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Abstract. A vector-product space is a component-free representation of
the common three-dimensional Cartesian vector space. The components
of the vectors are invisible and formally inaccessible, although expres-
sions for the components could be constructed. Expressions that have
been built from the scalar and vector products can be simplified us-
ing a rule-based system. In order to develop and specify the system,
an axiomatic system for a vector-product space is given. In addition, a
brief description is given of an implementation in Aldor. The present
work provides simplification functionality which overcomes difficulties
encountered in earlier packages.

1 Introduction

We start with a definition from J. W. Gibbs [7], which appeared in a privately
printed pamphlet that was dated 1881.

An algebra or analytical method in which a single letter or other expres-
sion is used to specify a vector may be called a vector algebra or vector
analysis.

Vector analysis has found many applications throughout engineering and science.
It often simplifies the derivation of mathematical theorems and the statements
of physical laws, while vector notation can often clearly convey geometric or
physical interpretations that greatly facilitate understanding.

Almost all well known computer algebra systems provide basic vector data-
types and vector operations. The data types, however, consist of lists of com-
ponents, and there is no provision for a letter or other symbol of the system to
have vector attributes such as was intended by Gibbs. This is a great pity, as a
perusal of any advanced textbook in physics will reveal vector expressions being
formed and worked with in a component-free way. In addition to the operations
that are built-in, meaning that they are distributed with the base system, the
major systems offer vector-analysis packages, for example, the VectorAnalysis
package for Mathematica [15], the Vector33 package for Reduce [8] and the
VectorCalculus package in Maple. There are a number of vector analysis pack-
ages build on the well known systems, for example, the VecCalc package using
Maple [2], the Vect package using Macsyma [14] and the OrthoVec package us-
ing Reduce [5]. All these packages, however, rely on component representation.
The following shows some features of the VectorCalculus package in Maple.



> with(VectorCalculus)
> CrossProduct(A, B)

Error, (in VectorCalculus:-CrossProduct) the first argument
must either be the differential operator Del, or a three
dimensional VectorField, got A

> DotProduct(A, B)
A . B

It is curious that Maple checks the arguments of CrossProduct and requires
an explicit set of components, but DotProduct does not. In any event, it is clear
that the package does not expect abstract vectors. Once explicit components are
given, the package is able to perform common tasks.

> A := <a, b, c>
A := a e_x + b e_y + c e_z

> B := <d, e, f>
B := d e_x + e e_y + f e_z

> CrossProduct(A, B)
(b f - c e) e_x + (c d - a f) e_y + (a e - b d) e_z

> DotProduct(A, B)
a d + b e + c f

Like the VectorCalculus package, almost all existing packages can only per-
form component-dependent operations. They cannot perform component-free
operations. This means that before one can do any vector analysis, one must set
the components for all vectors involved. This is inconvenient when one wants to
deal with problems containing many vectors and only wants to know the rela-
tionship among them, because the expansion of vector expressions into specific
components is usually tedious and error prone. With a component-free system,
one is free from the distracting details of individual components and can con-
centrate on the meaningful results of the problems.

For more detailed commentary, we introduce some notation. Vectors are de-
noted by bold-face letters; for the vector product of a and b, we use the notation
of Chapman [3], namely a∧b. The scalar product is a•b, and (abc) or (a,b, c)
stands for the scalar triple product (a ∧ b) • c of three vectors a, b and c.

Compared with component-dependent systems, which have a systematic method
for deriving mathematical statements, component-free systems are more difficult
and challenging because vector algebra has a strange and intriguing structure
[12].

– Vectors are not closed under the scalar product operation. If p, q are vectors,
then p • q is a scalar.

– The scalar product is commutative while the vector product is anticommu-
tative. If p, q are vectors, then p • q = q • p while p ∧ q = −q ∧ p.

– Neither is associative. If p, q, r are vectors, then p ∧ (q ∧ r) 6= (p ∧ q) ∧ r,
whereas p • (q • r) and (p • q) • r are invalid.



– Neither has a multiplicative unit. There does not exist a fixed vector u such
that for any vector p, u ∧ p = p or p ∧ u = p or u • p = p or p • u = p.

– Both admit zero divisors. For any vector p, p ∧ p = 0; if q is a vector
perpendicular to p, then p • q = 0.

