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Abstract 

We present an extension of the Miles--May 

model of pulp flow in a wood-chip disk refiner. 

The extended model is aimed specifically at 

understanding plate clash in disk refiners, 

which occurs if the pulp pad between the 

refining plates can no longer support the axial 

thrust on the plates and the control mechanism 

allows them to touch. The model considers 

separately the pulp between the bars and the pulp 

in the grooves of the refiner. As a result of 

stochastic exchanges of pulp between the bar and 

groove regions, they contain different 

concentrations of pulp. The pulp that is 

compressed between the bars determines the 

axial thrust on the plates. It is shown that the 

thrust can reach a maximum value as the gap 

decreases. Past a critical gap, the thrust decreases 

with the gap. This decrease can explain plate 

clash. 

 

Introduction 
The aspect of refiner operation that is to be 

studied here is plate clash, also called 

pad collapse. The phenomenon is basically 

related to the control of a refiner, and in the early 

days of control was a challenging problem. As a 

problem in refiner control, pad collapse is no 

longer a danger, because of modern adaptive 

control strategies, which monitor the effects of 

plate-gap changes on specific energy. However, 

a theoretical understanding is still worth 

pursuing.  

The standard set-point for refiner operation is 

specific energy, and this can be varied by 

changing the plate gap;  other operating 

parameters, such as feed rate, affect specific 

energy, but here we concentrate on plate gap. A 

reduction in the gap will usually raise the 

specific energy of the refining action. Thus, if a 

refiner is below its set-point, the control strategy 

is to reduce the gap until the set-point is 

regained. However, there exist operating 

conditions in which a decrease in the plate gap 

decreases the specific energy. Therefore there is 

a danger that a control strategy based only on 

this simple idea, i.e., one that always assumes 

that smaller gaps mean higher motor load, might 

be applied to the unusual case and continually try 

to raise the specific energy by driving the plates 

closer together. In such an event, the plates 

eventually clash against each other. Moreover, 

since the situation  evolves with increasing 

speed, it appears to be a sudden collapse of the 

pulp pad in the refiner. Because of this, an 

important early topic of research in refiner 

control was the rapid identification of the regime 

the refiner was operating in, so as to avoid this 

runaway situation. 

The main result of this work is an explanation of 

the shape of the graph relating motor load, or 

specific energy, with plate gap, assuming that the 

other parameters, such as feed rate, are constant. 

The graph is shown below. 

 
There are two reasons for looking for an 

explanationof this graph, even though at least 

one operational cure for plate clash is available. 

In the first place, a better cure might exist, and 

secondly, the problem is a new challenge for the  

theory of refiners. 

The Miles--May model for pulp flow inside a 

refiner has been very successful at describing the 

dynamics of a disk refiner [1]. It contains, 

however, simplifying assumptions 

that prevent it from addressing all aspects of 

refiner operation. There is nothing wrong with 

this, of course, because every successful 

engineering theory concentrates on some aspects 

rather than others. Specifically, Miles and May 

modelled the bar and groove pattern on refiner 

plates by including generalized friction terms in 

their equations. Thus they introduced separate 

tangential and radial coefficients of friction to 

reflect the fact that it is easier for the pulp to 

move along the grooves rather than across the 



bars. To take the bar and groove features into 

account more fully, Fan, Jeffrey and Ouellet [2] 

have derived a model to complement the work 

done by Miles and May. It is based on the 

following assumptions : 

• Discontinuous medium : the pulp  

consists of individual flocs of wood 

pulp traveling through the refiner. 

• The refiner is divided into 3 regions : 

gap, stator and rotor regions. The 

individual flocs move from one region 

to the other. 

• The floc velocity u depends on the 

region. If v is the “Miles-May” velocity, 

then u=v in the rotor, u=1/2v in the gap, 

and u=0 in the stator. 

 

Each floc is individually followed throughout the 

refining zone. To model is advanced by dividing 

the time into equal time steps. At each time step, 

the state of the refiner is defined by all the flocs' 

radial and regional (gap, rotor or stator) 

positions. The individual flocs will move from 

one region to another according to a probabilistic 

law. The aim of this paper is to continue and 

extend this Fan-Jeffrey-Ouellet model to 

investigate plate clash. 

Modified Stochastic Model 

We divide the interior of the refiner into 3 

regions. The grooves on the rotor, the grooves on 

the stator and the gap between the bars (the 

refining region). This is illustrated below. 

 

 
The pulp flocs move between the regions 

stochastically at each time step. In [2], the 

probability that a floc moved from one region to 

another was fixed. Here the probability depends 

upon the density of pulp in each region, and on 

the cross-sections of the regions. The full details 

are given in [3]; here we give a summary.  The 

probability of a floc moving from a source 

region to a target region is assumed to be a 

product of two terms. The ratio of the cross-

sectional areas of the target and source regions 

and the difference between the actual local pulp 

density and the maximum possible density. It 

should be noted that this local density varies with 

position in the refiner, but it can be calculated 

using the data of the simulation. 

