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Abstract

Two difficulties connected with the solution of Laplace’s equation around an ob-
ject inside an infinite circular cylinder are resolved. One difficulty is the non-
convergence of Fourier transforms used, in earlier publications, to obtain the gen-
eral solution, and the second difficulty concerns the existence of apparently differ-
ent expressions for the solution. By using a Green’s function problem as an easily
analyzed model problem, we show that, in general, Fourier transforms along the
cylinder axis exist only in the sense of generalized functions, but when interpreted
as such, they lead to correct solutions. We demonstrate the equivalence of the cor-
rected solution to a different general solution, also previously published, but we
point out that the two solutions have different numerical properties.
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1 Introduction

This paper addresses the methods used to study the electric field around a cavity in a
wire, or the fluid motion around a drop inside a pipe, or similar problems in which
an object is placed inside an infinite cylinder. Several papers have presented solutions
for the field around a spherical cavity or drop in a cylinder, the most recent paper be-
ing Linton [1] and the earliest being Knight [2]. These works overlooked the fact that
their integral transforms do not converge in all cases. This non-convergence can be
demonstrated without solving the full problem of a sphere inside a cylinder, because
the convergence problem is already present in the simplest problem that can be posed:
the Green’s function for Laplace’s equation in a cylinder with Neumann boundary con-
ditions, which in physical terms means the electric field created by a point charge, or
the ideal flow from a point source. This paper uses the derivation of the Green’s func-
tion as a model problem, which allows us to pinpoint the difficulty and its resolution,
without the distractions of the more complicated full problem (of a finite-sized body in
a cylinder).
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Having shown the existence of a convergence problem in the Knight—Linton ap-
proach, we give a remedy. We must bear in mind, when considering possible reme-
dies, that the Green’s function problem used here is a model problem, and any method
proposed must generalize back to the problems originally considered by Knight and
Linton. We show that the Knight—Linton approach can be repaired using general-
ized functions, and then their method remains viable. We also point out an alternative
method, outlined by Morse & Feshbach [3] for one simple set of problems. We show
that the Morse—Feshbach method gives a solution equivalent to the Fourier transform
method, but that the numerical properties of the two solutions are different. Morse—
Feshbach has better properties for largez and Knight—Linton for smallz. It should be
realized, however, that the Morse—Feshbach method has not been tried on the spheri-
cal cavity problem, but only on the model problem given here.

The problem for the Green’s function is as follows. We scale cylindrical coordi-
nates(r, θ, z) so that the boundary conditions are imposed onr = 1. The Green’s
function satisfies

∇2G = −4πδ(x) (1)

and the Neumann boundary condition∂G/∂r = 0 on r = 1. This is our model prob-
lem, and we wish to solve it in a way that illuminates the Knight—Linton approach.
Jumping ahead to the solution, given below in equation (11), we shall see that asymp-
totically G ∼ −2|z| for largez owing to the Neumann boundary condition. In section
2 we consider the consequences of this.

2 Fourier transform method

Knight [2] and others effectively take a Fourier transform of (1) with respect toz. Since
we have already stated thatG ∼ −2|z| + o(1) for z → ∞, a Fourier transform does
not exist in the ordinary sense. In looking for a response to this difficulty, we must
not be misled by the simplicity of the problem (1). It is tempting to consider deriving
equations forG+2|z|, a quantity whose transform would exist. However, for the more
difficult problems considered by Knight [2] and Linton [1], the asymptotic behaviour
of the solution is one of the main goals of the calculation. Therefore, although refor-
mulating the problem in terms of convergent integrals would be a possibility in this
model problem, it is a solution that does not generalize to harder problems. We can,
however, continue to use Knight’s method, provided we are later willing to interpret
the integrals as generalized functions.

It is convenient to separate the singularity inG by writing

G = (r2 + z2)−1/2 + ϕ , (2)

and considering the problem forϕ, which is

∇2ϕ = 0 , (3)
∂ϕ

∂r
= (1 + z2)−3/2 on r = 1 . (4)

As with G, the asymptotic behaviour ofϕ will be −2|z| asz →∞. We note from (3),
(4) that this problem is obviously symmetric inz; however, we do not take advantage
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of this symmetry to reformulate the problem for two reasons. First, the papers we are
commenting on did not do it, and second, we wish to consider a method that would
apply to non-symmetric situations. Also the difficulties we address are present even if
one restricts the problem toz ≥ 0.

