
Implicit Reduced Involutive Forms and Their
Application to Engineering Multibody Systems

Wenqin Zhou1, David J. Jeffrey1, Gregory J. Reid1, Chad Schmitke2,
and John McPhee2

1 Department of Applied Mathematics, The University of Western Ontario,
London, Ontario, Canada N6A 5B7

2 Systems Design Engineering, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Abstract. The RifSimp package in Maple transforms a set of differ-
ential equations to Reduced Involutive Form. This paper describes the
application of RifSimp to challenging real-world problems found in engi-
neering design and modelling. RifSimp was applied to sets of equations
arising in the dynamical studies of multibody systems. The equations
were generated by the Maple package Dynaflex, which takes as input a
graph-like description of a multibody mechanical system and generates
a set of differential equations with algebraic constraints. Application of
the standard RifSimp procedure to such Differential Algebraic Equa-
tions can require large amounts of computer memory and time, and can
fail to finish its computations on larger problems.

We discuss the origin of these difficulties and propose an Implicit Re-
duced Involutive Form to assist in alleviating such problems. This form
is related to RifSimp form by the symbolic inversion of a matrix. For
many applications such as numerically integrating the multibody dy-
namical equations, the extra cost of symbolically inverting the matrix to
obtain explicit RifSimp form can be impractical while Implicit Reduced
Involutive Form is sufficient.

An approach to alleviating expression swell involving a hybrid analytic
polynomial computation is discussed. This can avoid the excessive ex-
pression swell due to the usual method of transforming the entire input
analytic differential system to polynomial form, by only applying this
method in intermediate computations when it is required.

1 Introduction

A principal goal of multibody dynamics is the automatic generation of the equa-
tions of motion for a complex mechanical system, given a description of the
system as input [14]. After generation, the set of equations must be analyzed or
solved. Commercial programs exist that can generate and integrate such systems
of equations. Adams, Dads and Working Model are examples of such prod-
ucts, and they are in widespread use in the automotive, aerospace and robotics
industries [15]. These programs have many strengths, in particular they can
handle systems containing many bodies (up to 100), but they have drawbacks.

H. Li, P. J. Olver and G. Sommer (Eds.): IWMM 2004, LNCS 3519, pp. 31–43, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 W. Zhou et al.

For multibody systems, the general form of the dynamic equations is

M(t, q, q̇)q̈ + ΦT
q λ = F (t, q, q̇) , (1)

Φ(t, q) = 0 . (2)

Here, q is a vector of generalized co-ordinates, M(t, q, q̇) is the mass matrix, Φ
is a vector of the constraint equations and λ is a vector of Lagrange multipliers
[17, 18]:

Φ =

⎡
⎢⎣

Φ1

...
Φ�

⎤
⎥⎦ , Φq =

⎡
⎢⎣

Φ1
q1

· · · Φ1
qn

...
...

...
Φ�

q1
· · · Φ�

qn

⎤
⎥⎦ , λ =

⎡
⎢⎣

λ1

...
λ�

⎤
⎥⎦ .

Because the programs are purely numerical, it is difficult to check or compre-
hend the basic equations they have generated, and it is difficult to obtain ana-
lytic insight into the equations’ properties. Also, when used for simulation, the
programs are inefficient because the equations are effectively re-assembled at
each time step, and the numerical assembly may include many multiplications
in which one of the terms is 0 or 1. As a consequence, these programs are not
well suited to real-time simulations and virtual reality, and, because of their large
size, they cannot be downloaded onto the microprocessors that are typically used
in real-time controllers [15, 3].

In contrast to numerically based programs, packages such as Dynaflex use
symbolic programming to generate the equations of motion in a completely an-
alytical form [16]. This approach offers several advantages [11]. The structure of
the equations is easily obtained and manipulated, allowing one to gain a phys-
ical insight into the system; the equations can be easily exchanged with other
researchers or engineers, something crucial to communication between different
design groups; and real-time simulations are facilitated.