– The two operations are connected through the operation of scalar-vector
multiplication ∗ by the strange side relation p∧(q∧r) = (p•r)∗q−(p•q)∗r.
In contrast to the number of component-dependent vector analysis packages,

to our knowledge, only the packages [6], [10] and [12] address component-free
vector operations. However, the emphasis of these packages is still on component-
dependent operations, and only the package by Stoutemyer [12] provides non-
trivial simplification examples. Even in Stoutemyer’s package, however, simplifi-
cation problems remained unsolved. For example, when he tried to simplify the
vector expression

(a ∧ b) ∧ (b ∧ c) • (c ∧ a)− (a • (b ∧ c))2

which should be simplified to zero, he only got

−a • c ∧ (a • b ∧ c ∗ b− a • b ∧ (b ∧ c))− (a • b ∧ c)2.

When he returned this expression to his simplification engine, instead of getting
the desired result 0, he could only get

a • (a • b ∧ c ∗ b) ∧ c− (a • b ∧ c)2.

He explained that the scalar factor a•b∧c could be factored out, clearly revealing
that the expression is zero, but the built-in scalar-factoring-out mechanism could
not recognize that a •b∧ c is a scalar. Therefore, it is necessary and meaningful
to develop a new component-free vector analysis package.

As a final comment on the background, we note that the vector product has
not been generalized beyond 3 dimensions except in a limited way. A general-
ization of the vector product in 3 dimensional space to 7 dimensional case has
been proposed, but the important property p∧ (q∧ r) = (p • r) ∗ q− (p • q) ∗ r
is no longer valid [11]. So we confine ourselves here to the 3 dimensional case.

2 Axiomatic Theory and Transformation Rules

In order to provide a unified picture of component-free vector algebra and
component-dependent vector algebra, we define an axiomatic theory T for a
vector-product space. The language of T is the set of vector operations {+, ∗, •,∧},
where +, ∗, and • correspond to the addition, scalar multiplication and scalar
product of R3 considered as an inner product space of component-free vectors,
and ∧ corresponds to the usual vector product of R3.

The axiomatic set of T consists of the axioms of a real inner-product vector
space, as usually defined on (R3, +, ∗, •) (including the fact of three-dimensionality),
together with the addition of axioms for vector product.



A0: (a + b) ∧ c = a ∧ c + b ∧ c.
A1: a ∧ b = −b ∧ a.
A2: a ∧ (b ∧ c) = (a • c) ∗ b− (a • b) ∗ c.
A3: (abc) = (bca), where (abc) denotes (a ∧ b) • c.
A4: (abc) = 0 implies that a,b, c are linearly dependent.

Based on the axioms of T , we can now prove the following theorems in T :

T1: a ∧ a = 0.
T2: (abc) = −(acb).
T3: (aab) = (abb) = (aba) = 0.
T4: (a ∧ b) ∧ (c ∧ d) = (abd) ∗ c− (abc) ∗ d.
T5: (a ∧ b) • (c ∧ d) = (a • c)(b • d)− (a • d)(b • c).
T6: (abc) ∗ d = (d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b).
T7: (abc) ∗ d = (dbc) ∗ a + (adc) ∗ b + (abd) ∗ c.
T8: (d • h)(abc) = (d • a)(hbc) + (d • b)(ahc) + (d • c)(abh).
T9: (abc) ∗ (d ∧ h) = (dha) ∗ (b ∧ c) + (dhb) ∗ (c ∧ a) + (dhc) ∗ (a ∧ b).

Proof. For theorem T1, by axiom A1, we have a∧a = −a∧a. Then 2∗(a∧a) = 0,
and (a ∧ a) = 0. For theorem T2, by axioms A1 and A3, we have (abc) =
(a∧b) •c = −(b∧a) •c = −(bac) = −(acb). Theorem T3 follows immediately
from theorem T1. Theorem T4 follows immediately from axiom A2 by viewing
a ∧ b as a single vector.

For theorem T5, by axioms A3 and A2, we have

(a ∧ b) • (c ∧ d) = (a,b, c ∧ d) = (b, c ∧ d,a)
= (b ∧ (c ∧ d)) • a = a • (b ∧ (c ∧ d))
= a • [(b • d) ∗ c− (b • c) ∗ d]
= (a • c)(b • d)− (a • d)(b • c).

