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Abstract

A new procedure for finding exact travelling wave solutions to the modified Camassa-
Holm and Degasperis-Procesi equations is proposed. It turns out that many new
solutions are obtained. Furthermore, these solutions are in general forms, and many
known solutions to these two equations are only special cases of them.
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1 Introduction

For the function u(x, t), the Camassa-Holm (CH) equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (1)

and the Degasperis-Procesi (DP) equation

ut − uxxt + 4uux = 3uxuxx + uuxxx (2)

have been investigated by many researchers, for example, in [1–10]. The CH
equation (1) is a shallow water equation and was originally derived as an ap-
proximation to the incompressible Euler equation, while the DP equation (2)
can be considered as a model for shallow water dynamics. One of the main
features for the CH equation and the DP equation is that they admit peakon
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solutions. The name “peakon”, which means travelling wave with slope dis-
continuities, is used to distinguish them from general travelling wave solutions
since they have a corner at the peak of height c, where c is the wave speed.

Since the CH and DP equations have rich structures, Wazwaz [11] suggested
a modified form of the Camassa-Holm equation (called mCH)

ut − uxxt + 3u2ux = 2uxuxx + uuxxx (3)

and a modified form of the Degasperis-Procesi equation (called mDP)

ut − uxxt + 4u2ux = 3uxuxx + uuxxx. (4)

They are obtained by changing the nonlinear convection term uux in equations
(1) and (2) to u2ux. Wazwaz [11] obtained two bell-shaped travelling wave
solutions of wave speed c = 2 for the mCH equation (3), and two bell-shaped
travelling wave solutions of wave speed c = 5

2
for the mDP equation (4).

Later in [12], Wazwaz found more solutions of wave speeds c = 1 and c =
2 for the mCH equation, and more solutions of wave speed c = 5

2
for the

mDP equation. Recently, Wang and Tang [13] obtained some travelling wave
solutions of wave speed c = 1

3
and some peakon solutions of wave speed c = 3

for the mCH equation, and some travelling wave solutions of wave speed c = 1
4

and some peakon solutions of wave speed c = 4 for the mDP equation. Liu and
Ouyang [14] found the coexistence of bell-shaped solution and peakon solution
of the same wave speed c = 2 for the mCH equation, and the coexistence of
bell-shaped solution and peakon solution of the same wave speed c = 5

2
for

the mDP equation. It is interesting to note that Ma, Yu and Ge [15] used a
generalized auxiliary equation method to study the mDP equation differently.
Some researchers studied the bifurcations and peakons of the mCH equations
[16–18].

Recently, the authors [19] proposed an algorithm for solving the travelling wave
solutions to nonlinear partial differential equations. In this paper, based on the
work in [19], a procedure is proposed for finding the travelling wave solutions
to the mCH equation (3) and the mDP equation (4). It turns out that many
new travelling wave solutions are obtained. Most importantly, these solutions
are in general forms. In other words, unlike the wave speeds of the known
travelling wave solutions mentioned above which are some specific numbers,
the wave speeds of the travelling wave solutions obtained in the paper can be
expressed as F (k)

G(k)
, where F (k) and G(k) are some expressions with radicals

in k, and k is an arbitrary constant. Many known solutions mentioned above
are only special cases of them. Consequently, these new solutions would be
useful for better understanding the physical phenomena associated with these
equations.

The rest of this paper is organized as follows. In Section 2, the main steps
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of the procedure are presented and discussed. In Section 3, new travelling
wave solutions to the mCH equation are obtained. In Section 4, new travelling
wave solutions to the mDP equation are obtained. Finally, in Section 5, some
technical explanations for the procedure are given.

2 The procedure

The proposed procedure is based on the tanh method [20–23]. We select a list
of functions instead of just tanh for finding travelling wave solutions. The list
of functions we choose is: [rational, exp, csch, sech, tanh, csc, sec, tan, cn, sn],
where cn and sn are Jacobi elliptic functions.

The main steps of the procedure are as follows, where pde is the mCH equation
(3) or the mDP equation (4), and f is one of the functions in the list above.

S1 Substituting u(x, t) = U(η), where η = λ1x + λ2t, into pde gives an ODE
ode with dependent variable U(η). The reason why we use η = λ1x + λ2t
instead of η = x + λt will be explained in Section 5.

S2 Find the balancing number m of ode which is the highest exponent in
T = f(η) obtained by substituting U(η) = Tm into ode and then balancing
the highest degree terms of T . First, we determine the degree of each term
in ode with respect to T . Since the degree of dpU(η)/dηp with respect to T
is m+p and the degree of U(η)q with respect to T is qm, we obtain a list of
term degrees for ode in the form of [c1m + d1, . . . , ckm + dk]. Then, we find
the degree with maximum value of c and the degree with maximum value
of d, and then by equating them we obtain the balancing number m.

