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Abstrat

Three topis are disussed that relate to the teahing of linear algebra using omputers

(here the term omputers inludes alulators). The �rst topi is the variation in notation

and terminology both between books and omputer systems, and between di�erent omputer

systems. The seond topi is the importane of numerial linear algebra, and how it beomes

more diÆult to avoid numerial aspets of the subjet one omputers are used in teahing.

The �nal topi is the Turing fatoring of a matrix. This is a fatoring approah to row

redution, and if it is taught in ourses, students an transfer what they know to omputers

with a minimum of diÆulty.

1 Introdution

Teahing linear algebra with omputers requires a o-operative e�ort between teahers and

system developers to math ourse material and software. Neither omputer software nor

ourse material an remain stati. When omputers were �rst used in teahing, students sat

down with alulators or general purpose software and ontinued to study the same onepts

and tehniques that existed before alulators. In the future we an expet software to adapt

itself more losely to teahing requirements, but we must also expet ourse ontent will

evolve, whether we will it or no, as it adapts to a \material hange of irumstanes", to use a

legal term. Therefore, many deisions remain to be made by teahers and system developers

regarding the shape of software and the shape of ourses. This artile disusses questions in

three general areas, and draws on experiene at the University of Western Ontario (UWO),

where engineering students have been required to buy and use HP48 alulators in their lasses

and in their examinations.

Courses alled `linear algebra' over a number of variations, di�ering basially in the weight

they give to theory, appliations, and numerial topis, and therefore any disussion must be

lear on what type of ourse is being addressed. Perhaps the most ommon �rst ourse in

linear algebra (espeially in North Ameria) ombines setions on matrix methods for solving

simultaneous linear equations with setions on the study of matrix algebra as a onrete

example of a vetor spae. Appliations are given short shrift, beause students don't like

them. A more abstrat treatment of linear algebra|what we might all a vetor-spae ourse|

is usually left to a later ourse for mathematis majors, and is sometimes used as a vehile

for an introdution to axiomati algebra; the other type of advaned ourse is numerial

linear algebra, whih may be taught as part of a ourse on numerial analysis. The students

also should inuene the ourse. For engineering students, it seems reasonable to emphasize

omputations and appliations, and for mathematiians, mathematial onepts.
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The major use of omputers has been to assist students with matrix manipulation. Usually

the students will be taking a ourse, suh as the one desribed above, whih inludes pratial

omputations (solving systems, �nding eigenvalues) and some introdutory treatment of vetor

spaes (the ideas of basis, subspaes, mapping between spaes). Consequently, the fous here

is on matrix omputations in the servie of linear algebra.

In an e�ort to disguise, somewhat, our own prejudies, we have presented the disussion in

the form of questions.

2 Representations and Operations

The questions in this setion refer to the basi design deisions upon whih a software system is

based. We use the following notation. Salar quantities are denoted by Greek letters; vetors

are denoted by lower-ase roman letters; matries are denoted by upper-ase roman letters.

2.1 Notation

The �rst question is

what standard notation should a omputer system use?

Mathematial handwriting reognition software is not yet generally available. This fores om-

promises on mathematial notation in the presene of omputers. Let us ignore for the moment

the di�erent notations in use for matrix entry or display, and onsider just the transpose of a

matrix. In textbooks, the transpose of A is variously denoted as

A

T

; A

t

; A

0

; A

�

; A

H

(the last being used exlusively for Hermitian or onjugate transpose). The omputing lan-

guages all hoose notation other than A

T

, A

t

, or A

H

beause it would be too diÆult to

distinguish this from raising A to a power (we suspet there is at least one paper somewhere

that does use A

t

to mean raising A to the power t). Matlab uses A' to mean Hermitian trans-

pose and A.' for ordinary (non-onjugated) transpose, while Maple uses Transpose(A) for the

ordinary transpose, and HermitianTranspose(A) otherwise. The HP48 series alulators use

TRN or TRAN for Hermitian transpose and do not appear to have a ommand for ordinary

transpose (other than suessively using TRN and CONJ); onversely Derive and Mathematia

have ommands for ordinary transpose and not the Hermitian one.

The di�erent notational onventions in use prior to omputers have thus only multiplied;

and what the omputer uses will almost ertainly not math the textbook.The resulting burden

on student memory may play a useful pedagogial role, but it is also a potential soure of

onfusion, espeially when more than one omputer system is used.