However, symbolic packages also have drawbacks. The equations generated by
Dynaflex are usually too complicated to be solved symbolically. Even numeri-
cal solution is often difficult, inefficient or even impossible, because the equations
are Differential Algebraic Equations (DAE), which typically are of second order
but of high differential index. Also, the number of bodies that these programs
can handle is not as large as for the numerically based programs.

Therefore, it is natural to develop methods for symbolically pre-processing
the output of programs such as Dynaflex so that the output has desirable
features such as being in simplified canonical form and including all constraints.
Since any consistent initial value must satisfy all constraints, the inclusion of
all constraints is a necessary condition for stating an existence and uniqueness
theorem for such systems. The statement of such a theorem is another desirable
feature for the output of such methods. Such features enable the consistent ini-
tialization of numerical solution procedures and can facilitate the identification
of analytical solutions. In this paper we discuss how the RifSimp package can
be used for the symbolic simplification of ODE and PDE systems and return
canonical differential forms. It has the following features [9, 21]:

Implicit Reduced Involutive Forms and Their Application 33

– Computation with polynomial nonlinearities.
– Advanced case splitting capabilities for the discovery of particular solution

branches with desired properties.
– A visualization tool for the examination of the binary tree that results from

multiple cases.
– Automatic generation of an existence and uniqueness theorem for the system.
– Algorithms for working with formal power series solutions of the system.

Applying RifSimp to the equations output by Dynaflex has the benefit
of symbolically and automatically generating all special cases, through the Rif-
Simp case-split options [9, 21]. In a full case analysis, some cases can be very
complicated while others can be simple enough to be solved analytically. The
canonical form generated by RifSimp is of low (0 or 1) differential index [1, 10]
which is suitable for the application of numerical solvers. An important option
with RifSimp is the possibility of excluding special cases that are known to be
not of interest. Thus if we know that a special case, say m = 0, is of no physical
interest, then we can append the inequation m �= 0 to the input system [9, 21].

Application of the RifSimp package to multibody systems revealed that it
has difficulty handling large systems generated by Dynaflex. The symptoms
are excessive time and memory requirements. It is a well-known effect in com-
puter algebra that these are linked, in that a computation that overflows physical
memory will cause the operating system to swap memory to disk. The swapping,
however, essentially brings the system to a halt. There are a number of con-
tributing factors to the growth in time and memory, as will be described below.
Therefore, if one wants to handle industrial-scale problems, one must modify
the RifSimp approach. The modification we introduce here is the possibility of
relaxing the requirements on the canonical form.

We remark that these are common difficulties encountered during the ap-
plication of computer algebra methods to obtain canonical forms (e.g. such as
Gröbner Bases for systems of multi-variate polynomials). An underlying idea in
this paper is that many application may not require the full potency of canonical
simplification (canonicity can be very expensive); and it is important to explore
weaker non-canonical forms when they may achieve the objective in the given
application.

2 Two Examples of Mechanical Systems

Two examples will be used to illustrate the application of computer algebra
methods to multi-body systems.

The three dimensional top example considered in the paper, is an example of
a small open-loop system. Other examples of open loop systems include robot
arms or similar devices with a free end and a fixed end. The slider-crank mech-
anism considered in the paper, is an example of a small closed-loop system.
Another typical example of a closed loop is a piston turning a crank through
connecting rods, so that there are constraints on both the crank and the pis-

34 W. Zhou et al.

ton. Simple textbook problems in dynamics use ad hoc choices of co-ordinate
systems to produce simple systems of equations without constraints modelling
the problems. But this method is usually not possible with complicated sys-
tems, which are automatically generated by packages such as Dynaflex and
constraint equations can not be eliminated. In addition, the constraints intro-
duce additional variables (essentially Lagrange multipliers) into the equations,
representing the forces they exert.

