane can be modelled
by considering a flow in a corner with plane walls, foliowing Jeffrey and
Sherwood (8). For the present case, we add the stream function for the flow
produced by the wall 8 = a sliding outwards with speed V to the stream
function for a line source at the origin (19), setting y(—«) =0. Thus

xcosasinfd—6@cosOsina asinacos@—ﬂsin@cosa)

Y= Vr( -

2a—sin2a 2a+sin 2«

1 sin20—-28cos 2a
sin 2a —2a cos 2a

+3Q. (4)

The streamlines for this flow are shown in Fig. 3. The distance of the
separating streamline from the corner decreases with decreasing volume flux
(when V is constant), which is what happens in the actual flow.
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Fic. 3. Flow in a corner when one wall siides parallel to itself and there is a
line source of fluid at the vertex.

3.2 The other flows

The streamlines for the other two flows do not vary qualitatively from the
streamlines for the special cases of line forces, and these have been given in
(1. We do note, though, that for the case of motion parallel to the wall, it
has been shown in (4) that, in the frame of reference in which the cylinder is
stationary, a dividing streamline meets the cylinder at x = +ar/d, y = a’/d.

4. Lubrication theory

If we suppose that d = r{1+¢€), i.e. that the smallest gap width is er, we
can analyse the flow in the gap between cylinder and plane using lubrication
theory, and obtain further insight into the results of section 2. We define
stretched coordinates (X, Y) by

X=x/ret and Y=yjre

The surface of the cylinder is given to O(e) by Y=H=1+3X", and the
normal and tangential vectors n and t are

n=eXi—{1+e(1-H)}Y,
t={1+e(1— Hi+eX]j.

4.1 Rotating cylinder
We scale the velocities and pressure according to

u = wriy+ Ole), v=wreivy+ O(ed) and p = pwe 3P+ 0O(e75).
With this scaling, the Stokes equations become, to leading order,

aP/3Y =0, PIAX = *uy/oY?* and 3vy/dY = —duy/oX,
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white the boundary conditions u.n=90 and u.t= wr become
us=1 and v,=X on Y=H

The solutions for u, and P that make P— 0 as X — o are

P=-2X/H* and u,=3P'Y(Y-H)+ Y/H

Thus the rotation sets up a pressure field which adds a Poiseuille flow to the
morg¢ obvious Couette flow. The volume flux through the gap is

H

Q= wrzej uo AY =3wr’e,
0

and the torque and force acting on the cylinder are

7ot [o] :

A VNI e YE A A 207
HwF € - - A T L) ™ —YITUWr
J_:,c l.aYJYzH

_1,
2¢5H+O()

s a’“‘;] }
Fx = — z _ + P =1}
Here »L; {[8 e d 0

We see that F, is zero because the pressure field provides a force on the
cylinder which exactly balances the skin friction du,/a Y. Also, duy/oY on the
plane is zero at X = +./2, indicating a separation point. All these results
agree with the appropriate limits taken from the general solution.

4.2 Motion tangential to wall
We scale the velocities and pressure according to

u=Uu+0(e), v=Usvy+O(eh) and p=uplr'eP+O0(e ).

The boundary conditions become u,=1 and v, =0, but the equations are
unchanged and the solutions for u, and P are

P=2X/H* and u,=3P'Y(Y—-H)+Y/H.

Here, the Poiseuille contribution to u, acts againsi the Couette one, al-
though u, is still positive everywhere. The volume flux is Ure(H ~2) and
depends on X because the upper surface is moving. The torque is zero,
because the Poiseuille and Couette contributions cancel, and the force is
F, =—-47uU2¢)7% In the frame of reference in which the cylinder is
stationary, there is a separation point on the cylinder at X = + /2.

4.3 Motion perpendicular to the wall

The velocities and pressure scale according to

U= Ve Tu, + O(e), v=Vy,+0(e) and p=uVrle*P+ 0OV
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The boundary conditions are uy, =90 and vy =1, and the solutions are
P=-5/H?* and u,=3iP'Y(Y-H).

The force 18
= MV{J’J PdX =-12muV(2e) *+ Ofe™),
so that actually the next term in the approximation is also singular.

5. Cylinder or sphere moving near an inclined plane

We include in this section calculations for both the cylinder and sphere
cases to show the contrasts between them. In each case the body falls under
gravity near an inclined plane. We suppose that the plane is at an angle 6 to
the horizontal, so that the force on the body is mg(sin i —cos 6j), where m
is mass or mass per unit length as appropriate. To calculate the rate at which
the gap shrinks, we make the quasi-stationary assumption that V = rde/dt in
the equation for k..

5.1 Cylinder case

The most interesting qualitative result of the analysis is that the cylinder
moves without rotating. The equations of motion based on the exact
expressions for the forces can be integrated numerically, but as pointed out
by Moffatt (unpublished notes), it is more interesting to obtain asymptotic
expressions, valid for large times and small gaps, using the lubrication results
of section 4. By comparing the exact and approximate expressions for force
at various gap widths, we can see that the results of section 4 are correct to
within 10% when €=0-1 and 1% when € =0-01. If the centre of the
cylinder is at (x,, r+re), it is easy to show that for 8 <3m,

e=(KO7+0O( ),  x.=3rtan 0 log (Ki)+O(1),
where K =mg cos 0/6/2mur.

5.2 Sphere case

We can obtain lubrication approximations to the forces on a sphere near a
plane wall from (11, 12, 13). The singularities in the forces are weaker than
they are in the cylinder case, F, going as e ' and F, as loge, implying that
the sphere must be closer to the wall for one-term approximations to be
accurate. In fact, we must have € <0-001 for an accuracy of 10%. The
second contrast with the cylinder case is that a falling sphere rotates. Taking
the leading terms from the lubrication theory for the forces, we can integrate
to find the long-time asymptotic motion of the sphere. We find that the
rotation {1 is given by

QOr=-tU+0(1/log €).
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Thus the sphere rotates four times slower than one’s everyday ideas of
rolling would predict. If the centre of the sphere is at (x, 7 +7e 0), then

e=gyexp (~ki)+ O(1™®*) and x, =2rtan 8 log (ki)+ O(1),

where k = mg cos 8/6mur” and €, is a notional initial value. The fact that X,
is logarithmic in time for both sphere and cylinder is a surprising coinci-
dence.
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