Next we prove theorem T6. First, we claim that (abc) = 0 if and only if a,b, c
are linearly dependent. By axiom A4, we only need to prove the “if”. Without
loss of generality, we can express a as a = x ∗ b + y ∗ c. Then by axiom A0 and
theorem T3, (abc) = (a∧b)•c = [(x∗b+y ∗c)∧b]•c = x(bbc)+y(cbc) = 0.

There are two cases for T6. If a, b and c are linearly independent, then
(b ∧ c, c ∧ a,a ∧ b) = (a,b, c)2 6= 0. So a ∧ b, b ∧ c, c ∧ a are also linearly
independent, so we can express d as

d = x ∗ (b ∧ c) + y ∗ (c ∧ a) + z ∗ (a ∧ b). (1)

Taking scalar product of both sides of (1) with a, we get d • a = (abc)x, so
x = (d•a)/(abc). Similarly, we can get y = (d•b)/(abc) and z = (d•c)/(abc).
Therefore, by (1), the desired result follows.

If a, b and c are linearly dependent then (abc) = 0. Without loss of general-
ity, we can express c as c = x ∗ a + y ∗ b. Then, by axioms A0, A1 and theorem
T1, the right hand side of T6 is

x(d • a) ∗ (b ∧ a) + y(d • b) ∗ (b ∧ a)− [x(d • a) + y(d • b)] ∗ (b ∧ a) = 0 ,



the left hand side of T6.
For theorem T7, we can use a similar method as above so we omit the details.

For theorem T8, taking scalar product of both sides of T6 with h and using axiom
A3, the desired result follows immediately. For theorem T9, we can use a similar
method as theorem T6, so we omit the details again. Consequently, all theorems
are proved.

Now we define another axiomatic theory T ′ for component-dependent vectors
in R3. The definitions of the vector operations in T ′ are just the standard ones.
For a,b ∈ R3 with a = (a1, a2, a3) and b = (b1, b2, b3), and k ∈ R, define

k ∗ a = (ka1, ka2, ka3) .

a + b = (a1 + b1, a2 + b2, a3 + b3) .

a • b = a1b1 + a2b2 + a3b3 .

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

It is routine to check that the vector operations defined above satisfy all the
axioms of T . Therefore, we have showed that T ′ is a model of T . In this way,
we provide a unified picture of the axiomatic specification of vector operations,
the computation of abstract (component-free) vectors, and the computation of
concrete vectors (component-dependent).

Now we turn to transformation rules. In order to achieve a normal form for an
input vector expression, or to simplify a vector expression to its shortest normal
form, we need transformation rules. The transformation rules consist of the 4
axioms (A0)-(A3) and 9 theorems (T1)-(T9) of T , together with the inverses of
theorems (T6)-(T9). By the inverse of a formula (theorem) A = B, we mean
B = A.

Roughly speaking, the transformation rules can be divided into two types:
expansion type and combination type. An expansion type rule expands a single
term into a sum of different terms, or transfers a single term to another single
term. For example, (abc)∗d = (d•a)∗ (b∧c)+(d•b)∗ (c∧a)+(d•c)∗ (a∧b)
is an expansion type rule. A combination type rule combines a sum of different
terms into a single term. For example, (d•a)(hbc)+(d•b)(ahc)+(d•c)(abh) =
(d • h)(abc) is a combination type rule.

3 Structure and Description of the Package

Our package is developed using Aldor. Aldor [1] is a programming language
with a two-level object model of categories and domains. Types and functions
are first class entities allowing them to be constructed and manipulated within
Aldor programs just like any other values. Aldor is an ideal tool for symbolic
mathematical computations.

For the package, we first define a vector space category VectorSpcCategory
as follows.



define VectorSpcCategory(R:Join(ArithmeticType, ExpressionType),
n:MI==3): Category==with {

*: (R,%)->%;
*: (%,R)->%;
+: (%,%)->%;
-: (%,%)->%;
-: %->%;
=: (%,%)->Boolean;
default
{
import from R;
(x:%)-(y:%):%==x+(-1)*y;
(x:%)*(r:R):%==r*x;
-(x:%):%==(-1)*x;

}
},

where ArithmeticType and ExpressionType are two categories defined in the al-
gebra library of Aldor and n is the dimension of the space (the default dimension
is 3). Those within the braces after with are the operations for the space.