2.1 Open Loop: Three-Dimensional Top

In this classic problem, the top is an axisymmetric body that can precess about
a vertical (Z) axis, nutate about a rotated X axis, and spin about a body-fixed
symmetry axis, see figure 1. The top is assumed to rotate without slipping on
the ground; this is modelled by placing a spherical (ball-and-socket) joint at
O. Dynaflex automatically generates co-ordinates using standard 3-1-3 Euler
angles (ζ, η, ξ), which correspond to precession, nutation, and spin, respectively.

The top has a moment of inertia J about the symmetry axis, and A about
an axis at O perpendicular to the symmetry axis. Two angles η (the angle of
the axis of symmetry to the z axis), and ζ specify the orientation of the axis of
symmetry of the top, while ξ specifies how a point on the top is moving relative
to its axis of symmetry. There is a coordinate singularity when η is equal to
0 or π, which RifSimp will automatically detect as part of its case analysis.
Coordinate singularities are ubiquitous in automatically generated mechanical
systems, and their automatic detection is an important problem.

The dynamic equations (1,2) generated by Dynaflex are, after changing
from Dynaflex-generated symbols to more conventional ones, as follows. For
details, we refer to the Dynaflex Users Guide [16].

M =

⎡
⎣

(A sin2 η + J cos2 η) 0 J cos η
0 A 0

J cos η 0 J

⎤
⎦ , q =

⎡
⎣

ζ
η
ξ

⎤
⎦ (3)

X

Y

Z

mg

O

C

g

Fig. 1. The three-dimensional top. The centre of mass is at C and OC= l. Gravity acts
in the −Z direction

Implicit Reduced Involutive Forms and Their Application 35

and

F =

⎡
⎢⎢⎣

sin(η)
[
2(J − A) cos(η)ζ̇ + Jξ̇

]
η̇

sin(η)
[
(A − J) cos(η)ζ̇2 − Jξ̇ζ̇ + mgl

]

J sin(η)η̇ ζ̇

⎤
⎥⎥⎦ (4)

The fact that the top is an open-loop system is reflected in the fact that
Dynaflex has generated 3 equations for 3 unknowns.

2.2 Two-Dimensional Slider Crank

The slider crank is a simple example of a closed-loop system with qT = (θ1, θ2)T

where θ1 = θ1(t) and θ2 = θ2(t) are the angles shown in figure 2. The system is
given by (1)–(2) where:

M =
[

l21(
m1
4 + m2 + m3) + J1 −l1l2 cos(θ1 + θ2)(m2

2 + m3)
−l1l2 cos(θ1 + θ2)(m2

2 + m3) l22(
m2
4 + m3) + J2

]
(5)

F =

[
−l1g(m1

2 + m2 + m3) cos θ1 − l1l2θ̇2
2
sin(θ1 + θ2)(m2

2 + m3)
l2g(m2

2 + m3) cos θ2 − l1l2θ̇1
2
sin(θ1 + θ2)(m2

2 + m3)

]
(6)

and there is a single constraint equation between the angles:

Φ = l1 sin θ1 − l2 sin θ2 = 0 (7)

Therefore, ΦT
q λ in (1) is given by ΦT

q λ =
(

l1 cos θ1

−l2 cos θ2

)
λ. Note that in this

example, λ is a scalar representing the normal reaction force of the constraint on
the slider. In other words, in addition to generating the constraint equation (7),
Dynaflex automatically generated the constraint force λ(t). For both of these
examples, the challenge now is to analyze the equations with computer algebraic
methods such as RifSimp.

X

Y

1 2

m
m1

2

m
3

A

B

C

D

Fig. 2. The two-dimensional slider crank. The arm of length l1 and mass m1 rotates
and causes the mass m3 attached to the end of the arm of length l2 to move left and
right. Each arm has mass mi and moment of inertia Ji, for i = 1, 2

36 W. Zhou et al.

3 Simplification Using RifSimp with Case Split

Given that symbolic algorithms such as Dynaflex exist for automatically pro-
ducing the equations modelling multi-body systems, it is natural to exploit the
further simplification and transformation of such systems using symbolic meth-
ods. In this section we discuss the simplification of such systems using the Maple
algorithm casesplit which is part of RifSimp.