Notation, though often super�ially treated when used in teahing, is one of the more

signi�ant topis taught; we often onvey more in how we hoose to denote things than in our

alulations. The isomorphism between a row and a olumn vetor of the same dimensions is

rarely explained arefully; but students get used to multiplying matries by olumn vetors

on the right and row vetors on the left, and an be onfused if a omputer system does this

di�erently. For example, the HP alulators display vetors horizontally, an obvious saving of

sreen spae. We note that tensor notation for multipliation, namely a

ij

b

j

, does not rely so

muh on student memory of how matrix multipliation works (but does require that they get

used to the summation onvention, whih is useful for higher-order tensors).



2.2 Di�erent types of arrays

The seond question is

should a omputer system distinguish between salars, vetors and matries?

Two systems that onveniently illustrate di�erent positions on the representation question are

Matlab and the HP48/49 alulators. In Matlab, the data storage makes no distintion

between salars, vetors and matries, storing all objets as a single type of array; the HP48

has separate data strutures for all three types and enfores operational rules between them.

In the HP48, a salar is a bare number, for example, 0:67 ; a vetor is an array enlosed in

single brakets, e.g. [0:67; 2; 3℄; a matrix is an array of vetors, e.g. [[0:67; 2; 3℄; [�1;�2;�3℄℄.

A one-dimensional row matrix [[0:67; 2; 3℄℄ is di�erent from a vetor. In the HP, the following

operations all generate error messages.

1+[1℄ , 1+[[1℄℄ , [1℄+[[1℄℄ .

For the purposes of multipliation, vetors an be ombined with matries. Thus the following

are legal operations

�

[1; 2; 3℄

[4; 5; 6℄

�

2

4

[1℄

[2℄

[3℄

3

5

;

�

[1; 2; 3℄

[4; 5; 6℄

�

[1; 2; 3℄ :

In the �rst ase, a 2 � 3 matrix is multiplied by a 3 � 1 matrix and a 2 � 1 matrix will be

returned; in the seond ase, the matrix is replaed by a vetor, and the result will be a vetor

also. In ontrast, the expression

�

[1; 2; 3℄

[4; 5; 6℄

�

[[1; 2; 3℄℄

is not legal syntax. Derive and Mathematia follow similar onventions, but with some varia-

tions.

InMatlab, a 1�1 matrix an have several interpretations. Thus the following operations

generate error messages in an HP48 alulator, but are legal in Matlab.

[1℄

2

4

[1℄

[2℄

[3℄

3

5

; [1℄ +

�

[1; 2; 3℄

[4; 5; 6℄

�

:

In an abstrat vetor spae, the operations � + v, � + A, are not de�ned, but �v and

�A are de�ned. Clearly a teaher who wishes to stress this fat had better keep the students

away from the omputer during this part of the ourse, or prepare to explain whatMatlab is

doing. The point is that an array is both a data struture and a mathematial objet. Sine

Matlab uses arrays for many more tasks than just linear algebra, all of its extensions are

onvenient, and make sense in ontext. The teaher must remember, however, that Matlab

is now a general purpose omputational system, and not just a study aid for linear algebra, or

more spei�ally, matrix analysis, and therefore it does not on�ne users to the narrow streets

of linear algebra.

2.3 Matrix and array operations

The next question is

should omputer systems de�ne operations that are not part of standard linear

algebra texts?



Most mathematial software pakages have extended the operations that an be performed

on matries beyond the operations de�ned in linear algebra. The most obvious operation is

division. Many teahers of linear algebra or matrix analysis spend some time explaining that

division \does not exist" and that the system Ax = b has the exat solution x = A

�1

b only if

A

�1

exists. Further, the solution annot be written b=A beause this notation does not show

that multipliation must be on the left. Having taught this, the teaher is then onfronted

with the HP48 alulator, whih happily aepts b=A. Also if b and A are plaed on the stak,

then pushing the � button produes the solution of Ax = b. InMatlab, the statement A=B

omputes the X that solves the problem B

T

X

T

= A

T

in the sense of least squares. Explaining

this to students requires that they be taught least-squares solutions.