Then, based on VectorSpcCategory, we define a vector algebra category Vec-
torAlgCategory as follows.

define VectorAlgCategory(R:Join(ArithmeticType,
ExpressionType)):Category == VectorSpcCategory(R) with {

vector: Symbol->%;
zero: ()->%;
Simplify: %->%;
s3p: (%,%,%)->%;
*: (%,%)->%;
apply: (%,%)->%;
/\: (%,%)->%;
<<: (TextWriter,%)->TextWriter;
default
{
s3p(x:%,y:%,z:%):%==apply(x/\y,z);

}
},

where with means that besides the exports of VectorSpcCategory, VectorAlgCat-
egory has additional exports (within the braces) which are normally related to
component-free vector operations. For example, apply is the scalar product, s3p
is the scalar triple product, and ∧ is the vector product.

Finally, we come to the point of implementing the vector algebra domain
VectorAlg in detail.

VectorAlg(R:Join(ArithmeticType,ExpressionType)):



Join(ExpressionType,VectorAlgCategory R)== add
{

...
},

where the part within the braces after add is the implementation details of the
domain which composes the rest of this paper.

3.1 Normal Form

A common strategy for simplifying expressions in computer algebra is to define
a normal form. We define a normal form for vector expressions as follows.

Definition 1 (Normal Form). A normal form for a vector expression is a
sum of terms. Each term may consist of a real coefficient, a scalar part and a
vector part. The vector part consists of either a single letter or a vector product,
or there is no vector part if the term is not really a vector. If there is a scalar part
for a term, then the factors of the scalar part may consist of single letters, scalar
products and scalar triple products. The terms are in ascending order which is
determined by the termOrder defined in section 3.2.

In our vector algebra package, all input vector expressions will be transferred
automatically into their normal forms. A vector expression can be presented in
different normal forms. For example, according to theorem T6 in section 2, we
can present the same expression in two different normal forms: (abc) ∗ d and
(c • d) ∗ (a ∧ b) − (b • d) ∗ (a ∧ c) + (a • d) ∗ (b ∧ c). However, by using the
simplification functionality (see section 4.2), we can get the shortest normal form
for a given vector expression.

3.2 Data Representations and Term Order

There are two components for a normal form of a vector expression: data rep-
resentation and term order. In our package, a vector expression is presented
internally as:

Rep==List Term, and
Term==Record (coe:R, sca:List List String, vec:List String),

where coe, sca and vec are respectively the real coefficient, the scalar part and
the vector part of a term. For example, the term −2(a •b)(abc) ∗ (c∧d) can be
expressed as [−2, [[“a”, “b”], [“a”, “b”, “c”]], [“c”, “d”]]. Inspired by Stoutemyer’s
unsolved problem, we adopt such data representation because we want to sepa-
rate the scalar part of a term from the vector part of the term.

In the scalar part sca, there are three different kinds of lists of strings. List
of length 1 stands for a scalar of single letter, list of length 2 stands for a scalar
product, and list of length 3 stands for a scalar triple product.

Similarly, for the vector part vec, list of length 0 means that the term is not
really a vector, list of length 1 stands for a vector of single letter, and list of
length 2 stands for a vector product.



On the other hand, in order to implement the transformation rules in section
2, we also need another minor data structure.

mixTerm == Record(scal:scaList, vec2:List String), where
scaList == List scaTerm, and
scaTerm == Record(coe2:R, sca2:List List String).
This representation is necessary when one wants to simplify a vector expres-

sion which contains terms with the same vector parts. For example, for vector
expression (d • a)(hbc) ∗ c+ (d •b)(ahc) ∗ c+ (d • c)(abh) ∗ c, we can combine
the scalar parts of the three terms because they have same vector parts c. Then,
[(d • a)(hbc) + (d • b)(ahc) + (d • c)(abh)] ∗ c is a mixTerm, the scal part is
(d • a)(hbc) + (d • b)(ahc) + (d • c)(abh), the vec2 part is c, and there are
three scaTerms: (d • a)(hbc), (d • b)(ahc) and (d • c)(abh). Using the trans-
formation rules from section 2, we can simplify the expression to (d•h)(abc)∗c.