S3 Substituting U(η) =
∑m

i=−m aiT
i into ode and eliminating the common

denominator gives an equation. It is easily seen that for every function f
in the function list above, any order derivative of f(η) with respect to η
is either a polynomial in f(η) or of the form Ψ

√
Γ, where Ψ and Γ are

polynomials in f(η). Therefore, the resulting equation is of the form

Φ + Ψ
√

Γ = 0, (5)

where Φ, Ψ and Γ are polynomials in f(η).
S4 Setting all the coefficients of the different powers of T in Φ and Ψ of (5)

to zero gives a system of polynomial equations.
S5 Solving the system of polynomial equations leads to the determination of

the parameters a0, ai, a−i(i = 1, . . . ,m), λ1, and λ2.
S6 Substituting the solutions obtained into U(η) =

∑i=m
i=−m aiT

i gives the
travelling wave solutions of f type.

As an explanation of the procedure, let f be the function csc, and pde be the
mCH equation (3).
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In step S1, substituting the formula u(x, t) = U(η) into equation (3) gives the
following ODE:

λ2U
′ − λ2

1λ2U
′′′ + λ1

(
U3

)′ − 1

2
λ3

1

(
(U ′)2

)′ − λ3
1 (UU ′′)′ = 0. (6)

it is noteworthy that we do not integrate the resulting ODE (6) and set the
constant of integration to zero. The reason will be discussed in Section 5.

In step S2, the list [m + 1,m + 3, 3m + 1, 2m + 3, 2m + 3] of term degrees of
equation (6) is calculated, then the balancing number m = 2 is obtained by
equating the terms 3m + 1 and 2m + 3.

In step S3, substituting

U(η) =
2∑

i=−2

aiT
i, (7)

where T = csc(η), into (6) and eliminating the common denominator give an
equation of form (5) with Φ = 0, Γ = csc2(η) − 1 and Ψ is a long expression
(so we omit it).

In step S4, setting all the coefficients of the different powers of T in Ψ to zero
gives a system of 12 polynomial equations:

6 λ1a−1a2a−2 + 3 λ1
3a−2a1 + λ2a−1 + 3 λ1a−1

2a1 + 6 λ1a−2a0a1

−4 λ1
3a−2a−1 + λ1

3a−1a0 + 3 λ1a0
2a−1 + λ1

2λ2a−1 = 0,

λ2a1 + λ1
2λ2a1 + 3 λ1

3a−1a2 + λ1
3a0a1 + 6 λ1a−1a0a2

+3 λ1a−1a1
2 − 2 λ1

3a−2a1 + 6 λ1a−2a2a1 + 3 λ1a0
2a1 = 0,

6 λ1a0
2a2 + 8 λ1

2λ2a2 − 8 λ1
3a−2a2 + 6 λ1a0a1

2 + 6 λ1a−2a2
2

+8 λ1
3a0a2 + 2 λ2a2 − 2 λ1

3a−1a1 + 3 λ1
3a1

2 + 12 λ1a−1a2a1 = 0,

4 λ1
3a−1a2 + 2 λ1

2λ2a1 − 7 λ1
3a1a2 + 2 λ1

3a0a1 − 6 λ1a0a1a2

−λ1a1
3 − 3 λ1a−1a2

2 = 0,

5 λ1
3a1

2 − 6 λ1a1
2a2 − 12 λ1

3a2
2 + 12 λ1

2λ2a2 + 12 λ1
3a0a2

−6 λ1a0a2
2 = 0,

3 λ1
3a−1

2 + 2 λ2a−2 + 8 λ1
2λ2a−2 + 6 λ1a−2

2a2 + 8 λ1
3a−2a0

+12 λ1a−1a1a−2 + 6 λ1a−1
2a0 + 6 λ1a0

2a−2 − 8 λ1
3a−2

2 = 0.

λ1a−1
3 + 6 λ1a−2a0a−1 + 7 λ1

3a−2a−1 + 3 λ1a−2
2a1 = 0,

λ1a−2a−1
2 + 2 λ1

3a−2
2 + λ1a−2

2a0 = 0,

(8)
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3 λ1a1a2
2 − 10 λ1

3a1a2 = 0,

λ1a2
3 − 8 λ1

3a2
2 = 0,

λ1a−2
2a−1 = 0,

λ1a−2
3 = 0.