Some years ago, questions were set on UWO exams following a model found in many books:

Does the following system of equations for fx; yg have a solution?

5x+ 3y = 3

�x+ y = 4

4x+ 4y = 8

The expeted response was a row-redution of the system followed by the onlusion \no".

As it happens, if the last onstant is 7 rather than 8, then the system has the exat solution

x = �9=8; y = 23=8, beause in that ase the last equation is the sum of the other two, but

no solution exists to the problem as printed. Many students, however, entered the system into

their HP48 alulators and used the menu item \Solve linear system" to disover, apparently,

that a solution existed, and omplained when their answers were marked wrong

1

. The same

problem is present in Matlab, where the operation Anb also is de�ned to return a least-

squares solution. The diÆulty with general purpose software is that students will sooner

or later wander into advaned areas that the teaher is not expeting. One suh an area of

misoneption is unovered, there are two responses: �rst, ditate instrutions in the lassroom

and in the exam that this menu item must not be used, or, seond, modify the ourse so that the

students are taught least-squares and then the responsibility for hoosing the orret ommand

beomes theirs. If least-squares is inluded only to explain alulator behaviour, then many

teahers might objet to the thought that their ourse material is being deided for them by

a alulator ompany.

Division is not the only problem, onsider simple multipliation. In the equation

(A�)B = A(�B) ;

the multipliations are di�erent, those between � and a matrix being ommutative, and those

between matries being non-ommutative. This distintion is not reorded in the notation

used in any books we know, but it is reorded in some software systems, spei�ally Maple. In

Maple, the equation annot be written (A��)�B = A�(��B), beause A�B is illegal notation

for the non-ommutative matrix produt. Instead, one must write (A � �):B = A:(� � B).

In addition, many pakages implement array arithmeti, also alled element-by-element

arithmeti. The array produt is also alled Hadamard produt, after usage introdued by von

Neumann [4℄. In Matlab, the notation for array produt and array division is

[a; b; ; d; : : :℄ : � [w; x; y; z; : : :℄ � [aw; bx; y; dz; : : :℄

[a; b; ; d; : : :℄ := [w; x; y; z; : : :℄ � [a=w; b=x; =y; d=z; : : :℄

1

A hek of their apparent answer by omputing the residual, something expliitly enouraged in the ourse,

would have exposed their error to them; so their marks were not improved by their omplaints



From the point of view of linear algebra, these operations are not important, beause they

are not matrix operations, but for teahers of introdutory numerial analysis ourses, the

notation is the soure of endless debugging problems for the students. For professionals, the

ompatness of this notation is a great onveniene.

In Maple, the elementwise operations are available by working with Arrays and not Matries

(these are di�erent from `arrays' and `matries' in Maple, by the way; the ase of the initial

letter is signi�ant). One an eÆiently hange the type of a two-dimensional Array to be

a Matrix by issuing the ommand rtable_options(A,subtype=Matrix). This is useful for

programming, but not something that most teahers would want to inlude in a �rst ourse

on linear algebra.

2.4 The answers

It has not been our intention to sell one partiular notation or to reommend one omputer

system over others. Eah teaher will have to selet some approah to linear algebra, and

then math the software to the ourse. If the students in the ourse are omfortable with

omputers, then usage questions are less important than in the ase of students who are not

omfortable. If ever the mathematiians an agree on notational issues, then omputers an

be asked to follow them, but only if the mathematiians agree to hange to a notation that an

reasonably be implemented. In the meantime, the mathematis teaher is faed with hoies

both in textbooks and in software. The one point we do want to make is that the deision to

adopt omputers fores suh notational hoies on the teaher.

3 Numerial or exat linear algebra?

The main question we ask in this setion is

should teahers inlude any material on numerial linear algebra (i.e. omputation

in the presene or rounding errors aused by non-exat numerial data) in a �rst

ourse?

The subjet of numerial linear algebra is a large and important one, both for industry and

siene. However, most teahers of matrix analysis would prefer to avoid any mention of the

subjet in a �rst ourse. There are two reasons, however, why they might not be allowed to.

3.1 Di�erent (sometimes better) proedures

The �rst reason is that general purpose software, suh as we have been desribing, must

perform orretly for professional users as well as students. Therefore many ommands that a

student might use will give results in the form that is required by advaned users.