The theory underlying the Reduced Involutive Form given in [12] applies to
systems of analytic nonlinear PDE in dependent variables u1, u2, . . . un, which
can be functions of several independent variables. While the general method
applies to analytic systems, like most methods in computer algebra, the im-
plemented algorithms apply to systems which are polynomial functions of their
unknowns. This is to avoid well-known undecidability issues for classes of func-
tions wider than polynomial or rational functions (e.g. there is no finite algorithm
that can decide whether an analytic function is zero or non-zero at a point).

For the present application the only independent variable is time. In gen-
eral the systems produced by Dynaflex are polynomial functions of sines and
cosines of the angles θ1(t), θ2(t), ..., θn(t) between different components (arms
and rotors etc).

One common method to convert such systems to rational form is the trans-
formation

cos θj = xj(t), sin θj = yj(t), x2
j + y2

j = 1 (8)
and another is the well-known Weierstrass transformation [5]:

cos θj = (1 − uj(t)2)/(1 + uj(t)2), sin θj = 2uj(t)/(1 + uj(t)2) (9)

where whereuj = tan(theta/2). If one solves for uj , then the usual problems
regarding choice of appropriate branch for the inverse arise. The transformation
(9) has the advantage that the number of variables remains the same, and no
new constraints are introduced. The transformation (8) has the disadvantage
that additional constraints are introduced.

We will later discuss an alternative hybrid analytic-polynomial strategy. In
that approach, the equations are manipulated in their original analytic form and
conversions to polynomials by transformations such as those above are only used
at intermediate computations and only for parts of the system which require
the full algorithmic power of rational polynomial algebra. After resolving an
analytic obstacle in this manner the inverse transformation yields the analytic
form and the computation continues until the next algorithmic analytic obstacle
is encountered.

RifSimp takes as its input a system of differential equations and a ranking of
dependent variables and derivatives. Using its default ranking, RifSimp orders
the dependent variables lexicographically and the derivatives primarily by total
derivative order [9, 21]. For example for systems of ODE this default ranking is:

u1 ≺ u2 ≺ ... ≺ un ≺ u′
1 ≺ u′

2 ≺ ... ≺ u′
n ≺ u′′

1 ≺ ... (10)

Each equation is then classified as being either leading linear or nonlinear, mean-
ing linear or nonlinear in its highest derivative with respect to the ranking ≺.

Implicit Reduced Involutive Forms and Their Application 37

RifSimp solves the leading linear equations for their highest derivatives until it
can no longer find any such equations.

While solving explicitly for the highest derivatives, RifSimp splits cases based
on the pivots (the coefficients of the leading derivatives) with which it divides.
This yields a binary tree of cases.

Each leading-nonlinear equation (a so-called constraint) is differentiated and
then reduced with respect to the current set of leading linear equations and then
with respect to the leading nonlinear equations. A nonzero result means that this
equation is a new constraint which should be appended to the system [9, 21].

For the current application if the solutions are 1 dimensional curves then
each case output by the RifSimp algorithm has form:

v = f(t, w) , (11)
g(t, w) = 0 , (12)
h(t, w) �= 0 . (13)

Here v is the list of (highest-order) derivatives; w is a list of all derivatives,
including dependent variables, lower in the ranking than v; g is a list of constraint
equations; h is a list of inequations. From this form, it is possible to prove an
existence and uniqueness theorem.

In particular, in our application, where there is a single independent variable
t, the initial condition is w(t0) = w0 where the initial condition must satisfy the
constraint g(t0, w0) = 0 and any inequations h(t0, w0) �= 0 and this leads to a
local analytic solution to the original system with this initial condition. Then the
Existence and Uniqueness Theorem [12] states that there exists a local analytic
solution satisfying the above initial conditions and inequations.