 

Compression of the Pulp Pad 
In order to calculate the relation between the size 

of the plate gap and the specific energy, we 

assume that the axial thrust is supported by the 

flocs in the gap region, and in the first instance 

ignore the contribution from steam pressure. In 

the short time that a collapse occurs, it seems 

unlikely that steam pressure could change 

significantly. We will fix the plate gap, and our 

goal will be to compute the specific energy and 

motor load in terms of  that given value. 

The flocs between the bars are compressed. We 

use the Compression Equation from Han [3] to 

calculate the load each floc can support. The 

equation is an empirical relationship between the 

pulp pad density ρ and the applied stress σ. It is 

written as: 

 

ρ =M σ^N, 

 

where M and N are constants describing the pulp 

properties. For our simulation, we used M=3 and 

N=0.397, corresponding to black spruce. 

Floc Behaviour in the Gap 

We assume that under zero load, a single floc 

would be spherical. Its density is then ρmin. 

If we know the force supported by a single floc, 

we can calculate the total load of the refiner, as 

we know how many flocs are in the gap at each 

time step. We now assume that a floc of radius R 

responds to compression  with a height reduction 

only, as illustrated below. 



 
 

The force exerted by the plates on the floc is 

calculated in terms of the plate gap g, as follows. 

The contact area A between the floc and the 

plates is π (R^2-g^2/4), and therefore the density 

of the floc is 

 

ρf =m/πg(R^2-g^2/12) 

 

From the Compressibility Equation, we obtain 

the applied thrust on one floc in the gap as 

  

L = A (m/πgM(R^2-g^2/12))^(1/N) 

 

where M,N are the constants given above in the 

compression equation. 

 

Compression between bars 
When the gap becomes very narrow, the flocs 

cannot fit completely into the gap. If this is not 

assumed, then it is found that the model 

predictions are unrealistic, in that the motor load 

continually increases. In this situation we 

suppose that the floc can partially enter the gap 

and be compressed. The basis of the calculation 

is shown in the diagram. 

 
The proportion of the floc in the gap is denoted 

by p and is given as a function of gap g and floc 

diameter d by the equation p=(g/d)^q, where q is 

a constant. In practice, the value assumed for q 

has not much influence on the computed motor 

load. The various curves presented above for 

motor load against gap were computed using 

various values of q. This assumption is similar to 

the common assumption that flocs are stapled 

onto the leading edge of the bars, and consistent 

with the observation that narrow gaps lead to 

fibre cutting. 

 

Calculation of the Motor Load  
At each time step, we calculate the drag created 

by each floc on the plates, and add this up over 

all flocs. Thus if we suppose that the same μ 

tangential coefficient of friction applies to each 

floc, then the i-th floc contributes to the motor 

load    

Motor load from one floc = μL ωr ,  

where ω is the rotation rate and r is the radial 

position of the floc (which will be different for 

each floc). During the simulation, a record is 

kept separately of the radial position and the 

region of each floc, therefore the computer 

simulation can run through the table of flocs and 

compute the contribution to the motor load from 

each floc. 

 

Implementation 
A program was written in C to calculate the 

properties of this model. Up to 10000 flocs could 

be simulated within the refiner without 

difficulty. A table is maintained during the 

simulation with one entry for each floc. As flocs 

enter the refiner, they are added to the table,and 

those leaving are removed. For each floc, its 

current radial position, together with its region 

and velocity are recorded. From this table, the 

local densities throughout the refiner can be 

computed. 

The physical parameters used were 

Floc size (mass): 0.11 g 

Minimum floc density: 146 kg/m^3 

Uncompressed floc radius: 5.6 mm 

Maximum density in any region: 1000 kg/m^3. 

 

The refiner parameters were typical values: 

Inner radius: 43 cm 

Outer radius: 57 cm. 

Rotation speed: 188 rad/s 

Feed rate: 1.05 kg/s 

 

Results and Discussion  
The computed motor load as a function of plate 

gap has already been presented in the 

introduction. Since feed rate is assumed constant, 

the graph of specific energy is similar. The order 

of magnitude of the computed load is reasonable 



for a refiner, but the real interest lies in the shape 

of the curve. It has the same shape as the 

qualitative curve postulated by [5] to describe the 

problem of plate clash. The main contribution of 

this model has been to demonstrate a mechanism 

to explain this curve. 

Since this has been a purely theoretical 

investigation, the next step would be to compare 

with experiment. Unfortunately, since 

commercial practice requires that plate clash be 

avoided, there is no quantitative data available in 

the literature. 

A shortcoming of this investigation is the fact 

that the simulation has been conducted assuming 

that the operating conditions are steady. 

Discussions with mill operators suggest that the 

main danger of plate clash does not arise during 

steady operation, but rather during the period in 

which a refiner is being moved from one 

operating set point to another. The basic 

simulation method used here can handle time 

dependent conditions, and some results were 

included in [3], but they do not shed any 

additional light on plate clash. 

From the theoretical point of view, a reason for 

pursuing this work is that plate clash is a 

qualitative phenomenon. Most models of refiner 

operation contain many adjustable parameters. If 

the only test is quantitiative agreement with 

measurements, then it is difficult to test a theory 

with many adjustable parameters. The problem 

of plate clash, however, is a qualitative effect 

that should be subject to simulation and testing 

while remaining insensitive to actual parameters. 
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