If ϕ̄ is the Fourier transform ofϕ with respect toz, it satisfies a modified Bessel
equation

∂2ϕ̄

∂r2
+

1
r

∂ϕ̄

∂r
− t2ϕ̄ = 0 ,

whose independent solutions areI0(tr) andK0(tr). SinceK0 is singular atr = 0, it
is rejected, and the solution, symmetric with respect toz is

ϕ(r, z) =
∫ ∞

0

g(t)I0(rt) cos zt dt , (5)

with g(t) to be determined from the boundary condition. By differentiating (see [4])∫ ∞

0

K0(rt) cos zt dt =
π

2
(r2 + z2)−1/2 , (6)

we deduce that (4) is apparently satisfied by settingg(t) = (2/π)K1(t)/I1(t) . We
combine (6) and (2) to write the Green’s function finally as

G(r, z) =
2
π

∫ ∞

0

(
K0(rt) +

K1(t)
I1(t)

I0(rt)
)

cos zt dt . (7)

The problem, now, is to rewrite (7) as a convergent integral, because for smallt, the
integrand has the expansion

K1(t)
I1(t)

I0(rt)→
2
t2

+ O(1) , for t → 0 , (8)

and therefore the integral does not converge. However, the theory of generalized func-
tions allows us to write [5] ∫ ∞

0

1
t2

cos tz dt = −π

2
|z| . (9)

This result could also be obtained using the concept of Hadamard’s finite part (see
[6]). The connexion between the theory of generalized functions (distributions) and
Hadamard’s finite part is described in [5, 6]. Hence (7) can be rewritten as

G(r, z) = −2|z|+ 2
π

∫ ∞

0

(
K0(rt) +

K1(t)
I1(t)

I0(rt)−
2
t2

)
cos zt dt . (10)

Thus the approach of Knight and Linton can be used with this re-interpretation.
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3 Morse & Feshbach’s solution

A different solution for the Green’s function (2) is given in Morse & Feshbach [3].
They describe the problem as flow inz > 0 when fluid enters the cylinder from a small
hole in a wall atz = 0. Using separation of variables, they obtain a solution in terms
of Bessel functionsJ0(βkr), with βk defined byJ1(βk) = 0. In present notation, we
normalize their problem by setting flux/unit area= 1 and obtain

G(r, z) = −2z +
∞∑

k=1

2
βkJ0(βk)2

e−βkzJ0(βkr) . (11)

Before showing the equivalence of (11) and (7), we comment that both solutions
can be understood in terms of the technique of separation of variables. When separating
Laplace’s equation in cylindrical coordinates, one can take the constant of separation
as positive, in which case we are led to (11), or negative, in which case we obtain (7).
Introductory courses on partial differential equations typically explore only one choice
for the constant of separation.

We explicitly convert solution (7) to (11) by expanding the integrand in (10) as a
Dini-Bessel series, valid for0 < r < 1,

K0(rt) +
K1(t)
I1(t)

I0(rt)−
2
t2

=
∞∑

k=1

2
J2

0 (βk)
1

t2 + β2
k

J0(βkr) ,

where the coefficients were derived using the formula [4]∫ 1

0

rKn(tr)Jn(λr)dr=
1

t2 + λ2

[(
λ

t

)n

+λJn+1(λ)Kn(t)− tJn(λ)Kn+1(t)
]

,

which is valid forn > −1. Using this expansion in (10), we can integrate term by
term, using the formula [4]∫ ∞

0

cos tz

t2 + β2
k

dt =
π

2βk
e−βk|z| ,

and conclude that the two expressions are equivalent.

4 Numerical properties of the solutions

Although the two expressions are equivalent, they have different (numerical) conver-
gence properties: (7) converges slowly for largez, while (11) converges slowly for
smallz. In (11), the exponential termse−βk|z| will all tend to 1 asz → 0, and the ex-
pansion will be slowly convergent whenz is small. On the other hand, thecos(zt) fac-
tor in (7) will cause numerical difficulties for largez, because it will oscillate rapidly.
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5 Dipole on axis

In many applications, the dominant response of a sphere or a similar object in a cylinder
will be as a dipole rather than as a pole [1]. We note here that convergence problems,
similar to those observed in the case of the pole, persist in the dipole case. By dif-
ferentiating (7) with respect toz, we obtain the potentialφ of a unit dipole in a form
equivalent to Linton’s

φ(r, z) = − 2
π

∫ ∞

0

t

(
K0(rt) +

K1(t)
I1(t)

I0(rt)
)

sin zt dt . (12)

The integrand is asymptoticallyt(K0(rt)+K1(t)/I1(t)I0(rt)) ∼ 2/t and the integral
again converges only in the sense of generalized functions. Either by separating the
singular behaviour in (12) or by differentiating (11), we see that

φ(r, z) ∼ −2 sgn z + o(1) asz →∞ .

6 Conclusions

We have considered two general methods for solving Laplace’s equation around an
object in a cylinder. We have shown that a re-interpretation of the transforms used by
Knight and Linton allows their method to be used reliably. Further, we showed that the
different methods offer different numerical properties, although the Morse—Feshbach
method has only been applied to the problems described here, and not yet to more
complicated situations.
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