Application to Spinning Top

In order to apply RifSimp to equations (1,2) with M and F given by (3) – (4),
we first convert the trigonometric functions to polynomials using the Weierstrass
transformation, which is cos η = (1−u(t)2)/(1+u(t)2), sin η = 2u(t)/(1+u(t)2).
This yields a rational polynomial differential system. The resulting case tree
produced by casesplit is surprisingly large, containing 24 cases, see figure 3.

It is important to understand the reasons for the many cases discovered by
RifSimp, because for more complicated systems, the case analysis can become
overwhelming. We first note that rigid-body mechanics is inherently complicated,
and flexible body mechanics more so. The motion is mostly rotational, meaning
that linear and angular momentum must be considered (introducing mass and
moment-of-inertia parameters), and that the equations contain trigonometric
functions. Beyond this, however, we note that one of the advantages of symbolic
analysis for the engineer is the use of symbolic parameters for the masses, mo-
ments of inertia, lengths, etc. This is useful for their design studies, but it is well
known in symbolic computing that the introduction of large numbers of symbols
causes expression swell, slowdowns in the computation, and the occurrence of
many special cases. Finally, for RifSimp, there is the problem that the program

38 W. Zhou et al.

<>

=

=

8

14

=

= =

<>

17

23

<>

13

=

=

3

<>

7

=

=

22

<>

 =

=

21

=

11

10

<>

=

=

<>

19

<>

15

=

12

2

<>

9

<>

<>

<>

<>

=

<>

1

<>

24

<>

<>

<>

6

=

=

= =
20

5

<>

<>

=

4

<>

=

16

<>

=

18

<>

Fig. 3. Complete Case Tree for the 3D Top

assumes computation in the complex domain, whereas the engineering applica-
tion only requires real variables. Thus the special cases identified in the complex
plane are not relevant.

RifSimp has an input option that allows inequations to be appended to
the system. These allow us to record physical facts such as m �= 0, g �= 0,
etc. By recording as much information as possible in the list of inequations,
the case tree can be significantly reduced. We find, for example, that the 24
cases in figure 3 can be reduced to 9. Amongst these special cases, RifSimp can
identify dynamically degenerate cases. Examples are the cases of the top being
oriented exactly vertically or exactly horizontally. In each case, one part of the
precessional motion is not present. However, this strategy only delays the arrival
of overwhelming expression swell, and we have therefore looked for an alternative
to the standard RifSimp process.

4 Implicit Reduced Involutive Form Method

Two origins of expression swell for RifSimp are the following. If there are many
equations containing many symbols, then inverting the matrix M to obtain ex-
plicit expressions for the q̈ results in division by many pivots that might be zero.
After this, the reduction of equations modulo the existing equations is also diffi-
cult, because of the size of the equation set and the number of unknowns. From
these observations we are led to seek a form weaker than a canonical solved form
which is computationally feasible, while retaining as much of the power of Rif-
Simp as possible. To this end, we introduce an implicit reduced involutive form.

Implicit Reduced Involutive Forms and Their Application 39

Definition 4.1 [Implicit Reduced Involutive Form]: Let ≺ be a ranking.
A system L = 0, N = 0 is said to be in implicit reduced involutive form if there
exist derivatives r1, ..., rk such that L is leading linear in r1, ..., rk with respect
to ≺ (i.e. L = A[r1, · · · , rk]T − b = 0) and

[r1, · · · , rk]T = A−1b , N = 0 , det(A) �= 0 (14)

is in reduced involutive form.
This form is of interest, since computing A−1 on examples can be very ex-

pensive. Sometimes implicit rif-form can be obtained very cheaply, just by ap-
propriate differentiation of the constraints.
Example 4.1 [Spinning Top]: In this case the system has form Mq̈ = F
and this is in implicit reduced involutive form provided det(M) �= 0. In general
implicit reduced involutive form can be regarded as a cheap way of obtaining
some but not all of the cases resulting from a system (e.g. the cases in this
example with det(M) = 0 are not covered).
Example 4.2 [General Multi-Body Systems]: To convert a system of gen-
eral form (1,2) with non-trivial constraints to implicit reduced involutive form
one would have to at least differentiate the constraints twice. Carrying this out
we obtain