As mentioned above, the second component for a normal form is term order.
Unlike polynomials which have a natural way to define term order, we have to
choose a term order for our purpose. The order termOrder is defined step by
step as follows.

Firstly, we use the natural order for strings.
Secondly, we define the order for lists of strings. Given two lists of strings

L1 and L2, then L1 < L2 ⇐⇒ #L1 < #L2, or #L1 = #L2 and there exists a
natural number i such that for all 0 < j < i, L1(j) = L2(j) and L1(i) < L2(i),
where #L denotes the length of list L.

Thirdly, we define the order for lists of lists of strings in the same way as
above for lists of strings.

Finally, we define the order of terms for vector expressions. Given two terms
T1 = [coe1, sca1, vec1] and T2 = [coe2, sca2, vec2], then T1 < T2 ⇐⇒ vec1 < vec2,
or vec1 = vec2 and sca1 < sca2, or vec1 = vec2 and sca1 = sca2 and coe1 < coe2

(if R is an ordered arithmetic type).
For example, given a vector expression 5(abc)(a • d) ∗ (b ∧ c) + 2(b • c) ∗

(a ∧ c) + (acd)(a • b) ∗ c, after being sorted by termOrder, the expression will
become (a • b)(acd) ∗ c + 2(b • c) ∗ (a ∧ c) + 5(a • d)(abc) ∗ (b ∧ c).

4 Implementation of the Package

This section addresses the implementation details of the package. These include
the implementation of transformation rules, the implementation of the simplifi-
cation function and the implementation of vector algebra operations.

4.1 Implementations of Transformation Rules

Now we turn to the implementations of transformation rules. The main skill we
use is pattern matching [13]. Since the implementations are detail-involved, we
only give brief descriptions of the algorithms.



The implementations of expansion type rules are not complicated. For exam-
ple, the following algorithm is to implement the transformation rule (abc)∗d =
(d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b):

Algorithm Rule01
Input: a Rep xx.
Output: a Rep yy.

– Let tx range over the terms of xx.
– If there are lists in tx which match the pattern (abc) ∗d, replace them with

the lists representing (d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b).
– Output the resulting Rep.

Compared with the implementations of expansion type rules, the implemen-
tations of combination type rules are much more complicated. For example, in
order to implement the transformation rule (d • a)(hbc) + (d • b)(ahc) + (d •
c)(abh) = (d • h)(abc), first we have to implement a subalgorithm Match? to
check if any given three scaTerms match the pattern of this rule, then we have to
implement another subalgorithm Comb which combines the matching scaTerms
into a single Term using this rule.

Then the algorithm for implementing the transformation rule (d •a)(hbc)+
(d • b)(ahc) + (d • c)(abh) = (d • h)(abc) can be described as follows.

Algorithm Rule02
Input: a Rep xx.
Output: a Rep yy.

– Change the data representation of xx from Rep to List mixTerm.
– Let tx range over xx, and let L be the scal part of tx.
– If #L < 3, then leave it for output. Otherwise, again let L denote the

collection of scaTerms in L in which there are lists of length 2 and length 3
in their sca2 part, and leave other scaTerms for output.

– In a while-loop, check if any given three scaTerms match the rule using the
subalgorithm Match?.

– If there is no such three scaTerms or #L < 3, then break the loop. Otherwise,
combine the three scaTerms using the subalgorithm Comb and update L.

– output the remaining L.

4.2 Simplification

There are two levels of simplification. Simplify0 is the basic level which, as part of
the definitions of vector algebra operations, transfers an input vector expression
into its normal form. Simplify is the advanced level which, based on Simplify0,
transfers a vector expression into its shortest normal form.

The basic level can be described as follows.

Algorithm Simplify0
Input: an element x of VectorAlg.
Output: an element of VectorAlg.



– Let tx range over the data representation xx of x.

– Make the scalar part and vector part of tx in ascending order, and use the
transformation rules to check if tx is zero.

– Collect non-zero terms tx, and denote is yy.

– Make yy in ascending order and combine like terms.
– Output the domain element y of yy.

The advanced simplification can be described as follows.