In step S5, solving the system above leads to the following solution:

a−2 = 0, a−1 = 0, a0 = a0, a1 = 0,

a2 = −1− 2 a0 +
√

1− 2 a0 − 2 a0
2,

λ1 = 1
4

√
−2− 4 a0 + 2

√
1− 2 a0 − 2 a0

2,

λ2 = 1
8

√(
−2− 4 a0 + 2

√
1− 2 a0 − 2 a0

2
)3

+3
4

√
−2− 4 a0 + 2

√
1− 2 a0 − 2 a0

2 a0.

(9)

Finally in step S6, substituting the solution (9) into (7) gives a csc type solu-
tion to the mCH equation which is the solution u8(x, t) in Section 3.

3 Solutions to the mCH equation

The procedure in Section 2 has been implemented by minor modification to the
software discussed in [19]. We obtain the following travelling wave solutions
to the modified CH equation. All the solutions have been verified.

• Two rational type solutions:

u1(x, t) =
8

x2
. (10)

u2(x, t) =
8

(x− 3t)2
− 1. (11)

• One csch type solution and one sech type solution:

u3 (x, t) = k + α csch2
(

1

4

√
2α x + γt

)
, (12)

u4 (x, t) = k − α sech2
(

1

4

√
2α x + γt

)
, (13)

where
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α = 1 + 2 k +
√

1− 2 k − 2 k2,

γ =
1

4

√
2α (3k − α) .

• Three tanh/coth type solutions:

u5 (x, t) = k +
1

18
α tanh2

(
1

12

√
α x + ψt

)
, (14)

u6 (x, t) = k +
1

18
α coth2

(
1

12

√
α x + ψt

)
, (15)

u7 (x, t) = k +
1

8
β coth2

(
1

8

√
βx + φt

)
+

1

8
β tanh2

(
1

8

√
βx + φt

)
, (16)

where

α =−12− 24 k + 6
√

4− 2 k − 2 k2,

β =−2− 4 k + 2
√

1− 8 k − 8 k2,

ψ =
1

108

√
α (27 k + α) ,

φ =
1

32

√
β (12 k + β) .

• One csc type solution and one sec type solution::

u8 (x, t) = k + α csc2
(

1

4

√
2α x + γt

)
, (17)

u9 (x, t) = k + α sec2
(

1

4

√
2α x + γt

)
, (18)

where

α =−1− 2 k +
√

1− 2 k − 2 k2,

γ =
1

4

√
2α (3k + α) .

• Three tan/cot type solutions:

u10 (x, t) = k +
1

18
α cot2

(
1

12

√
α x + ψt

)
, (19)

u11 (x, t) = k +
1

18
α tan2

(
1

12

√
α x + ψt

)
, (20)

u12 (x, t) = k +
1

8
β cot2

(
1

8

√
βx + φt

)
+

1

8
β tan2

(
1

8

√
βx + φt

)
, (21)

where
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α = 12 + 24 k + 6
√

4− 2 k − 2 k2,

β = 2 + 4 k + 2
√

1− 8 k − 8 k2,

ψ =
1

108

√
α (27 k − α) ,

φ =
1

32

√
β (12 k − β) .

• Three cn type solutions:

u13 (x, t) = γ +
1

6

√
β + 8 k2

(
1− ω2

)
cn−2 (kx + ψt, ω) , (22)

u14 (x, t) = γ +
1

6

√
β − 8 k2ω2 cn2 (kx + ψt, ω) , (23)

u15 (x, t) = γ +
1

6

√
α + 8 k2

(
1− ω2

)
cn−2 (kx + φt, ω)

−8 k2ω2 cn2 (kx + φt, ω) , (24)

where

α = 9− 128 k4
(
1− 16 ω2 + 16 ω4

)
,

β = 9− 128 k4
(
1− ω2 + ω4

)
,

γ =−1

2
− 8

3
k2

(
1− 2 ω2

)
,

ψ = 8 k3(1− 2 ω2) + 3 k
(
γ +

1

6

√
β

)
,

φ = 8 k3(1− 2 ω2) + 3 k
(
γ +

1

6

√
α

)
.