For example, LU fatoring is often taught without pivoting

2

, or at most with pivoting

to avoid exat zeros. Both the HP48 and Matlab, however, always use partial pivoting in

this operation, beause professional pratie requires it. Therefore any student using either of

these produts to hek homework problems may fae the diÆulty that the omputer answers

problems di�erently from the textbook. Similar remarks apply to QR fatoring: the HP48

fators AP = QR, where the P matrix again is required by numerial linear algebra.

2

We might all this a useful \lie-to-hildren"[6℄. The pedagogial point is to avoid unneessary burdens on the

student's �rst enounter with the onept.



It an also be argued that we should look to the future. If the students are in a program suh

as engineering, where we an hope that some of them will atually see large linear problems

in their future employment, then it is a good thing to start introduing orret ideas as early

as possible.

3.2 Inorret results

Should system programmers design their produts so as to expose or to disguise the

e�ets of rounding errors?

Some years ago, the following problem was set on a UWO examination:

Find the rank of the matrix

�

1 2=3

3 2

�

.

Of ourse the expeted solution was for the students to see that multiplying the �rst row by 3

gave the seond row, and hene the rank is 1. However, many students typed the matrix into

their alulators and seleted the menu item \rank". The alulator returned 2, beause it

worked with oating point numbers, and rounding errors had orrupted the solution. Students

�nd a disussion of inorret results from alulators (suh as in [1℄) to be shoking. Thus,

this simple problem reated a head-on ollision between the students and numerial linear

algebra. In this irumstane the teaher has several options: the obvious ones are not to

use a alulator, or to ensure that the students will get orret results by setting only those

problems that have been pre-tested on the alulator. This is awkward, now that there are so

many menus and methods to try; it is diÆult to antiipate just whih menu item a student

will press into servie.

More options exist. The designers of software an give in to the temptation to disguise the

problem by foring tiny numbers to zero. The row redution routines in Matlab have suh

a default behaviour. It should be noted, though, that examples an be onstruted showing

that any �xed hoie of \tiny" leads to inorret answers. In the short term, suh a quik �x

saves the teaher muh talking, but at the ost of failing to alert students to the dangers that

will fae them in the world of very large matrix problems. Instead of disguising the problem,

one might inorporate some aspets of numerial analysis into the ourse. In this partiular

example, a numerial analyst would omment that rank is known to be a quantity that annot

be reliably omputed, beause it is ill-onditioned.

Yet another option is to swith to exat omputation using a omputer algebra (CA) pak-

age, or a CA enabled alulator. This raises the other spetre of linear algebra: omplexity, in

the omputer siene sense of the `ost' of a omputation. Computations using exat numbers

grow in ost (with the size of the matrix) more quikly than oating-point omputations, be-

ause the individual matrix elements grow in size. For example, if one tries to invert a matrix

of integers, the numerator and denominator of eah element will inrease in length regardless of

the magnitudes of the numbers being represented. As another example, if one tries to ompute

the eigenvetors of a general matrix, then for matries up to 4 � 4, one gets nested radials,

while for larger systems the omputation will be plagued by general algebrai numbers.

One we start to ompute, both stability and omplexity of omputation will fore them-

selves on the attention of the student and teaher sooner or later. The only solution is never

to venture outside the domain of 2 � 2 and 3 � 3 integer matries. If, however, one is going

to do that, then one of the most exiting possibilities that omputers o�er is lost, namely the

hane for students to explore for themselves.



3.3 Never learning the best method

A book on anoeing [5℄ reommends that the �rst paddling stroke to teah students is the

bakstroke,

beause we note a tendeny to revert to the most familiar stroke when ustered.

Many readers will have heard stories of students graduating and going to work in industry, and

then applying mathematis from their undergraduate textbooks. Perhaps they try solving 100

equations in 100 unknowns using Cramer's rule, or searhing for the eigenvalue of a large matrix

by trying to solve its harateristi polynomial. With today's arbitrary preision software, they

might even get the orret answer after a long wait.

We an ask

how far into the future does your ourse projet?