Mq̈ + ΦT
q λ = F (t, q, q̇) (15)

D2
t Φ = Φq q̈ + Hq̇ + 2Φtq q̇ + Φtt = 0 (16)

DtΦ = Φq q̇ + Φt = 0 (17)
Φ(t, q) = 0 (18)

where Φtq = ∂Φq

∂t , Φtt = ∂2Φ
∂t2 and

H =

⎡
⎢⎣

∑
i Φ1

q1qi
q̇i · · ·

∑
i Φ1

qnqi
q̇i

...
...

...∑
i Φ�

q1qi
q̇i · · ·

∑
i Φ�

qnqi
q̇i

⎤
⎥⎦

We now show:

Theorem 4.1 Consider the ranking ≺ defined by q ≺ q̇ ≺ λ ≺ q̈ ≺ λ̇ ≺ ...
q · · ·

where the dependent variables q, λ are ordered lexicographically q1 ≺ q2 ≺ ... and
λ1 ≺ λ2 ≺ The systems (15, 16, 17, 18) are in implicit rif-form with A, b,
[r1, ..., rk]T in Definition 4.1 given by:

A =
[

M ΦT
q

Φq 0

]
, b =

[
F (t, q, q̇)

−Hq̇ − 2Φtq q̇ − Φtt

]
, [r1, ..., rk]T =

(
q̈
λ

)
(19)

and N = {Φ = 0, Φq q̇ + Φt = 0}, det(A) �= 0.

Proof: Set N = {Φ = 0,DtΦ} = {Φ = 0, Φq q̇ + Φt = 0} in Theorem 4.1.
Differentiating again yields D2

t Φ given by (16).

40 W. Zhou et al.

Rewriting the system (15,16) in matrix form yields A, b, [r1, ..., rk]T in (19).
It remains to verify that Dtψ when reduced first with respect to L and then

with respect to N yields zero for each ψ ∈ N . First DtΦ = Φq q̇ +Φt is unaltered
by reduction with respect to L and then reduces to zero with respect to N (since
it is already in N). Next Dt(Φq q̇ + Φt) is given in (16) and reduces to zero on
simplification with respect to L (since it is a member of L). Note that we are
working with analytic systems. Here as described in Rust [12] reduction to zero
means detection as member of the analytic ring of functions (with coefficients
again analytic functions) generated by the members of N . In general this is not
algorithmic, but for multi-body systems by using one of the transformations
to polynomial form, it can be converted into a polynomial ideal membership
question which can be answered algorithmically, then transformed back to the
analytic form. Here however the detection is trivial and does not require such
techniques.

Again, we can note that implicit reduced involutive form easily obtained non-
degenerate cases corresponding to det(A) �= 0. To determine whether a case is
empty or not requires the analysis of whether there are any common solutions
satisfying N = 0 and det(A) �= 0. This is a purely algebraic problem, which can
be resolved in the worse case by applying one of the transformations to rational
polynomial form. In that form one of the standard methods of commutative al-
gebra (e.g. triangular sets) can be applied. Alternatively one can use some of the
techniques of the new area of numerical algebraic geometry such as the methods
of Sommese, Verschelde and Wampler [19]. That method determines so-called
generic points on components of the variety determined by N = 0. Substitution
of these points into A and application of some technique from numerical linear
algebra (e.g. the singular value decomposition) can determine if det(A) �= 0.