• Three sn type solutions:

u16 (x, t) = γ +
1

6

√
β + 8 k2ω2 sn2 (kx + φt, ω) , (25)

u17 (x, t) = γ +
1

6

√
β + 8k2 sn−2 (kx + φt, ω) , (26)

u18 (x, t) = γ +
1

6

√
α + 8k2 sn−2 (kx + ψt, ω)

+ 8 k2ω2 sn2 (kx + ψt, ω) , (27)

where
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α = 9− 128 k4
(
1 + 14ω2 + ω4

)
,

β = 9− 128 k4
(
1− ω2 + ω4

)
,

γ =−1

2
− 8

3
k2

(
1 + ω2

)
,

φ = 8 k3
(
1 + ω2

)
+ 3 k

(
γ +

1

6

√
β

)
,

ψ = 8 k3
(
1 + ω2

)
+ 3 k

(
γ +

1

6

√
α

)
,

It is noted that the wave speeds of the known travelling wave solutions to
the mCH equation in the literature are some specific numbers, while the wave
speeds of the solutions from u3(x, t) to u18(x, t) above are in general forms. In

other words, they can be expressed as c = F (k)
G(k)

, where F (k) and G(k) are some
expressions with radicals in k, and k is an arbitrary constant. Consequently,
many known travelling wave solutions to the mCH equation are only special
cases of them.

For example, if k = −1, then u6(x, t) and u7(x, t) become

u6(x, t) =−1 +
4

3
coth2

√
6

18
(3x− t) , (28)

u7(x, t) =−1 +
1

2
tanh2 1

4
(x− 2t) +

1

2
coth2 1

4
(x− 2t), (29)

which are the solution (1.7) in [13] and the solution (59) in [12] respectively.

If k = 0, then u3(x, t), u4(x, t) and u12(x, t) become

u3(x, t) = 2 csch2 1

2
(x− 2t) , (30)

u4(x, t) =−2 sech2 1

2
(x− 2t) , (31)

u12(x, t) =
1

2
tan2 1

4
(x− t) +

1

2
cot2 1

4
(x− t) , (32)

which respectively are the solutions (58), (57) and (62) in [12].

If k = 1, u10(x, t) and u11(x, t) become

u10(x, t) = 1 + 2 cot2 1

2
(x− t) , (33)

u11(x, t) = 1 + 2 tan2 1

2
(x− t) , (34)

which respectively are the solutions (61) and (60) in [12].
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More real solutions to the mCH equation can be obtained by taking different
values for k. Complex solutions can also be obtained by taking suitable values
for k, in other words, selecting those values for k such that the values inside
the radicals are negative.

4 Solutions to the mDP equation

By the same procedure, we obtain the following travelling wave solutions to
the modified DP equation. All the solutions have been verified.

• Two rational type solutions:

u19(x, t) =
15

2x2
, (35)

u20(x, t) =
15

2(x− 4t)2
− 1. (36)

• One csch type solution and one sech type solution:

u21 (x, t) = k +
3

160
β csch2

(
1

20

√
βx + γt

)
, (37)

u22 (x, t) = k − 3

160
β sech2

(
1

20

√
βx + γt

)
(38)

where

β = 50 + 100 k + 10
√

25− 60 k − 60 k2,

γ =
1

800

√
β(160k − β).

• Three tanh/coth type solutions:

u23 (x, t) = k +
3

5290
β tanh2

(
1

115

√
βx + φt

)
, (39)

u24 (x, t) = k +
3

5290
β coth2

(
1

115

√
βx + φt

)
, (40)

u25 (x, t) = k +
3

11560
α coth2

(
1

170

√
αx + ψt

)

+
3

11560
α tanh2

(
1

170

√
αx + ψt

)
, (41)

where
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α =−850− 1700 k + 170
√

25− 240 k − 240 k2,

β =−1150− 2300 k + 230
√

25− 15 k − 15 k2,

φ =
4

304175

√
β(2645 k + β),

ψ =
1

245650

√
α(5780 k + α).

• One csc type solution and one sec type solution:

u26 (x, t) = k +
3

160
β csc2

(
1

20

√
βx + γt

)
, (42)

u27 (x, t) = k +
3

160
β sec2

(
1

20

√
βx + γt

)
, (43)

where

β =−50− 100 k + 10
√

25− 60 k − 60 k2,

γ =
1

800

√
β(160 k + β).

• Three tan/cot type solutions:

u28 (x, t) = k +
3

5290
α tan2

(
1

115

√
αx + φt

)
, (44)

u29 (x, t) = k +
3

5290
α cot2

(
1

115

√
αx + φt

)
, (45)

u30 (x, t) = k +
3

11560
β cot2

(
1

170

√
βx + ψt

)

+
3

11560
β tan2

(
1

170

√
βx + ψt

)
, (46)

where

α = 1150 + 2300 k + 230
√

25− 15 k − 15 k2,

β = 850 + 1700 k + 170
√

25− 240 k − 240 k2,

φ =
4

304175

√
α(2645 k − α),

ψ =
1

245650

√
β(5780 k − β).