We happily teah hildren that \you annot take 3 from 2" beause we are on�dent that

someone will later introdue them to negative numbers. No one suggests we should hange

this
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. Should we insist that students learn Gaussian elimination with partial pivoting (insist

on less lies-to-hildren); should software vendors program and sell systems o�ering Gaussian

elimination without pivoting (omputers enshrine lies-to-hildren)? In fat, in many intro-

dutory books, every omputational proedure they teah requires later modi�ation for the

purposes of numerial linear algebra. Should we worry about this?

3.4 The answers

At UWO, we have modi�ed the linear algebra that is taught to engineers; it now exhibits

a more numerial slant. Thus we teah partial pivoting and least-squares solutions. Gram{

Shmidt is linked to the QR fatoring on the alulator. We demonstrate, to the students'

horror, the possibility that omputers will return a wrong answer; we do our best to persuade

students to hek their results using their alulators. In ontrast, the linear algebra taught

to our mathematiians remains more traditional. Ultimately, the disussion above ombines

with the personal tastes of the instrutor to deide what ation is taken. Again, the priniple

is that the presene of the omputer will fore these issues into the area of disussion.

4 Row redution and symboli systems

This setion addresses the question

should symboli omputation systems be allowed to ask teahers to modify time-

honoured material in their ourses?

Spei�ally, the time-honoured material is row redution. The teahing of the Gauss-Jordan

redution of a matrix to redued row-ehelon form (RREF) is thoroughly engrained in North

Amerian linear algebra ourses. A soure of frustration, for students and teahers alike, is

the fat that a lot of arithmeti is required and subtration and division errors are ommon.

The automation of this proedure, therefore, seems to be a natural appliation of omputer

tehnology. Unfortunately the spread of symboli systems has reated a problem for designers

and teahers.
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Consider the plight of some adventurous students at UWO who deided to use a omputer to

solve some eigenvalue problems by an original method. Instead of omputing the harateristi

polynomial using det(A � �I), they argued that the real problem was to �nd non-trivial

solutions to (A��I)x = 0. Surely, they argued, we an simply row-redue the matrix and see

when it is singular. The idea is not so unusual, beause many textbooks inlude problems in

whih they present a system of equations with one or more parameters, and the students must

deide when the system fails to have a unique solution. Using their favorite CA system, the

students typed in

Find-Redued-Row-Ehelon-Form

�

1� � 3

�2 7� �

�

:

Of ourse, all they got bak was the identity matrix and were none the wiser.

There are several solutions to this problem. The �rst one is to say to the students \That's

what you get for being adventurous. In future, never try to solve any problem in a way di�erent

from what I showed you in lass". No one would want a teaher to say that. A seond solution

is to go to the writer of the CA system and demand that the system be rewritten using provisos,

or speial ase analysis [2℄. Thus, in the example, the system would return an identity matrix

together with a statement that �

2

� 8�+ 13 6= 0. A third solution, however, is to modify the

de�nition in the textbook, and the way that row redution is taught, so that the omputer

systems an obey the de�nition and yet not lose information. Suh an approah uses the

Turing fators of a matrix.

4.1 Turing fators of a matrix

The de�nition of Redued Row Ehelon Form fores us to divide out pivots. In the example

above, this fored us to disard the harateristi polynomial. The nub of the problem is that

row redution is a transformation of one matrix into another matrix, and the transformation

fores us to throw away information. What if we de�ne a new format that retains all informa-

tion? The key observation is that everywhere else in modern linear algebra, people work by

fatoring a matrix. English speakers also use the term deomposition for a matrix fatoring.

Thus, in linear algebra, we �nd LU fators

4

, QR fators and singular-value fators U�V

T

(usually alled the SVD, instead of the SVF).

The new format for RREF is an extension of LU fatoring. The LU fatoring of a matrix

has been generalized to a retangular, symboli matrix[3℄; we have alled this the `Turing

fatoring' in honour of the remarkable paper published in 1948 by Alan Turing [7℄ in whih

he proved that row-redution is equivalent to the following `resolution into the produt of

matries'

PA = LDU ;

where P is a permutation matrix, L is unit lower triangular, D is diagonal with nonzero entries,

and U is unit upper triangular. Modern textbook writers prefer to write this as PA = LU , and

either ombine the D with the L (sometimes alled Crout fatoring) or with the U (Doolittle

fatoring). The hoie is made in order to reprodue what the writers were taught when they

were students.