A full analysis would have to consider the more difficult cases with det(A) =
0. Indeed higher index problems (index > 2) yield det(A) = 0 and further dif-
ferentiations of the constraints need to be carried out to obtain implicit reduced
involutive form.
Example 4.3 [Slider-Crank]: The example of the two-dimensional slider crank
described above exactly fits into the class being discussed. Notice that even this
simple case generates 5 independent parameters: each arm has a mass and a
moment of inertia and the slider has a mass. The computation of this example
is much harder to achieve in reduced involutive form.

5 Conclusion and Future Work

The mechanical systems generated by programs such as Dynaflex mean that
they are ideal for testing new algorithms for dealing with DAE. The underly-
ing idea is that such directly physical systems should lead to insights and new
techniques for such DAE.

The implicit forms obtained can be useful in the numerical solution of such
systems. For example, the matrix A above yields a system of DAE which can
be solved using an implicit numerical method (i.e. along a solution curve, the

Implicit Reduced Involutive Forms and Their Application 41

constant matrix A evaluated at a certain time step is a constant matrix, which
is inverted using stable numerical methods). Thus a very expensive symbolic
(exact) inversion of a matrix has to be compared to the solution using LU de-
composition at each step along the path. In many applications we stress that
the repeated solution of these systems along the path, are much cheaper than
symbolically inverting the matrix once and then evaluating the solution along the
path. Finding a balance between paying the cost of symbolic simplification, on
the one hand, and, on the other, finding ways of working with implicit represen-
tations is a subject of our ongoing research. This is important for example in
being able to carry out real time simulations.

In some respects the method that we eventually are approaching is quite
similar to that appearing in the literature (e.g. see Visconti [20]). The purpose
of the article is to try to draw rigorous differential elimination approaches closer
together with such methods. In addition we suggest the use of analytic systems
to assist in efficiency (avoiding a full polynomialization of the problem, since
this can increase the complexity of the problem). In our calculations full poly-
nomialization led to many extra equations compared to the analytic approach.
The total degree (which is a measure of the complexity of the system) was of-
ten dramatically increased by the transformations, and this was reflected in our
experience with calculations.

Indeed it is quite surprising that some of the techniques in DAE have not pro-
duced analogous strategies in general differential elimination packages for ODE
and PDE such as diffalg or the RifSimp package. Our article is an effort to
try to bridge this gap. Indeed an interesting aspect of the article and the work
was the interaction between the authors from mechanical engineering (McPhee
and Schmitke) and those from computer algebra (Jeffrey, Reid and Zhou). It
forced the computer algebraists to examine some of the underlying techniques
and assumptions routinely made in computer algebra. For example the conver-
sion of analytic systems to rational polynomial form, is almost automatic and
unquestioned as desirable in computer algebra approaches. The restriction to
polynomial or rational polynomial functions also arose historically in the largely
algebraic earlier era of symbolic computation. But as indicated in this article
such a conversion can lead to unnecessarily large expressions.

We briefly discuss and compare reduced involutive form [12, 21] with the
coordinate independent involutive form of geometric PDE [8, 13]. (Geometric)
involutive form, provided certain regularity conditions are satisfied, does not de-
pend on the explicit form of the PDE, but instead on their locus in Jet Space.
Reduced involutive form, although closely related to involutive form, is not al-
ways involutive but can simply be prolonged without eliminations to involutive
form [7]. Implicit reduced involutive form is closer to involutive form than the
coordinate dependent regular differential chains of differential algebra [6] and co-
ordinate dependent reduced involutive form. Both these coordinate dependent
forms depend on having systems triangularized or solved with respect to their
leading derivatives in the given ranking. Roughly, the solved-form requirement
is dropped in the introduction of implicit reduced involutive form.