Algorithm Simplify
Input: an element x of VectorAlg.
Output: an element of VectorAlg.

– Perform basic simplification on x.
– Apply transformation rules to the resulting expression one by one within a

while-loop and then perform basic simplification.
– If the resulting expression is shorter than the original one then we replace

the original one with the resulting expression.
– If at any time the number of terms < 3, or the expression is not changed

after applying all transformation rules, break the loop.
– Return after the loop.

5 Examples

We use Aldor Interpreter to test our package. After compiling our source file
into a platform-independent object file vectorAlg.ao, we open the Aldor Inter-
preter using command: aldor -gloop. Then we use the following commands to do
initialization:

%1 >> #include "algebra"
%2 >> #include "aldorinterp"
%3 >> #library aaa "vectorAlg.ao"
%4 >> macro MI==MachineInteger
%5 >> import from aaa, MI, String, Symbol, VectorAlg MI

Now we declare vectors a, b, c, d, e, f, g and h as follows.

%6 >> a:=vector(-"a")
%7 >> b:=vector(-"b")
%8 >> c:=vector(-"c")
%9 >> d:=vector(-"d")
%10 >> e:=vector(-"e")
%11 >> f:=vector(-"f")
%12 >> g:=vector(-"g")
%13 >> h:=vector(-"h")



At this point, we are ready to test some examples using our package. All
computations have been performed on a Pentium IV PC with 3.2 GHz CPU and
1 GB RAM.
Example 1.

We first test Stoutemyer’s unsolved problem [12].

%14 >> ((a^b)^(b^c)).(c^a)-(a.(b^c))*(a.(b^c))
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec

From the example above, we can see that our package is quite efficient. It
only takes 40 milliseconds to get the result.
Example 2. Now, we test some more examples also from Stoutemyer:

– (a−d)∧(b−c)+(b−d)∧(c−a)+(c−d)∧(a−b)−2∗(a∧b+b∧c+c∧a) = 0.
– (b ∧ c) ∧ (a ∧ d) + (c ∧ a) ∧ (b ∧ d) + (a ∧ b) ∧ (c ∧ d) + 2(abc) ∗ d = 0.

%15 >> (a-d)^(b-c)+(b-d)^(c-a)+(c-d)^(a-b)-2*(a^b+b^c+c^a)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec
%16 >> v1:=(b^c)^(a^d)+(c^a)^(b^d)+(a^b)^(c^d)+2*s3p(a,b,c)*d
(bcd)*a-(acd)*b+(abd)*c-(abc)*d @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec
%17 >> Simplify(v1)
O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

Example 3 The following examples come from Cunningham [4].

– a ∧ (b ∧ c) + b ∧ (c ∧ a) + c ∧ (a ∧ b) = 0.
– a ∧ (b ∧ (c∧ d)) + b ∧ (c ∧ (d∧ a)) + c ∧ (d ∧ (a ∧ b)) + d∧ (a ∧ (b ∧ c)) =

(a ∧ c) ∧ (b ∧ d).

%18 >> a^(b^c)+b^(c^a)+c^(a^b)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 20 msec
%19 >> a^(b^(c^d))+b^(c^(d^a))+c^(d^(a^b))+d^(a^(b^c))=(a^c)^(b^d)
T @ Boolean

Comp: 0 msec, Interp: 60 msec

Example 4. The following examples come from Patterson [9].

– (b ∧ c) • (a ∧ d) + (c ∧ a) • (b ∧ d) + (a ∧ b) • (c ∧ d) = 0.
– ((a∧b)∧ c)∧d+((b∧a)∧d)∧ c+((c∧d)∧a)∧b+((d∧ c)∧b)∧a = 0.

%20 >> (b^c).(a^d)+(c^a).(b^d)+(a^b).(c^d)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 30 msec
%21 >> ((a^b)^c)^d+((b^a)^d)^c+((c^d)^a)^b+((d^c)^b)^a
O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec



6 Summary

In this paper, we have presented a rule-based component-free vector algebra
package developed using the computer programming language Aldor. All the
examples we encountered in the literature are simplified to their shortest normal
forms. The key idea is to choose an appropriate data structure and a suitable set
of transformation rules. In the future, we will add more functions to the package,
for example, solving vector equations and systems of vector equations.
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