Many textbooks and software pakages onsider LU fatoring to be appliable only to

invertible matries. Thus in Matlab version 5.3 (release 11), applying the funtion lu to a

4
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non-square matrix produed an error message; in Matlab 6 (release 12), this is no longer the

ase, but Mathematia and the HP still insist on an invertible matrix.

In fat, any retangular matrix A has the Turing fators

PA = LDUR :

Here, the R matrix is the unique redued row-ehelon form of A. The matrix P is a preondi-

tioning matrix; it is usually a permutation matrix, but it an be a more general matrix. For

example, the standard software pakage LAPACK uses row and olumn equilibration (routines

xGESVX) and this an be desribed using preonditioning matries.

4.2 What an we do with this?

We return to the eigenvalue problem above and use Turing fatoring:

�

0 1

1 0

��

1� � 3

�2 7� �

�

=

�

1 0

1

2

(�� 1) 1

��

�2 0

0

1

2

(�

2

� 8�+ 13)

��

1

1

2

(�� 7)

0 1

��

1 0

0 1

�

Notie the rather useless row-ehelon form at the end, and notie that the harateristi

polynomial has appeared naturally in the D matrix. Students ould be taught the simple

rule \always hek the ases detD = 0 separately", but it is rewarding to understand where

this rule omes from.

The importane of detD = 0 omes beause we are interested in speial ases, and speial

ases are often points of disontinuity; indeed, this is why they are interesting and onsidered

speial. So we ask about the ontinuity properties of Turing fatoring.

Consider the RREF of the matrix A(k) =

�

1 0

0 k

�

as the parameter k passes through 0.

The RREF is the identity I, exept for a sudden, disontinuous hange at k = 0. Linear algebra

ourses do not usually disuss the limit of a matrix, but under any reasonable de�nition, the

limit of RREF(A) as k ! 0 must be the unit matrix. So we have lim

k!0

RREF (A) = I 6= A(0).

Under any de�nition of ontinuity, the RREF of A is disontinuous at k = 0.

De�nition. A matrix A(x) is ontinuous at x = a if eah of its elements is ontinuous at

x = a.

One we beome austomed to thinking of (interesting) speial ases as disontinuities,

we an frame the following theorem.

Theorem: Let A(x) be a matrix depending upon one or more variables or parameters x,

and let A be ontinuous at a point x = a. For any �xed x, let A(x) have the Turing fatoring

given by P (x)A(x) = L(x)D(x)U(x)R(x). If detD(x) 6= 0 in some neighbourhood of x = a,

then R(x), L(x), D(x), U(x) are all ontinuous at x = a and moreover P (x) may be taken

onstant in a neighbourhood of x = a.

This theorem is proved in [3℄ and means two things.

� A CAS an give an RREF whih ontains visible failure built in. Plaes where an

RREF might fail are no longer invisible beause of the de�nition.

� The disontinuity information is olleted in a single plae, namely, along the diagonal

of D.



To return to the eigenvalue problem, the Turing fators of a matrix A � �I, will always

lead to a diagonal matrix D in whih the diagonal entries are

p

1

(�); p

2

(�)=p

1

(�); : : : ; p

n

(�)=p

n�1

(�)

where p

k

(�) is a polynomial of degree k, and in the last entry, p

n

(�) is the harateristi

polynomial. Thus, detD = p

n

(�) and only the roots of the harateristi polynomial are speial

ases. For some matries, a fration p

k

=p

k�1

might simplify; this would simply mean that a

preliminary splitting of the harateristi polynomial had been found during the omputation.

4.3 The bene�ts

The immediate bene�t to the teaher of Turing fatoring is the ombining together of row

redution and LU fatoring. If LU fatoring was not previously in the ourse material, then it

omes along at no extra ost to the student. A ommon objetion to Turing fatoring is that it is

\a bit rih" for beginning students. Its omputation also threatens a great deal of omputation.

However, the point of omputers is exatly to take over the burden of omputation. Provided

students know what Turing fators are, omputer algebra systems an easily obtain them for

the student.

The immediate bene�t to the system designer is that a mehanism beomes available for

returning speial ase information bak to the user. This obviates the need to develop new

user interfaes that allow the passing bak to the user of proviso information. The bene�t to

the student is a gentle introdution to one of the most powerful ideas of modern linear algebra:

fatoring.
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