42 W. Zhou et al.

Our planned work includes other strategies for controlling the generation
of large expressions, since there will always be a desire on the part of design
engineers to increase the number of bodies that can be modelled. One strategy
for large expression management (LEM) has been described in [4]. The key idea
is that large expressions are not arbitrary collections of terms, but contain a
structure. An analogy can be drawn with the situation in the study of matrices
arising in engineering applications: they almost always have a ‘structure’ to them.
For example, they are banded, or otherwise sparse. By recognizing structure, we
can solve larger problems. Returning to symbolic manipulation, we can note that
simplification routines in computer algebra can cause a loss of structure, usually
with the result that larger expressions are generated. A very simple example is
the apparent simplification of (1+x)9−1, where a computer system will expand
the bracket in order to cancel the 1 from the expansion with the 1 outside
the bracket. Using the tools developed in [4] and now incorporated into Maple,
we can preserve the structure inherent in engineering equations, such as those
described here.

References

1. U. Ascher and L. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM (1998).

2. B. Buchberger, G. E. Collins. Computer Algebra Symbolic and Algebraic Compu-
tation. Springer-Verlag (1983).

3. P. Rideau. Computer Algegbra and Mechanics, The James Software. Computer
Algebra in Industry I. John Wiley (1993).

4. R. M. Corless, D. J. Jeffrey, M. B. Monagan, Pratibha. Two Perturbation Cal-
culations in Fluid Mechanics Using Large-Expression Management, J. Symbolic
Computation 11, 1–17, (1996).

5. David A. Cox, John B. Little, Donal O’Shea. Ideals, Varieties, And Algorithms.
Springer-Verlag (1997).

6. E. Hubert. Factorization free decomposition algorithms in differential algebra. J.
Symbolic Computation 29: 641–662, (2000).

7. E. Mansfield. A Simple Criterion for Involutivity. Journal of the London Mathe-
matical Society 54: 323–345, 1996.

8. J.F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups.
Gordon and Breach Science Publishers, Inc. (1978).

9. A.D. Wittkopf, G.J. Reid. The Reduced Involutive Form Package. Maple Software
Package. First distributed as part of Maple 7. (2001).

10. G.J. Reid, P. Lin and A.D. Wittkopf. Differential-Elimination Completion Algo-
rithms for DAE and PDAE. Studies in Applied Mathematics, 106, 1–45, (2001).

11. Christian Rudolf. Road Vehicle Modeling Using Symbolic Multibody System Dy-
namics. Diploma Thesis, University of Waterloo in cooperation with University of
Karlsruhe (2003).

12. C.J. Rust. Rankings of Partial Derivatives for Elimination Algorithms and Formal
Solvability of Analytic Partial Differential Equations. Ph.D. Thesis, University of
Chicago (1998).

13. W.M. Seiler. Analysis and application of the formal theory of partial differential
equations. Ph.D. thesis, Lancaster University, (1994).

Implicit Reduced Involutive Forms and Their Application 43

14. W. Schiehlen. Multibody Systems Handbook. Springer-Verlag (1990).
15. Pengfei Shi, John McPhee. Symbolic Programming of a Graph-Theoretic Approach

to Flexible Multibody Dynamics; Mechanics of Structures and Machines, 30(1),
123-154 (2002).

16. Pengfei Shi, John McPhee. DynaFlex User’s Guide, Systems Design Engineering,
University of Waterloo (2002).

17. P. Shi, J. McPhee. Dynamics of flexible multibody systems using virtual work and
linear graph theory. Multibody System Dynamics, 4(4), 355-381 (2000).

18. P. Shi, J. McPhee, G. Heppler. A deformation field for Euler-Bernouli beams with
application to flexible multibody dynamics. Multibody System Dynamics, 4, 79-104
(2001).

19. A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the
solution sets of polynomial systems into irreducible components. SIAM J. Numer.
Anal. 38(6), 2022–2046 (2001).

20. J. Visconti. Numerical Solution of Differential Algebraic Equations Global Er-
ror Estimation and Symbolic Index Reduction. Ph.D. Thesis. Laboratoire de
Modélisation et Calcul. Grenoble (1999).

21. A.D. Wittkopf. Algorithms and Implementations for Differential Elimination.
Ph.D. Thesis. Simon Fraser University, Burnaby (2004).