• Three cn type solutions:
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u31 (x, t) = γ +
1

2

√
β +

15

2
k2(1− ω2) cn−2 (kx + φt, ω) , (47)

u32 (x, t) = γ +
1

2

√
β − 15

2
k2ω2 cn2 (kx + φt, ω) , (48)

u33 (x, t) = γ +
1

2

√
α +

15

2
k2(1− ω2) cn−2 (kx + ψt, ω)

−15

2
k2ω2 cn2 (kx + ψt, ω) , (49)

where

α = 1− 15 k4
(
1− 16 ω2 + 16 ω4

)
,

β = 1− 15 k4
(
1− ω2 + ω4

)
,

γ =−1

2
− 5

2
k2

(
1− 2 ω2

)
,

φ = 10 k3(1− 2 ω2) + 4 k
(
γ +

1

2

√
β

)
,

ψ = 10 k3(1− 2 ω2) + 4 k
(
γ +

1

2

√
α

)
.

• Three sn type solutions:

u34 (x, t) = γ +
1

2

√
α +

15

2
k2 sn−2 (kx + φt, ω) , (50)

u35 (x, t) = γ +
1

2

√
α +

15

2
k2ω2 sn2 (kx + φt, ω) , (51)

u36 (x, t) = γ +
1

2

√
β +

15

2
k2 sn−2 (kx + ψt, ω)

+
15

2
k2ω2 sn2 (kx + ψt, ω) , (52)

where

α = 1− 15 k4
(
1− ω2 + ω4

)
,

β = 1− 15 k4
(
1 + 14ω2 + ω4

)
,

γ =−1

2
− 5

2
k2

(
1 + ω2

)
,

φ = 10 k3
(
1 + ω2

)
+ 4 k

(
γ +

1

2

√
α

)
,

ψ = 10 k3
(
1 + ω2

)
+ 4 k

(
γ +

1

2

√
β

)
.

As in the case of mCH equation, the wave speeds of the known travelling wave
solutions to the mDP equation in the literature are some specific numbers,
while the wave speeds of the solutions from u21(x, t) to u36(x, t) above are

in general forms. In other words, they can be expressed as c = F (k)
G(k)

, where
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F (k) and G(k) are some expressions with radicals in k, and k is an arbitrary
constant. Consequently, many known travelling wave solutions to the mDP
equation are only special cases of them.

For example, if k = −11
16

, then u24(x, t) becomes

u24 =−11

16
+

15

16
coth2

√
2

16
(4x− t) , (53)

which is the solution (1.11) in [13].

If k = −15
16

, then u25(x, t) becomes

u25(x, t) =−15

16
+

15

32
tanh2 1

8
(2x− 5t) +

15

32
coth2 1

8
(2x− 5t) , (54)

which is the solution (28) in [12].

If k = 0, then u21 and u22 become

u21 =
15

8
csch2 1

4
(2x− 5t) , (55)

u22 =−15

8
sech2 1

4
(2x− 5t) , (56)

which are the solutions (27) and (26) in [12] respectively.

As in the case of mCH equation, many other real and complex solutions to
the mDP equation can be obtained by taking suitable values for k.

5 Conclusions

In this paper, a new procedure has been proposed for finding the exact trav-
elling wave solutions to the modified Camassa-Holm and Degasperis-Procesi
equations. Many new solutions have been obtained. Most importantly, these
solutions are in general forms and many known solutions to these two equa-
tions in the literature are only special cases of them. There are two important
technical points in this paper.

First, we use the transformation η = λ1x + λ2t instead of η = x + λt in step
S1. The main reason is that, although η = x + λt has fewer parameters than
η = λ1x + λ2t, the corresponding wave speed has the form λ = F (k)

G(k)
which

is more difficult to solve than λ1 = G(k) and λ2 = F (k). For the example in
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Section 2, if the transformation η = x + λt is used, then only trivial solutions
are obtained in step S5.

Second, in order to get general forms of the travelling wave solutions, we do
not integrate the resulting ODE and set the constant of integration to zero in
step S1. Otherwise, only special solutions can be obtained. For example, let
f be the function csc and pde the mCH equation (3) as in Section 2. If we
integrate the resulting ODE (6) and set the constant of integration to zero,
then, instead of obtaining the general form u8(x, t) in Section 3, we only obtain
the following special solution with wave speed c = 1:

u(x, t) = −1 + 2 csc2 1

2
(x− t) . (57)

The reason is as follows. The constant of integration is an arbitrary constant
which corresponds to the general form of solution. Therefore, when it is set to
zero, only a special solution is obtained.
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